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The antiferromagnetic Heisenberg chain is expected to have an extended symmetry,
[SU(2)×SU(2)]/Z2, in the infrared limit, whose physical interpretation is that the spin and dimer
order parameters form the components of a common 4-dimensional pseudovector. Here we numer-
ically investigate this emergent symmetry using quantum Monte Carlo simulations of a modified
Heisenberg chain (the J-Q model) in which the logarithmic scaling corrections of the conventional
Heisenberg chain can be avoided. We show how the two- and three-point spin and dimer correlation
functions approach their forms constrained by conformal field theory as the system size increases
and numerically confirm the expected effects of the extended symmetry on various correlation func-
tions. We stress that some times the leading power laws of three-point (and higher) correlations are
not given simply by the scaling dimensions of the lattice operators involved, but can be faster de-
caying because of exact cancellations of contributions from the fields and currents under conformal
symmetry.

I. INTRODUCTION

The development of the theory of deconfined quantum
criticality [1] has reignited interest in critical quantum
systems which show an extended symmetry in the ther-
modynamic limit [2–4]. An example of emergent symme-
try can be seen in the spin-1/2 Heisenberg antiferromag-
netic chain, where it is expected [5, 6] that the micro-
scopic SU(2) symmetry extends to an [SU(2)×SU(2)]/Z2

symmetry. The ground state of this Hamiltonian is
known to be critical and has been shown to have scale in-
variant behavior analytically [7] and numerically [8]. In
this work, the emergence of the extended symmetry is
connected to the behavior of two- and three-point cor-
relation functions, thus providing a bridge between the
continuum field theory and lattice correlation functions.

We will first connect the emergent symmetry to lattice
correlation functions, then numerically study the corre-
lations and show that they reflect the emergent sym-
metry. The correlation functions have strict functional
forms which are controlled by the 2D conformal field the-
ory (CFT) which describes the emergent physics. The
emergent [SU(2)×SU(2)]/Z2 symmetry is manifested in
the three components of the Néel order parameter and
the dimer order parameter (which quantifies the spin-
Peierls order) forming an SO(4) symmetric pseudovector
[9]. The Z2 reduction to the SU(2)×SU(2) is required as
it is a “double cover” of SO(4) [10], i.e, there are two sets
of SU(2) matrices which generate the same SO(4) rota-
tion. The three-point functions of these order parameters
can yield useful information about the emergent symme-
try but must be treated with care, as a naive addition
of scaling dimensions to infer the exponent of the power-
law decay fails. An example of this will be presented
here with the spin-spin-dimer three-point function in the
Heisenberg chain. We discuss how the connections be-
tween the continuum and lattice version of the correla-

tion functions have to be carefully considered in order
to predict the correct power-law decay of the three-point
function based on the CFT.
The outline of the paper is as follows: In Sec. II we

review the predictions from renormalization group (RG)
analysis and examine how the extended symmetry affects
the correlation functions of the continuum versions of the
lattice spin and dimer operators. In Sec. III, we present
the manifestation of a CFT description on the correla-
tion functions and benchmark these findings against nu-
merical simulations of the transverse field Ising model
(TFIM) on a periodic chain. We stitch together the re-
sults of these two sections in Sec. IV and predict the com-
plete functional forms for the correlation functions and
then present numerical evidence to support the same. We
briefly summarize the study and discuss possible future
applications of numerical CFT tests in Sec. V.

II. EMERGENCE OF [SU(2)×SU(2)]/Z2

SYMMETRY

The spin-1/2 Heisenberg chain, with the Hamiltonian

H =

N
∑

i=1

~Si · ~Si+1 (1)

can be transformed into a system of interacting spinless
fermions of two species using the transformation [5, 6]

~Sn =
1

2
ψ†i

n~σ
j
iψnj , (2)

where ψi
n is a spin doublet and repeated indices imply

summation over the range of values that the index can
take (as we will use thoughout this work). To take the
continuum limit, we will reiterate the series of arguments
presented in [5, 6] and use this process to define quantities
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that we will use later. Each fermion in the doublet can
be rewritten as two new fermions,

ψj
n ≃ [inψj

L(n±
1

2
) + (−i)nψj

R(n±
1

2
)], (3)

(plus and minus for even and odd n, respectively) which
is an exact transformation up to an overall factor. This
is motivated by the expectation that the free-fermion
ground state would have all states with |k| < π/2a occu-
pied and then only Fourier modes with k ≃ ±π/2a would
be important [11]. Thus, we understand the left (L) and
right (R) fermion operators to be “locally” constant and
to be slowly varying at the scale of lattice separation.
These will ultimately form the operators of the contin-
uum field theory. We can now write the spin operator on
the lattice, using the current operators

~JL = ψ†i

L~σ
j
iψLj , (4a)

~JR = ψ†i

R~σ
j
iψRj , (4b)

and the fermion biliear

Gi
j = ψ†i

LψRj , (5)

by direct substitution in Eq. (2) as

S
i
n = a(J i

L + J i
R) + (−1)naTr[(G −G†)σi]. (6)

Here we have used script letters for lattice operators and
bold font for matrices and we will continue to maintain
these conventions throughout this text. The operators
~JL, ~JR,G are defined at the same lattice position n as the
spin operator but this is not explicitly indicated to keep
the equations unencumbered. This form of the spin oper-
ator can be substituted into the Hamiltonian of Eq. (1),
which upon coarse graining has the following continuum
limit,

H = (a/2)

∫

dx[ ~JL · ~JL + ~JR · ~JR + 2 ~JL · ~JR] + ..., (7)

where a is the lattice spacing [5].
Note also that at this stage we have only one SU(2)

symmetry which comes along with the 3D rotation sym-
metry that the microscopic model has. This is manifest in

each of ~JL/R but they are not free to turn through differ-

ent arbitrary angles due to the ~JL · ~JR term which keeps
the relative angle between them fixed. Assuming that
this Hamiltonian flows to the free fermion fixed point,
which has the Hamiltonian

Hfixed =

∫

dx[ ~JL · ~JL + ~JR · ~JR], (8)

it can be shown that the term that couples left and right
currents in Eq. (7) is irrelavant under RG flow [5, 6] for
this particular fixed point. This is not true for all per-
turbations to the fixed point Hamiltonian and thus was

checked explicitly [5, 6] for the ~JL · ~JR term. Thus we

see that this line of reasoning leads us to believe that
in the thermodynamic limit we should be left with the
free fermion fixed point, which is also described by the
k = 1 Wess-Zumino-Witten (WZW) conformal field the-
ory [12].
To understand how the decoupling of the currents af-

fects correlation functions of spin and dimer operators,
we must first connect the primary operators of the CFT
to these order parameters. Once we have done this,
we can use the constraints that the extended symmetry
places on the correlation functions of the primary oper-
ators to understand the correlations of the measurable
orders.
The primary operators of the k = 1 WZW theory that

we are going to be interested in are [JL,JR, g], which are
the left and right currents with scaling dimension 1 and
the primary field with scaling dimension 1/2. These are
all SU(2) matrices, although the currents form matrices
which belong to the Hermitian subset of SU(2), which are
described by SO(3) vectors. This can be seen by observ-

ing that ~JL/R in the fixed point Hamiltonian [Eq. (8)] are
SO(3) vectors and thus the matrices to represent these
must be written as

JL/R = Ja
L/Rσ

a, (9)

where Ja
L/R form the components of ~JL/R. This struc-

ture is also justified by the framework of the 2D CFT,
which requires independent generators of translations for
z and z̄ (conjugate variables in the complex plane). In
the Virasoro algebra of the 2D CFT [13], these would
usually be called J(z) and J̄(z̄) and in the case of the
left (right) fermion, z = x+ it (z̄ = x− it) would encode
its space-time position.
The primary field g is made out of the continuum ver-

sions of the lattice operators which we shall denote as
(Sa, D). The components Sa form the continuum spin
operators and D represents the continuum dimer opera-
tor. These together form an SO(4) pseudovector which
is embedded in g through

g = Sa iσa +DI, (10)

as any general SU(2) matrix can be expanded in this
manner. The continuum versions of spins and dimers
will be mapped back to the lattice variables in the next
section. The primary field g is also closely related to the
fermion bilinear G as g is influenced by transformations
in both z and z̄ (left and right rotations) and G is made
out of left- and right-moving fermions and is also sensitive
to transformations in both of them.
As mentioned earlier, the left and right currents can

turn through different arbitrary angles at the fixed point
and these SO(3) rotations can be written in terms of
transformations on the SU(2) matrices as

JL = Ja
Lσ

a → LJLL
† = J

′a
L σa, (11a)

JR = Ja
Rσ

a → RJRR† = J
′a
R σa, (11b)
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where L and R are the SU(2) rotation matrices. It is im-
portant to note here that these rotations do not mix left
and right currents and keep the 2D conformal structure
intact. The field g depends on z and z̄ by construction
[13] and thus is affected by both left and right rotations.
These rotations are reflected in (Sa, D) through

g = Sa iσa +DI → LgR† = S
′a iσa +D

′

I, (12)

which creates the new set (S
′a, D

′

). The matrices
(g,JL,JR) live on the complex plane formed by space-
time and so do their components. The correlation func-
tions of these components (which are the continuum spin,
dimer, and current operators) on the complex plane are
of interest to us as they tell us what to expect for the
correlation functions of the lattice operators, which we
will investigate numerically later. We would also like to
point out here that all the correlation functions that we
consider in this text are connected correlation functions
as they are the ones which the CFT predicts. From this
point on, we will not explicitly mention that we are only
considering connected correlation functions. For the con-
tinuum operators, the connected correlation functions we
consider are the same as the naive correlation functions
as all the operators have a zero single body expectation
(enforced by the CFT) value and this implies nothing
needs to be subtracted from the naive correlation func-
tion to get the connected one.
To extract the correlation functions of (Sa, D), we ex-

amine

〈Tr[gz1g
†
z2 ]〉 = 〈SaSa〉+ 〈DD〉 (13)

and see that the right hand side is non-zero as the arbi-
trary transformations L and R leave the two point func-
tion of g, as defined here, unchanged through Eq. (12)
due to the cyclicity of the trace and as R†R = L†L = I.
Similarly, if we look at the transformation of the three-
point function,

〈Tr[gz1
g†
z2gz3

]〉 → (14)

〈Tr[Lgz1R
†Rg†

z2L
†Lgz3R

†]〉,

we see that the only way to keep this invariant under
arbitrary L and R would be to have this vanish. The
vanishing of the three-point function then implies that all
three-point functions of (Sa, D) (which could be either
of 〈SaSaD〉, 〈SaDSa〉, 〈DSaSa〉, 〈DDD〉) would vanish.
This can be seen by writing down all the possible three-
point functions of g and g† and solving for the spin and
dimer correlation functions.
When discussing the lattice spin and dimer correlation

functions, we will also need the continuum versions of the
correlation functions of the currents and operators. The
expressions which are of interest to us and robust against
arbitrary L and R transformations are

〈Tr[JLJL]〉 ∼ 〈Ja
LJ

a
L〉, (15)

〈Tr[JLgg
†]〉 ∼ 〈Ja

LS
aD〉+ 〈Ja

LDS
a〉, (16)

and permutations of the second equation with JL in dif-
ferent positions. These equations also apply for the right
currents by just switching all L→ R. The non-vanishing
nature of these correlation functions can be seen again
using the cyclicity of the trace and transformation equa-
tions (11a), (11b) and (12).

III. CFT AND CORRELATION FUNCTIONS

Due to the mapping to massless fermions, the spin-1/2
Heisenberg chain is a 2D CFT and we can use the con-
straints the 2D CFT puts on the correlation functions
to understand their precise forms. A 2D CFT is defined
on the complex plane and the constraints that conformal
symmetry requires restricts the two and three-point cor-
relation functions of primary operators to behave as [13]

〈OiOj〉 ∼
δij

|zij |ΛiΛj
, (17a)

〈OiOjOk〉 ∼
1

|zij |∆ij |zjk|∆jk |zki|∆ki
, (17b)

where Oi are the primary operators of the CFT and Λi

are their scaling dimensions and ∆ij = Λi + Λj − Λk.
The scaling dimension of a primary operator is made up
of two numbers hi and h̄i which indicate the scaling in
z and z̄ respectively. These correlation functions can be
factorised into two pieces, where one depends on z, and
the other on z̄ and the Λi’s are replaced by hi(h̄i). This is
useful when hi 6= h̄i, which may be the case for current
operators, which generate translations in either z or z̄.
For operators with hi = h̄i, we do not mention each
of them separately, but only indicate the total scaling
dimension Λi = hi + h̄i.
As these relations are valid on the infinite complex

plane and our simulations are done on a periodic chain,
we must use a mapping from the cylinder to the infi-
nite plane to understand the correlation functions. In
our simulations, we use ground state projector quantum
Monte Carlo (QMC) simulations, which means that we
project on a trial state with a large number of Hamilto-
nians, effectively for a long imaginary time. This implies
that we are using a cylinder whose circumference is the
system size and length is infinite for all practical pur-
poses. The system can then be mapped to the infinite
plane through the transformations τ → r and x→ θ [14]
which results in two spatially separated points on the pe-
riodic chain having a conformal distance between them
of

|zij | = L sin
(

π
x

L

)

, (18)

where x is the separation on the ring. This substitu-
tion into the correlation functions on the plane tells us
what we should expect on the cylinder. In some cases,
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FIG. 1. The scaled three-point function for the critical peri-
odic TFIM chain as defined in Eq. (21) flows to a constant
for x = L/8 and x = L/2. The line is a guide to the eye
and for x = L/2, we only exclude data around y/L = 0.5
for large sizes as the correlation function vanishes quickly as
x ∼ y ∼ L/2 and this means the numerical signal is very
weak.

the correlation function on the plane may have differ-
ent dependence on z and z̄ and may not be expressible in
|z|, but the mapping to the cylinder correlation functions
reverses this [13, 14] and they only depend on the confor-
mal distance given by Eq. (18), which must be the case as
they are real. Conformal information has also been used
to aid fitting of correlation functions and other numer-
ical quantities for spin systems [15–17]. The conformal
structure of Potts models has also been investigated us-
ing three-point functions[18]. As we will see, the SU(2)
spin chains considered here have additional complications
when interpreting multi-point functions.
As a warm-up, we first consider the much simpler case

of the TFIM chain, whose two-point function was already
analyzed alongside that of SU(2) chains in Ref. 19. Its
Hamiltonian is

H = −

N
∑

i=1

σz
i σ

z
i+1 −

N
∑

i=1

σx
i . (19)

Here we will check that the functional form of the three-

point function matches the CFT prediction for the TFIM
as we will be using three-point functions in the next sec-
tion to point out features of the extended symmetry. The
CFT of the TFIM is made up of three primary operators,
namely the identity I, the spin σ and the ferromagnetic
part of the energy density ǫ, with scaling dimensions 0,
1/8 and 1 respectively [12, 20]. With these operators, the
non-vanishing three-point function with the smallest scal-
ing dimension is 〈ǫσσ〉. We also note here again that the
CFT only tells us the behavior of the connected three-
point function and due to this, we compare the CFT
expectation to 〈ǫσσ〉c = 〈ǫσσ〉 − 〈ǫ〉〈σσ〉. We will not
carry the subscript c for connected correlation functions
as they make the symbolic expressions cumbersome.

Using the conformal distance and Eq. (17b), the three-
point correlation function on the ring should be

〈ǫ0σxσy〉 ∼

[

L sin
(

π |y−x|
L

)]
3

4

[

L sin
(

π x
L

)][

L sin
(

π y
L

)] . (20)

To compare numerical data to this expression, we define
a scaled correlation function Csc(x, y) which is the raw
correlation function multiplied by the inverse of the ex-
pected form as shown below:

Csc(x, y) ∼ 〈ǫ0σxσy〉 ×

[

L sin
(

π x
L

)][

L sin
(

π y
L

)]

[

L sin
(

π |y−x|
L

)]
3

4

(21)

If the expression matches, we should expect the scaled
correlation function to be a constant as a function of x
and y. In Fig. 1, we plot the scaled correlation function
for two different values of x and the whole range of y.
For large sizes, we observe an approach to constant be-
havior, with the deviations occurring when two out of the
three operators are close to each other and, therefore, the
coarse grained description does not hold.
It is important to note here that we must use the

conformal distances when predicting the finite-size func-
tional form due to the cylinder to plane conformal trans-
formation that we have used. We can also define the
scaled correlation function using just the lattice distances
instead of the conformal distance as

Csc(x, y) ∼ 〈ǫ0σxσy〉 ×
[s(0, x)][s(0, y)]

[s(x, y)]
3

4

, (22)

where s(a, b) is the shortest distance between a and b
along the ring. This way of defining the scaled correla-
tor results in a disagreement with the expected constant
form for the scaled correlation function, as can be seen
in Fig. 2, although the curves for different sizes still show
data collapse as the correct scaling dimension is being
used even in this correlator. The above manner of using
scaled correlation functions such as Eq. (21) has already
been used in previous work [19] for the two-point spin
correlation function, and will also be used in the next
section to test the agreement to the predictions of Sec. II.
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FIG. 2. Three point function for the critical TFIM periodic
chain scaled using the lattice distance rather than the confor-
mal distance, here for x = L/8.

IV. LATTICE CORRELATION FUNCTION
NUMERICS

In Sec. II, we have seen that some of the correlation
functions of continuum operators vanish and for the ones
that do not, we can predict their functional forms based
on the CFT constraints presented in Sec. III. The pri-
mary operators of the k = 1 WZW model are JL,JR

and g with scaling dimensions (h, h̄) given by (1,0),(0,1)
and (1/4,1/4) respectively. Using these dimensions, we
can infer that the correlation functions on the periodic
chain must have the following forms,

〈Tr[g(0)g†(x)]〉 ∼
1

L sin(π x
L )
, (23a)

〈Tr[JL(0)JL(x)]〉 ∼
1

[

L sin(π x
L )

]2 , (23b)

〈Tr[JL(0)g(x)g
†(y)]〉 ∼

1
[

L sin(π x
L )

][

L sin(π y
L)

] , (23c)

and the same for L → R. We can now use these expres-
sions to understand the lattice correlation functions by
writing the lattice operators in terms of their continuum
versions. Inspired by the analysis leading upto Eq. (6),
the spin and dimer lattice operators have been postulated
[5, 9] to be

S
i
n ∼ α(J i

L + J i
R) + (−1)nβSi, (24a)

Dn = ~Sn · ~Sn+1 ∼ D0 + (−1)nγD, (24b)

where α, β, γ are UV sensitive prefactors and D0 is a
constant shift of the lattice dimer operator which must

0.46

0.48

0.50

0.52

0.54

 0  0.1  0.2  0.3  0.4  0.5

C
sc

(x
)

x/L

48
64
96

192

FIG. 3. Scaled dimer two-point function for the critical JQ2

periodic chain as defined in Eq. (31). The results flow to
a constant with increasing size. The Horizontal axis only
extends to x/L = 0.5 as two-point functions are symmetric
about y = L/2.
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FIG. 4. Spin two-point function for the critical JQ2 chain
scaled with the first term of Eq. (28) [as explicitly shown in
Eq. (32)]. The approach to a constant for large sizes confirms
the expected form.

be subtracted out when calculating connected correlation
functions.
Using this equivalence between the lattice and contin-

uum operators, we can construct the lattice correlation
functions that we are going to use;

〈DD〉 ∼ (−1)n〈Tr[gg†]〉+ ..., (25a)

〈DDD〉 ∼ 0 + ..., (25b)

〈~S·~S〉 ∼ (−1)n〈Tr[gg†]〉+〈 ~JL· ~JL〉+〈 ~JR · ~JR〉+..., (25c)

〈~S · ~SD〉 ∼ 〈Tr[JLgg
†]〉+ 〈Tr[gJLg

†]〉+ (L→ R) + ...,
(25d)
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FIG. 5. Spin two-point function for the critical JQ2 chain
with the first term of Eq. (28) subtracted out and scaled with
the second term, as in Eq. (33). We see improving agreement
with the expected form with increasing L.

where we have dropped the prefactors as they are UV-
controlled parameters which are not important from the
continuum perspective and to keep the equations from
becoming unnecessarily dense. The additional terms ig-
nored in these equations are lattice non-asymptotic cor-
rections which occur due to finite distance and lattice
size. Our simulations use lattices large enough to ob-
serve the decay toward zero of these contributions.
We can incorporate the results of Eqs. (23a), (23b) and

(23c) to hypothesize that the full functional forms of the
connected lattice correlation functions are

〈D0DxDy〉 ∼ 0 + ..., (26)

〈D0Dx〉 ∼
(−1)x

L sin(π x
L)

+ ..., (27)

〈~S0 · ~Sx〉 ∼
(−1)x

L sin(π x
L )

+
1

[

L sin(π x
L)

]2 + ..., (28)

〈D0
~Sx·~Sy〉 ∼

1

L sin
[

π
L (y − x)

]

[

(−1)x

L sin(π y
L)

−
(−1)y

L sin(π x
L)

]

+....

(29)
The most striking effects of the extended symmetry

are seen in Eqs. (26) and (29) where the vanishing of
the three-point function of g ensures that there is no
term with scaling dimension 3/2 (three times scaling di-
mension of g) in either of these equations. In this case,
if we were to use the three-point function’s scaling form
to infer the scaling dimensions of the operators (which
imply the scaling dimensions should sum to 2), we would
run into errors as we would be unable to make it consis-
tent with the two point functions (which imply the scal-
ing dimensions should sum to 3/2). To see proof of this
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FIG. 6. The Dimer three-point function for the critical JQ2

chain vanishes for large enough system size, which agreement
with Eq. (26), here shown for x = L/4 and x = L/2.

numerically, we again calculate scaled correlation func-
tions for these expressions, except for 〈D0DxDy〉, which
is expected to be zero. If the numerics agree, we should
expect to see that the scaled functions are constants with
respect to x and y, as seen in Sec. III for the TFIM.
The continuum description of the Heisenberg model

ground state has marginal operators which lead to log
corrections to correlation functions. We shall use the
JQ2 chain which is the Heisenberg model with a four spin
term that enforces dimer order when strong and tunes
out the log corrections at the transition point (where the
marginal operator vanishes) into the dimer phase;

H = −JΣiPi,i+1 −QΣiPi,i+1Pi+2,i+3 (30)

where Pi,j = 1/4 − ~Si · ~Sj . This model is an alterna-
tive to the more commonly used J1-J2 (first and second
neighbor interacting) Heisenberg chain [21], with the ad-
vantage that it is amenable to QMC studies without sign
problems.
At a critical value of Q/J , Qc/J ≈ 0.84831 [22, 23],

we would expect to see the correlation functions behave
according to the predicted forms. All our simulations of
the ground state of the critical JQ2 chain are done using
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FIG. 7. The scaled dimer-spin-spin three-point function,
Eq. (34), for the critical JQ2 flows to a constant, here demon-
strated for x = L/4 and x = L/2. In the upper panel, the
divergence at y = 3L/4 is due to the exact vanishing of the
correlation function at this point. In the lower panel, data
for even y values in the range y/L ∈ (0.3, 0.7) have been ex-

cluded as 〈D0
~Sx · ~Sy〉 tends to a “0/0” form and, thus, the

scaled correlation function is very noisy.

a projector QMC method formulated in the valence-bond
basis. The correlation functions are evaluated using loop
estimators on the transition-graphs created by sampling
the states in the valence-bond basis [24, 25]. Fig. 3 il-
lustrates the scaled correlator for 〈D0Dx〉, defined using
Eq. (27) as

Csc(x) = 〈D0Dx〉 ×
L sin(π x

L )

(−1)x
, (31)

and we see that it approaches a constant for fairly small
chain lengths. Fig. 4 shows the scaled version of the first

term (scaling dimension of 1) of 〈~S0 · ~Sx〉, again defined
using Eq. (28) as

Csc(x) = 〈~S0 · ~Sx〉 ×

[

L sin(π x
L )

(−1)x

]

, (32)

which dominates the second term (scaling dimension of
2) and we see that this flows to a constant [1.11(1)] with

increasing size. In Fig. 5, we subtract out the first term
and present the scaled version of the second term in a
scaled correlation function defined as

Csc(x) =

[

〈~S0 · ~Sx〉 − 1.11×
(−1)x

L sin(π x
L )

]

(33)

×

[

L sin

(

π
x

L

)]

,

for which we cannot go to large sizes due to insufficient
data quality. We still can observe that it matches our ex-
pectations, flowing to a constant with increasing system
size.
In Fig. 6, we show the agreement of the three-point

dimer correlation function [denoted by CD3(x, y) in both
figures] with Eq. (26) for two different values of x and
the whole range of y values. Only in the case of the
three-point dimer function, we present the raw correla-
tion function without scaling as it is expected to be zero
and there is no sense in which we can scale it. We show
the same for Eq. (29) through Figs. 7 by again defining
a scaled correlator as

Csc(x, y) = 〈D0
~Sx · ~Sy〉

L sin
[

π
L(y − x)

]

(−1)x

L sin(π y

L
) −

(−1)y

L sin(π x
L
)

(34)

and observing that it approaches a constant for large
sizes. With this numerical evidence, we conclude that the
signatures of the extended symmetry that we expect to
see are indeed present in the spin-1/2 Heisenberg chain.
Finite-size (distance) corrections can be seen clearly in
our numerical data and these should be described by ir-
relevant operators.

V. CONCLUSION

We have shown numerical evidence of the effects of the
emergent SO(4) ≡ [SU(2)× SU(2)]/Z2 symmetry in the
Heisenberg chain on the correlation functions of lattice
operators. This establishes the IR emergent symmetry
which was theoretically expected from a variety of ar-
guments. The three-point function was discussed here
as a useful tool to understand the structure of the un-
derlying field theory and has been shown to yield useful
information through not only its scaling dimension, but
also its functional form. The clearest example of this

is 〈D0
~Sx · ~Sy〉 whose observed scaling dimension is not

directly related to the leading scaling dimensions of the
operators it is made out of, due to cancelations of con-
tributions from the field and current operators. Here,
we have also developed tests of CFT through correla-
tion functions and these can be used to test suspected
extended symmetry in higher dimensional systems[2, 3]
and more broadly to test for CFT signatures in general.
In higher dimensions, an open question is what system

geometry is best suited for investigating the conformal
symmetry explicitly in equal-time correlation functions.
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In 1D, for the ring geometry (infinite imaginary time,
i.e., the ground state) the conformal distance naturally
emerges, but it does not have a direct generalization to
2D or 3D. The functional form of the correlation func-
tions when expressed using the conformal distance in 1D
provides perhaps the most striking evidence of conformal
invariance in finite systems, and such a concept in higher
dimensions would be very useful for lattice calculations.
QMC calculations of correlation functions can be readily
extended to higher dimensions to check the existence of
CFT descriptions if such concepts were to be developed.
For 1D systems, density matrix renormalization group
(DMRG) can be used to check the predictions of the
CFT as well, including direct detection of the conformal
tower of excitations [26]. With DMRG calculations using
the common open boundary conditions (as the computa-
tional cost of periodic boundaries is significantly higher),
CFT results for correlation functions will only be valid
away from the boundaries, and the correlation functions
will then just depend on the lattice separation between
sites instead of the conformal distance (acheived by the

mapping of the infinite cylinder to the infinite plane).
This would be relevant when simulating the critical J1-
J2 chain which is not amenable to QMC due to the sign
problem but has the same CFT description as the J-Q
chain considered here, and is another model which recre-
ates the k = 1 WZW model in the continuum limit.
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