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We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal
metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit cou-
pling. We derive microscopic formulas for various types of spin torque acting on the antiferromagnet
as well as for charge and spin currents flowing through the junction. The obtained results are ap-
plicable in the limit of slow magnetization dynamics. We identify a parameter regime in which
an unconventional damping-like torque can become comparable in magnitude to the equivalent of
the conventional Slonczewski’s torque generalized to antiferromagnets. Moreover, we show that the
antiferromagnetic sublattice structure opens up a channel of electron transport which does not have
a ferromagnetic analogue and that this mechanism leads to a pronounced field-like torque. Both
charge conductance and spin current transmission through the junction depend on the relative ori-
entation of the ferromagnetic and the antiferromagnetic vectors (order parameters). The obtained
formulas for charge and spin currents allow us to identify the microscopic mechanisms responsible
for this angular dependence and to assess the efficiency of an antiferromagnetic metal acting as a
spin current polarizer.

I. INTRODUCTION

The last few years have witnessed a growing inter-
est in the use of antiferromagnets as active elements in
spintronic devices.1–3 Antiferromagnets are an attractive
platform for novel magnetic recording devices due to their
large typical resonance frequency in the THz regime,
robustness against magnetic perturbations and the ab-
sence of stray magnetic fields. Recent experiments have
further revealed that spin transport is strongly affected
by antiferromagnetic order. Specifically, precision mea-
surements of magnetoresistance, spin current absorption,
and its transmission have proven to be powerful tools
for studying antiferromagnetic order in thin film multi-
layer structures.4–15 Manipulation and switching of the
antiferromagnetic order parameter, the Néel vector, are
possible via current-induced spin torques. In particular,
the effectiveness of relativistic (Néel) spin-orbit torques,
first proposed theoretically in Ref. 16, has been demon-
strated in several recent experimental works.17–20 The
relativistic Néel spin-orbit torque, however, requires sig-
nificant spin-orbit coupling and a rather particular crys-
talline structure. It is therefore of interest to understand
generic properties of antiferromagnetic metals that per-
sist even in the non-relativistic limit, i.e., for negligible
spin-orbit coupling. This is the main aim of this paper,
where a minimal microscopic model will be employed to
analytically study dynamics and transport in antiferro-
magnetic nanostructures. Our study complements exist-
ing theoretical approaches,16,21–30 which have been pre-
dominantly phenomenological21,22,24–26,28 or relied on ex-
tensive numerical computations.16,23,27,29 Our approach
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FIG. 1. Schematic description of the theoretical model con-
sidered in the present work. The ferromagnetic (F) and nor-
mal metal (N) leads are assumed to have fixed electron dis-
tribution functions nF,N (ε), respectively. A finite difference
nF − nN drives the antiferromagnet (AF) out of equilibrium
and it eventually settles down to a dynamical stationary state.
The layers are separated by barriers with tunneling ampli-
tudes WF,N .

is in a similar spirit to the work of Stiles and Zangwill31

on ferromagnetic spin transfer torques and aims at re-
vealing the anatomy of antiferromagnetic spin-transfer
torques.

We consider an antiferromagnetic metal (AF), tunnel-
ing coupled to two leads (Fig. 1). The leads are made
of ferromagnetic metal (F), and normal metal (N), re-
spectively. We aim at exploring basic transport charac-
teristics of F/AF/N junctions that do not require spe-
cific material properties. Spin-orbit coupling is therefore
neglected. The tunneling barriers are chosen as spin-
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conserving and the antiferromagnetic order is established
on a bipartite lattice. When a bias voltage or tempera-
ture difference is applied between the leads, charge and
spin currents flow and generate spin transfer torques act-
ing on the localized spins SA,B at the two sublattices in
the AF. The main role of the ferromagnetic lead in this
setup is to generate a finite spin-polarization. The nor-
mal metal lead, in turn, provides an explicit channel of
relaxation for the electrons on the AF, a crucial ingredi-
ent for a number of phenomena discussed below.

We derive microscopic formulas for the four symmetry-
allowed spin transfer torques and identify physical mech-
anisms responsible for each of them. We find that in addi-
tion to Slonczewski’s damping-like torque, familiar from
ferromagnetic multilayers, two unconventional types of
torque can become relevant in certain parameter regimes.
We also obtain analytical expressions for the dependence
of the charge and spin currents on the angle between the
ferromagnetic and antiferromagnetic order parameters.
The spin current transmission depends strongly on this
angle, indicating that spin-valve applications are plau-
sible for antiferromagnetic metals. The predictions on
the torques and currents may be experimentally tested
against each other since they are all given in terms of a
common set of control parameters.

Before summarizing our findings in more detail, it is in-
structive to first review the phenomenology of magnetiza-
tion dynamics1 in bipartite antiferromagnets. This phe-
nomenology is based on the observation that the strong
exchange interaction responsible for the antiferromag-
netic order between SA and SB implies that the normal-
ized total spin angular momentum m = (SA+SB)/2S is
much smaller than the normalized Néel order parameter
n = (SA − SB)/2S where S = |SA| = |SB |. Ignoring
quantities of order |m| / |n| � 1, one obtains |n| ≈ 1
and m · n = 0. Then the symmetry-permitted terms of
spin torque at the leading order in m in the dynamical
equations of m and n are given by

dm

dt

∣∣∣∣
current−induced

≈ −n
2S
× (Γmfl ẑF + n× Γmdl ẑF ) , (1)

dn

dt

∣∣∣∣
current−induced

≈ −n
2S
× (Γnfl ẑF + n× ΓndlẑF ) , (2)

where ẑF is a unit vector along the polarization vec-
tor of the injected spin current. The subscripts fl and
dl stand for field-like and anti-damping-like respectively.
Γmdl represents the conventional Slonczewski’s spin trans-
fer torque and Γnfl acts like an external magnetic field.
The so-called Néel spin-orbit torque, which can be effec-
tive in systems with spin-orbit coupling and is therefore
outside the scope of this paper, would enter the equa-
tions as a contribution to Γmfl . The remaining Γndl has not
been discussed very much so far in the literature. All four
torques are allowed by symmetries and could therefore be
introduced on purely phenomenological grounds. In this
work, we will go one step further and discuss their rela-
tive strengths and microscopic origin for the case of the

F/AF/N junction. In general, the dynamical equations
for m and n do not only include torques, but additional
terms accounting for damping and noise. While these
can be discussed within the formalism described below,
they are beyond the scope of the present work.

It is also instructive to interpret the various types of
torque in the two-ferromagnet picture, in which the over-
lap between electronic orbitals located at A and B sub-
lattice sites is negligibly small. In this limit, one may
consider AF as a pair of oppositely oriented ferroma-
gents as far as electron transport is concerned. For a
ferromagnet, it is well known that quantum mechanical
dephasing31 leads to a strong Slonczewski’s damping-like
torque32,33 and a negligibly small field-like torque. As-
suming that the spin torque acting on each individual
”ferromagnetic” moment SA,B is of the Slonczewski type
then corresponds to Γmdl ≈ JF /2,Γ

m
fl ≈ Γnfl ≈ Γndl ≈ 0

where JF is the total spin current flowing into AF. We
note that these estimates are based on a model in which
the injected spin current does not appreciably change the
state of AF. It therefore implicitly assumes the presence
of a relaxation mechanism faster than the rate of tunnel-
ing at the F/AF interface so that it quickly wipes out any
influence of the injected current. In this sense, the above
estimates apply to a regime of weak F/AF coupling.

Our calculations generalize the two-ferromagnetic re-
sult by including the intersublattice overlap along with
N as the source of the relaxation that dissipates the in-
jected current. We show that the intersublattice overlap
opens up an additional channel of electron transport in
which the dephasing can be avoided and the transverse
spin is conserved. This results in a novel contribution
to the field-like torque Γnfl proportional to the square of
the overlap amplitude. The inclusion of N turns out to
be crucial here as Γnfl is inversely proportional to the re-
laxation rate. The finite relaxation rate also allows us
to explore the regime of strong tunneling at F/AF inter-
face. We find that the antiferromagnetic state modified
by the ferromagnetic current generates nonvanishing Γmfl
and Γndl, of which the latter may reach a magnitude com-
parable to that of Γmdl .

Similarly based on the two-ferromagnet picture, each
sublattice contributes to the conductance a ferromagnetic
angular dependent term,34,35 proportional to cos θA,B =
ẑF · SA,B/S respectively. This angular dependence can-
cels in the total conductance, however, because of the an-
tiferromagentic order SB ≈ −SA ⇒ cos θB ≈ − cos θA.
Phenomenologically this is a consequence of the symme-
try between the A and B sublattices and the charge cur-
rent I is predicted to be a function of cos2 θ in the lead-
ing order cylindrical harmonics expansion. Still staying
within the picture of two superimposed ferromagnets, the
spin current flowing at AF/N (JN ) is expected to be given
approximately by JF ẑF ·n since Slonczewski’s spin torque
arises from absorption of the transverse components of
electron spin by the localized moments via dephasing31

and effectively projects out the spin current polarization
onto the Néel vector. In contrast, the longitudinal spin
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is conserved in the absence of spin-orbit interaction. In
short, an antiferromagnetic metal should act as an ideal
spin-valve according to the two-ferromagnetic picture.
We compute the charge and spin currents at both F/AF
and AF/N interfaces and explicitly confirm the cos2 θ
dependence of the charge current and the spin-valve-like
behaviour of the spin current. Again it is essential to
include the two leads since the θ dependent charge cur-
rent is second order in F/AF tunneling while the spin
transmission requires spin currents at the two interfaces.

The rest of the paper is organized as follows. In Sec. II,
after introducing the model Hamiltonian, we give an
overview of the physical properties of F/AF/N junction.
We explain meanings of all the parameters appearing in
the final results of torques and currents. Sections III and
IV contain the main results for the spin torques and the
charge and spin currents in the stationary state. We con-
clude with discussions of our results and their connection
to the previous studies in view of experiments and appli-
cations in Sec. V. In Appendix A and B, we describe our
theoretical approach and show details of the calculations.
In order to facilitate the comparison with previous stud-
ies, Appendix C develops a scattering theory approach
and Appendix D discusses F/F/N and AF/AF/N junc-
tions within our framework.

II. THE MODEL

We consider a system depicted in Fig. 1 where an an-
tiferromagnetic metal (AF) is connected to a ferromag-
netic left lead (F) and a normal metallic right lead (N)
by respective tunneling barriers. The model Hamiltonian
consists of five distinct parts;

H =
∑

k,σ

εFkσc
F†
kσc

F
kσ+

∑

m,σ

εNmc
N†
mσc

N
mσ+H0+HF+HN . (3)

The first two terms describe conduction electrons in F
and N. Only the electrons in F have spin-dependent en-
ergy eigenvalues. Labels k and m are used exclusively
for the orbital degrees of freedom of ferromagnetic cF

and normal metallic cN electrons. H0 represents AF and
is given by

H0 =
∑

l,σ

(
a†lσ b†lσ

)(εl tl
tl εl

)

SL

(
alσ
blσ

)

−∆ex

S

∑

l,σσ′

σσσ
′ ·
(
SAa

†
lσalσ′ + SBb

†
lσblσ′

)
. (4)

Here, alσ and blσ annihilate the energy eigenstates with
the eigenvalues εl residing in the A and B sublattice re-
spectively, in the absence of intersublattice overlap of
the atomic orbitals and also of the exchange interaction
with the localized spins SA,B . The overlap amplitudes
tl are assumed to be diagonal in this basis mainly for
the ease of implementing the sublattice symmetry (tl de-
notes the complex conjugate of tl). We note that this
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FIG. 2. The choice of coordinate axes and the definitions of
the azimuthal and polar angles θ, φ seen in the ferromagnetic
frame spanned by x̂F , ŷF , ẑF (Left) and in the antiferromag-
netic frame spanned by x̂, ŷ, ẑ (Right). The Néel vector in the
ferromagnetic frame is parameterized by the usual spherical
coordinates. The incoming spin current, or equivalently the
ferromagnetic moment, in the antiferromagnetic frame has x
and z components only; ẑF = ẑ cos θ − x̂ sin θ.

form is generic in the case where l denotes the crystalline
momentum.28 Specifically for a checker board structure,
tl and εl correspond to the Fourier transforms of the
nearest-neighbor and next-nearest-neighbor hopping am-
plitudes respectively. 2∆ex is the exchange split of the
antiferromagnetic electrons. σ = (σ1, σ2, σ3) are the
Pauli matrices in spin space and we set ~ = 1. The
Hilbert space for a given l is four dimensional; two for the
spin and two for the sublattice. Two by two matrices in
the spin space and the sublattice space are distinguished
by subscripts SP and SL except for the Pauli matrices
for which we use τ1,2,3 in the sublattice space. HF and
HN represent spin-conserving tunneling processes to and
from F and N respectively;

HF =
∑

kl,σσ′

[
cF†kσ (WF )

σσ′

kl

(
alσ′

blσ′

)
+ h.c.

]
, (5)

HN =
∑

lm,σ

[
cN†mσ (WN )ml

(
alσ
blσ

)
+ h.c.

]
. (6)

The tunneling matrices WF,N are vectors in the sublat-
tice space, defined by

(WF )
σσ′

kl = Rσσ
′

SP

((
WA
F

)
kl

(
WB
F

)
kl

)
, (7)

(WN )ml =
((
WA
N

)
ml

(
WB
N

)
ml

)
. (8)

The spin rotation matrix RSP reads

RSP =

(
e−iφ/2 cos (θ/2) −e−iφ/2 sin (θ/2)
eiφ/2 sin (θ/2) eiφ/2 cos (θ/2)

)
, (9)

encoding the difference in the reference frame between
the ferromagnet and the antiferromagnet, as indicated
in Fig. 2. They have been chosen such that n =
(sin θ cosφ, sin θ sinφ, cos θ) in the ferromagnetic frame.

We remark on the dynamics of SA,B . The Hamiltonian
should be augmented by terms which do not involve the
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electrons, e.g. the antiferromagnetic exchange and crys-
talline anisotropy. However, the details of these terms
will not affect our computation as long as the resulting
magnetization dynamics is sufficiently slow. This condi-
tion will be quantified in the followings. We also assume
throughout that any deviation from the collinearity rela-
tion SB = −SA is due to time-dependent dynamical part
of SA,B . This allows us to specify a common spin quan-
tization axis for the two sublattices. In reality, there can
be some effective fields (torques to be derived) generated
through the tunneling to F that will induce a nonzero to-
tal spin m in equilibrium or stationary state. It implies
that there will be an additional requirement that the an-
tiferromagnetic exchange be much stronger than the spin
torques, which is expected to be safely satisfied in most
circumstances of interest.

A. Band structure

Figure 3 shows how the electron wave functions and
the energy spectrum change as we turn on the intersub-
lattice overlap tl and tunneling to the leads WF,N . In the
two-ferromagnet limit tl = WF = WN = 0, the strong
sd exchange interaction ∆ex splits the energy of up and
down spins within each sublattice. Since SB = −SA
in the equilibrium, the spins of upper and lower energy
states are swapped between A and B sublattices and the
bands are doubly degenerate in spin. Thus we call them
top (t, ↑↓) and bottom (b, ↑↓) bands, even though the en-
ergy gap 2∆ex is essentially the exchange spin splitting.
The introduction of tl does not qualitatively change the
band structure as it preserves the sublattice symmetry
and conservation of the z component of spin. As we shall
see, however, the nonzero overlap between the A and B
wave functions opens up new channels of transport and
alters some observables qualitatively. The energy gap

2∆l = 2

√
∆2

ex + |tl|2 is taken to be the largest relevant

energy scale of the problem. When the coupling to F
is taken into account, the degeneracy between the sub-
lattices is lifted and spin ceases to be a good quantum
number in general (Fig. 3(c)). The energy split originat-
ing from the tunneling is denoted by 2δlcl(θ), where

δl =
∑

k
α=A,B

∣∣(Wα
F )kl

∣∣2

4
P
(

1

ε− εFk↑
− 1

ε− εFk↓

)
,(10)

cl (θ) =

√
1− ∆2

ex

∆2
l

sin2 θ. (11)

The corresponding split bands are labelled by ±. This
splitting plays an important role in interpreting Γmfl com-
ponent of spin torque. Although the band structures of
F and N are also modified by the influence of AF, these
modifications are neglected by the assumption that the
leads are much greater in spatial dimension and electron
density of states than AF.

r

|ψ 2A B
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FIG. 3. Spatial variation of wave functions (Left) and the
corresponding energy spectrum (Right) (a) with neither inter-
sublattice overlap nor tunneling, (b) including intersublattice
overlap without tunneling and (c) for full electron eigenstates
of the structure under consideration. t and b denote the top
and bottom bands split by the large gap 2∆l. Spin is a good
quantum number in an isolated bipartite antiferromagnet as
for (a) and (b). Since the mixing with ferromagnetic elec-
trons breaks rotational symmetry completely unless ẑF ‖ ẑ,
spin cannot be used to label the states in (c). The ferromag-
net also breaks the symmetry between A and B sites, reflected
on the asymmetry in the wavefunctions.

B. Relaxation rates

In considering transport of electrons, the lifetime of the
electronic eigenstates, whose inverse we call relaxation
rate, plays a crucial role alongside with the band struc-
ture. In our model, this occurs for the electrons in AF
only through a tunneling into either of the two leads as
we have not included other sources of scatterings such as
disorder, electron-electron collisions, or phonons. First of
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all, the relaxation rate associated with the tunneling into
N is independent of spin and sublattice by assumption;
we denote it by 1/τNl . The relaxation into F, in con-
trast, depends on both spin and sublattice, and is also
a function of θ. As derived in Sec. A, the bands (t,+)
and (b,−) have the same ferromagnetic relaxation rate
1/τFl+ while the other two (t,−) and (b,+) decay at a

different rate 1/τFl−. The origin of the difference between

1/τFl± is the spin-dependent tunneling into F. We define
the isotropic and anisotropic parts of the ferromagnetic
tunneling rates, 1/τFl and 1/τal respectively, as

1

τFl
=

1

2

(
1

τFl+
+

1

τFl−

)
,

cl (θ)

τal
=

1

2

(
1

τFl+
− 1

τFl−

)
.(12)

The quantity cl(θ) which also governs the angle-
dependence of the energy split of the ± bands has been

introduced in Eq. (11). The relaxation rates 1/τF,al de-
fined in Eq. (12) are independent of θ. Microscopic ex-

pressions for 1/τF,N,al in terms of the tunneling matrix
elements are given by

1

τNl
=

∑

m
α=A,B

|(Wα
N )ml|

2
δ
(
ε− εNm

)
, (13)

1

τFl
=

∑

k
α=A,B

|(Wα
F )kl|

2
δ
(
ε− εFk↑

)
+ δ

(
ε− εFk↓

)

2
,(14)

1

τal
=

∑

k
α=A,B

|(Wα
F )kl|

2
δ
(
ε− εFk↑

)
− δ

(
ε− εFk↓

)

2
.(15)

They can be estimated if one assumes that∣∣∣∣
(
WA,B
F/N

)
k/ml

∣∣∣∣
2

≈ const ≡ w2
F/N . This leads to

1

τFl
∼ w2

F

DF↑ +DF↓
2

,
1

τal
∼ w2

F

DF↑ −DF↓
2

, (16)

1

τNl
∼ w2

NDN , (17)

where DF↑,↓, DN are the respective densities of states
at the Fermi energies of F and N. In contrast to 1/τFl
and 1/τal , δl is determined by states with a wide range of
energies εk in F. Therefore, the dependence of δl on char-
acteristic energy scales is more difficult to estimate. As
an example, for a 3d ferromagnet with quadratic disper-
sion one finds that the dimensionless product δlτ

a
l scales

with
√
µF /Λ, where Λ is the bandwidth. Therefore, one

may expect the inequality |δl| < 1/ |τal | to hold.
We can now be more precise about the approxima-

tion we have made, namely the slowness of the dynam-
ics of SA,B . Its characteristic frequency ω must satisfy
|ω| � 1/τl, so that the electron dynamics, characterized
by the typical dwell time τl, is much faster than the mag-
netization dynamics.

C. Nonequilibrium stationary state

In the remainder of the paper, we consider dynam-
ics of AF driven by fixed electron distribution functions

nF/N (ε) =
{

exp
[(
ε− µF/N

)
/TF/N

]
+ 1
}−1

for F and N
respectively. The externally applied bias voltage µF−µN
or temperature difference TF − TN induces charge and
spin currents in AF. Consequently a nonequilibrium spin
accumulation develops in AF, which generates spin trans-
fer torques via the sd exchange interaction. The nonequi-
librium state is characterized by the lesser Green’s func-

tion (G<a )ij = i
〈
ψ†jψi

〉
where ψi,j are any of alσ, blσ

and the expectation value is taken over the nonequilib-
rium probability distribution of the quantum mechanical
states. We focus on a stationary state in which all the
macroscopic observables such as currents and torques are
independent of time. The stationary state is fully deter-
mined by nF,N and the instantaneous magnitude and ori-
entation of the localized spins in AF. The calculation of
G<a is relegated to Appendix A. Once G<a is known, the
torques and currents are readily computed as explained
in the next sections.

It is helpful to compare our setup with the weak tun-
neling regime discussed in Sec. I. The latter concerns a
situation where AF is in a prescribed equilibrium state
n0 (ε) and a weak contact with either F or N is intro-
duced adiabatically. As long as AF stays close to the
equilibrium state n0, the tunneling charge currents that
flow across the interfaces AF/F (IF ) and AF/N (IN ) are
given by

IF = 2e
∑

l,±

nF (εl ±∆l)− n0 (εl ±∆l)

τFl
, (18)

IN = 2e
∑

l,±

nN (εl ±∆l)− n0 (εl ±∆l)

τNl
. (19)

The factor 2 takes account of the spin degrees of free-
dom. The summation over ± corresponds to the top and
bottom bands. Similarly, one can compute the tunneling
spin current leaving F (JzFF ) as

JzFF =
∑

l,±

nF (εl ±∆l)− n0 (εl ±∆l)

τal
. (20)

Note that here the spin polarization is along the ferro-
magnetic axis ẑF and the current does not depend on θ.
In the normalization used in this manuscript, the tunnel-
ing spin current equals twice the Slonczewski’s spin trans-
fer torque in the weak tunneling regime,36 setting a refer-
ence time scale for the magnetization dynamics. Under a
bias voltage V , one can estimate ω ∼ JzFF ∼ eV DAF /τ

a
l

with the antiferromagnetic density of states DAF . Thus
the aforementioned slowness condition is self-consistent
as long as |eV DAF | � 1. We also remark that the spin
current measured in AF is given by JzAF = JzFF cos θ,
where the polarization is along the Néel vector n = ẑ.
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The spin current at AF/N is zero in this weak tunnel-

ing limit. Therefore, one can interpret 1/τF,Nl and 1/τal
roughly as charge and spin currents per antiferromag-
netic electronic state. Note that the weak tunneling
regime cannot be a stationary state unless a strong re-
laxation mechanism maintains AF in the state n0. We
use a full nonequilibrium electron distribution of AF self-
consistently determined by the tunneling processes to
compute the currents. The results reduce to (18) and
(20) for 1/τFl � 1/τNl where N acts as the relaxation
source against the currents from F. Yet the currents and
torques in the strong tunneling regime are also expressed

in terms of those same relaxation rates 1/τN,F,al as we
shall see.

Our formalism is formally valid for arbitrary values of

1/τN,F,al and µF − µN , TF − TN as long as the interfaces
are in the tunneling regime;

DF↑ +DF↓
2τFl

� NF ,
DN

τNl
� NN . (21)

Here NF,N are the number of conduction channels for
F and N and assumed to be large integers. These con-
ditions can be interpreted that the conductivity of each
channel must be small, i.e. they are nonmetallic tun-
neling contacts. Nevertheless, the total current can be
large as there can be many channels. Although the
band gap ∆l can be arbitrary, we focus on the regime
|δl|/∆l, 1/|τal |∆l � 1 for which physics can be discussed
in the language of the antiferromagnetic band structure.
The general results can be found in the Appendix.

Finally, it is worth repeating that our model sys-
tem does not include spin-orbit interactions. The inclu-
sion of electron-electron-interactions or interactions with
phonons is also beyond the scope of this work. Relax-
ation is therefore modeled entirely through the coupling
to the leads.

III. FOUR TYPES OF SPIN TORQUE

From the lesser Green’s function Eq. (A44), one can
readily compute the spin torques. The Heisenberg equa-
tions of motion for the averaged spin SA,B for H0 are
given by

dSA
dt

=
1

i
[SA, H0] = SA ×

∆ex

S

∑

l

a†lσal, (22)

dSB
dt

=
1

i
[SB , H0] = SB ×

∆ex

S

∑

l

b†lσbl. (23)

In the antiferromagnetic frame, SA,B are pointing in the
ẑ and −ẑ directions respectively so that dSA,B/dt have
only x and y components. The slowness of the magne-
tization dynamics implies one can replace the electron
operators by their expectation values. Rearranging (22)
and (23) and discarding terms proportional to m on the

right-hand-sides yield (1) and (2) with the coefficients
identified to be

Γmfl sin θ = −i∆ex

∫
dε

2π
tr
[
σ1 ⊗ τ3G<a

]
, (24)

Γmdl sin θ = −i∆ex

∫
dε

2π
tr
[
σ2 ⊗ τ3G<a

]
, (25)

Γnfl sin θ = −i∆ex

∫
dε

2π
tr
[
σ1 ⊗ 1SLG

<
a

]
, (26)

Γndl sin θ = −i∆ex

∫
dε

2π
tr
[
σ2 ⊗ 1SLG

<
a

]
. (27)

We have noted

i
∑

l

〈
a†lσal

〉
=

∫
dε

2π
tr

[
σ ⊗ 1SL + τ3

2
G<a

]
, (28)

i
∑

l

〈
b†lσbl

〉
=

∫
dε

2π
tr

[
σ ⊗ 1SL − τ3

2
G<a

]
. (29)

One can observe that torques appearing in the equa-
tion for n are expectation values of the total electron
spin while those driving m come from the staggered spin
(σ ⊗ τ3) expectation values. Based on this observation,
we call Γmfl,dl staggered torques and Γnfl,dl non-staggered
torques. When the torques are expressed as effective
magnetic fields, the field direction coincides with the di-
rection of the electron spin accumulation. Confusingly,
if an effective field is staggered, the direction of the cor-
responding torque is non-staggered since the torque is a
product of the field and the local magnetization, which
is itself staggered. Our designation of staggered and non-
staggered refers to the effective fields, not the torques.
The situation is summarized in Fig. 4. Note that in
the antiferromagnetic frame, ẑF has z and x components
only (Fig. 2). Therefore, the field-like torques are related
to the injected transverse spin (i.e. spin perpendicular to
n) and the damping-like torques require the spin expec-
tation value that is orthogonal to the polarization of the
injected spin current. From these considerations alone,
one can anticipate that the field-like torques can arise
from mechanisms that conserve the transverse spin in-
side the antiferromagnet while the non-conservation of
transverse spin is essential in generating the damping-
like torques. Carrying out the traces in Eqs. (24) - (27)
is a straightforward matter as presented in Appendix B.
Below we discuss each of the four components in detail.

A. Slonczewski’s spin transfer torque

We start from the contribution which is most familiar
in the ferromagnetic dynamics, which turns out to be Γmdl
in our notation;

Γmdl =

∫
dε

2π
(nF − nN )

∑

l

1

τal

(
∆ex

∆l

)2

× 1

τlτNl

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) , (30)
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FIG. 4. Four types of spin torque. They are classified ac-
cording to the effective field orientations illustrated by the
electron spin accumulations on the two sublattices. If the ef-
fective field lies in the plane spanned by the Néel vector n
and the spin polarization ẑF , the torque is field-like. An out-
of-plane field represents an anti-damping-like torque. Each
category has two staggered and non-staggered varieties based
on the relative sign between the effective fields at the two
sublattice sites. The direction of the torques themselves are
indicated by planer arrows.

6

relaxation source against the currents from F. Yet the
currents and torques in the strong tunneling regime are
also expressed in terms of those same relaxation rates

1/⌧N,F,a
l as we shall see.

Our formalism is formally valid for arbitrary values of

1/⌧N,F,a
l and µF � µN , TF � TN as long as the interfaces

are in the tunneling regime;

DF" + DF#
2⌧F

l

⌧ NF ,
DN

⌧N
l

⌧ NN . (21)

Here NF,N are the number of conduction channels for
F and N and assumed to be large integers. These con-
ditions can be interpreted that the conductivity of each
channel must be small, i.e. they are nonmetallic tun-
neling contacts. Nevertheless, the total current can be
large as there can be many channels. Although the
band gap �l can be arbitrary, we focus on the regime
|�l|/�l, 1/|⌧a

l |�l ⌧ 1 for which physics can be discussed
in the language of the antiferromagnetic band structure.
The general results can be found in the Appendix.

Finally, it is worth repeating that our model sys-
tem does not include spin-orbit interactions. The inclu-
sion of electron-electron-interactions or interactions with
phonons is also beyond the scope of this work. Relax-
ation is therefore modeled entirely through the coupling
to the leads.

III. FOUR TYPES OF SPIN TORQUE

From the lesser Green’s function Eq. (A44), one can
readily compute the spin torques. The Heisenberg equa-
tions of motion for the averaged spin SA,B for H0 are
given by

dSA

dt
=

1

i
[SA, H0] = SA ⇥ �ex

S

X

l

a†
l�al, (22)

dSB

dt
=

1

i
[SB , H0] = SB ⇥ �ex

S

X

l

b†
l�bl. (23)

In the antiferromagnetic frame, SA,B are pointing in the
ẑ and �ẑ directions respectively so that dSA,B/dt have
only x and y components. The slowness of the magne-
tization dynamics implies one can replace the electron
operators by their expectation values. Rearranging (22)
and (23) and discarding terms proportional to m on the
right-hand-sides yield (1) and (2) with the coe�cients
identified to be

�m
fl sin ✓ = �i�ex

Z
d✏

2⇡
tr
⇥
�1 ⌦ ⌧3G

<
a

⇤
, (24)

�m
dl sin ✓ = �i�ex

Z
d✏

2⇡
tr
⇥
�2 ⌦ ⌧3G

<
a

⇤
, (25)

�n
fl sin ✓ = �i�ex

Z
d✏

2⇡
tr
⇥
�1 ⌦ 1SLG<

a

⇤
, (26)

�n
dl sin ✓ = �i�ex

Z
d✏

2⇡
tr
⇥
�2 ⌦ 1SLG<

a

⇤
. (27)

TABLE I. Four types of spin torque. They are classified ac-
cording to the e↵ective field orientations illustrated by the
electron spin accumulations on the two sublattices. If the ef-
fective field lies in the plane spanned by the Néel vector n
and the spin polarization ẑF , the torque is field-like. An out-
of-plane field represents an anti-damping-like torque. Each
category has two staggered and non-staggered varieties based
on the relative sign between the e↵ective fields at the two
sublattice sites. The direction of the torques themselves are
indicated by planer arrows.

Staggered Non-staggered

A
n
ti

-d
a
m

p
in

g
-l
ik

e

ẑ

x̂ ŷ

ẑF

ẑ

x̂ ŷ

ẑF

�m
dl : Eq. (30) �n

dl: Eq. (36)
Slonczewski’s spin transfer

torque
Unconventional

F
ie

ld
-l
ik

e

ẑ

x̂ ŷ

ẑF

ẑ

x̂ ŷ

ẑF

�m
fl : Eq. (35) �n

fl : Eq. (33)
Néel field-like torque E↵ective magnetic field

We have noted

i
X

l

D
a†

l�al

E
=

Z
d✏

2⇡
tr


� ⌦ 1SL + ⌧3

2
G<

a

�
, (28)

i
X

l

D
b†
l�bl

E
=

Z
d✏

2⇡
tr


� ⌦ 1SL � ⌧3

2
G<

a

�
. (29)

One can observe that torques appearing in the equa-
tion for n are expectation values of the total electron
spin while those driving m come from the staggered spin
(� ⌦ ⌧3) expectation values. Based on this observation,
we call �m

fl,dl staggered torques and �n
fl,dl non-staggered

torques. When the torques are expressed as e↵ective
magnetic fields, the field direction coincides with the di-
rection of the electron spin accumulation. Confusingly,
if an e↵ective field is staggered, the direction of the cor-
responding torque is non-staggered since the torque is a
product of the field and the local magnetization, which
is itself staggered. Our designation of staggered and non-
staggered refers to the e↵ective fields, not the torques.

where the spectral functions At,bl are given by

At,bl =
1

2τl

1

(ε− εl ∓∆l)
2

+ 1/4τ2
l

. (31)

In our terminology, it can also be called staggered anti-
damping-like torque. Note that at the leading order in
|δl|/∆l, 1/|τal |∆l, the distinction between the ± bands
has disappeared from the final expression. To identify
it with the spin transfer torque, we take the limit tl =
0, 1/τFl � 1/τNl � ∆l and obtain (sgn (↑ / ↓) = ±1)

Γmdl ≈ π
∑

kl,σ±

nF
(
εFkσ
)
− nN (εl ±∆l)

2

×sgn (σ) |(WF )kl|
2
δ
(
εFkσ − εl ∓∆l

)
. (32)

The right-hand-side is precisely the spin current per sub-
lattice in the leading order tunneling approximation (20)
with assumption n0 = nN .36 Even though physical inter-
pretation of this formula has been well discussed in many

He↵
A / �ex

⌦
a†�2a

↵
<latexit sha1_base64="7PCe5CcOmpkVAiXeJiWtAL+zI6g="></latexit><latexit sha1_base64="7PCe5CcOmpkVAiXeJiWtAL+zI6g="></latexit><latexit sha1_base64="7PCe5CcOmpkVAiXeJiWtAL+zI6g="></latexit><latexit sha1_base64="7PCe5CcOmpkVAiXeJiWtAL+zI6g="></latexit>

He↵
B ⇠ �He↵

A / �ex

⌦
b†�2b

↵
<latexit sha1_base64="01fZnFDONLSJvpLkS9VSxaoB7Ro="></latexit><latexit sha1_base64="01fZnFDONLSJvpLkS9VSxaoB7Ro="></latexit><latexit sha1_base64="01fZnFDONLSJvpLkS9VSxaoB7Ro="></latexit><latexit sha1_base64="01fZnFDONLSJvpLkS9VSxaoB7Ro="></latexit>

FIG. 5. Illustration of dephasing processes through A and
B sublattices. An electron tunnels into a superposition of up
and down states due to the difference in the quantization axes
in F and AF. The dephasing leads to precession of the elec-
tron spin, whose chirality is opposite for the two sublattices.
This intrasublattice process is the only channel of electron
transport through AF if there is no intersublattice overlap
tl = 0.

places,31,33 we repeat the argument here in the context
of the two-ferromagnetic description of antiferromagnet.
Ignoring the intersublattice overlap tl, an electron in F
can only tunnel into a superposition of up and down spin
states in one sublattice, which have different de Broglie
wavelengths. Accordingly they dephase as they propa-
gate and induce precession of the transverse spin com-
ponent. The precession frequency differs for different or-
bital indices l. Upon averaging over l, the transverse
component of the injected spin current is rapidly lost
and absorbed into the magnetizations SA,B as required
by the overall spin conservation, resulting in the torque.

Note that the torque Γmdl appears as the expectation
value of the staggered spin operator σ2 ⊗ τ3. It is due to
the opposite handedness of the dephasing-induced pre-
cession in the two sublattices as depicted in Fig. 5. Our
generalized expression (30) shows that the spin transfer
torque in antiferromagnets is as effective as in ferromag-
nets even when tl 6= 0 and multiple tunneling processes
are taken into account.

B. Non-staggered field-like torque

As stated above, the transverse component of spin is
rapidly lost upon entering the antiferromagnet according
to the two-ferromagnet description. Next we discuss the
fate of transverse spin conservation in the presence of tl 6=
0 by looking at Γnfl , which is essentially the expectation
value of the x component of the spin σ1 ⊗ 1SL and given
by

Γnfl = −
∫

dε

2π
(nF − nN )

∑

l

2∆ex

τNl
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×
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1 [

|tl|2
τal ∆2

l

(Atl +Abl)

− δl
τl∆l

(
∆ex

∆l

)2

(Atl −Abl)

]
. (33)

Note that the second term in the second line is one order
higher in δl/∆l compared to the first term. It has been
kept, nevertheless, since the leading order term is propor-
tional to |tl|2, which implies that this contribution would
have been absent in the two-ferromagnet model and is
unique to antiferromagnets.

In AF with non-vanishing tl, all the four bands (t/b, ↑
/ ↓) have a nonzero amplitude at both A and B sublat-
tice sites as shown in Fig. 3(b). Thus a ferromagnetic
electron may tunnel into a superposition of up and down
states of exactly the same energy and wavelength, say
(t, ↑) and (t, ↓). Alternatively, if one treats tl as a per-
turbation, an electron tunnels into a superposition of, e.g.
(A, ↑) and (A, ↓), then via tl, the state (A, ↓) hops onto
(B, ↓) that has exactly the same wavelength as (A, ↑)
due to the sublattice symmetry. Either way, after the
tunneling, the two electron states, representing a single
electron, propagate with exactly the same phase evolu-
tion, dephasing is thus avoided, and the transverse spin
is conserved (Fig. 6). We reiterate that this is a conse-
quence of the complete sublattice symmetry assumed in
our model. Consequently, there will be a nonvanishing
expectation value of the x component of spin propor-
tional to the fraction of electrons undergoing the inter-
sublattice hopping |tl|2 /∆2

l , which is represented by the

first term in (33). This also explains the factor (∆ex/∆l)
2

in Eq. (30), which coincides with the fraction of electrons
propagating with different wavelengths and affected by
the dephasing. We note that a related mechanism was
discussed in the context of antisymmetric F/N/F spin
valves.37

The physics behind the second term should then be re-
lated to intrasublattice processes as it also comes with the
factor of (∆ex/∆l)

2
. It represents the residual x compo-

nent of spin that has managed to survive the dephasing.
One way to interpret this term is to consider the tilt of
electron quantization axes in AF due to the influence of
F. It should not be confused with the tilt of SA,B as they
are assumed fixed in the electron time scale. The part
of self-energy proportional to δl can be considered as an
additional Zeeman term in the direction of the ferromag-
netic moment σz cos θ − σx sin θ. In the leading order
approximation in δl/∆l, taking it into account yields the
direction of the effective magnetic field (preferred quan-
tization axis) ẑ′ ∼ ẑ − (δl sin θ/∆l) x̂ for the antiferro-
magentic electrons (Fig. 6). While the spin transverse
to the quantization axis is lost by dephasing, the longi-
tudinal component is conserved by definition. Thus the
fraction δl sin θ/∆l of the injected spin x component will
be conserved and contribute to the field-like torque.

It is helpful to write down Γnfl in the weak ferromagnetic

tl

ẑA = ẑ

ẑB = �ẑ

ẑ0
B ⇡ �ẑ � x̂

�l
�l

sin ✓

ẑ0
A ⇡ ẑ � x̂

�l
�l

sin ✓

x̂ ŷ

Incoming spin

Conserved longitudinal spin

He↵
A ⇠ He↵

B / �ex

⌦
a†�1a

↵
/ |tl|2

�2
l<latexit sha1_base64="bdKerKFK4G006c2gCS11bWOKppI="></latexit><latexit sha1_base64="bdKerKFK4G006c2gCS11bWOKppI="></latexit><latexit sha1_base64="bdKerKFK4G006c2gCS11bWOKppI="></latexit><latexit sha1_base64="bdKerKFK4G006c2gCS11bWOKppI="></latexit>

FIG. 6. Two mechanisms of transverse spin conservation in
AF. Left: When tl 6= 0, a ferromagnetic electron may prop-
agate through AF as a superposition of up and down states
that have exactly the same energy and wavelength. In the
perturbative picture, an electron that tunneled into the A
site is initially a superposition of up and down with differ-
ent wavelength. Subsequently, one of the electron states may
hop onto a state in the B site via tl, which has the same
wavelength as the state remaining at A. The phases of the
two states evolve at the same rate, thus avoiding dephasing.
Right: The tilt of the quantization axes . At the first order
in δl/∆l, the axes for both A and B sites change by the same
amount. At each sublattice, the z′A,B component of the spin
is conserved, which has a finite x component.

tunneling limit 1/τFl � 1/τNl , yielding

Γnfl ≈ −2

∫
dε

2π
(nF − nN )

∑

l

[
∆ex

τNl
τal

|tl|2
∆2
l

(Atl +Abl)

−δl
(

∆ex

∆l

)3

(Atl −Abl)

]
. (34)

As one can see, the intersublattice contribution (the
first term) has the relaxation time in the numerator.
When this first term dominates Γnfl , its relative magni-
tude compared to the spin transfer torque Γmdl is given by

∼ τNl |tl|
2
/2∆ex. Therefore Γnfl could in principle greatly

exceed Γmdl depending on how 1/τNl ∼ w2
NDN and tl com-

pare with ∆ex. This is one of the reasons for specifying
the origin of the relaxation in the present work. The
intrasublattice contribution (the second term) is always
suppressed by a factor of |δlτal | � 1 with respect to Γmdl .
This contribution exists for ferromagnets as well, though
mostly neglected because it is always subdominant.

C. Néel field-like torque

As we have explained, the x component of the spin
expectation value is related to the conservation of the
injected spin current. In the picture given above that
is based on first order tunneling processes, the gener-
ated expectation value is the same for the two sublat-
tices, which therefore leads to a non-vanishing Γnfl . If
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the higher order effects of the tunneling from F are con-
sidered, however, they break the symmetry between the
sublattices and result in different expectation values of

sAx =
〈
a†lσ1al

〉
and sBx =

〈
b†lσ1bl

〉
. This breaking of the

sublattice symmetry manifests itself through two differ-
ent parameters. The first is the energy split δl/∆l, whose
first order effect gives an equal magnitude of sAx and sBx
as we have just seen, but at the second order leads to
an asymmetric change of quantization axis for A and B
sublattices, and in turn to different values of sA,Bx . The
other parameter is τNl /τ

a
l , which represents the differ-

ent exit rates to F for the antiferromagnetic electrons in
A and B sublattices. This is also expected to give an
asymmetric correction to the conserved sA,Bx , given that
sA,Bx have a finite expectation value, since if electrons in
one sublattice escape faster than those in the other, it
should reduce the spin expectation value for the former
compared to the latter.

In our notation, the asymmetric part of the conserved
x component corresponds to Γmfl and is given in terms of
the expectation value of σ1 ⊗ τ3, which reads

Γmfl =

∫
dε

2π
(nF − nN )

∑

l

2∆ex

τNl

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1

×cos θ

τal

δl
∆l

∆ex

∆l
(Atl +Abl) . (35)

The similarity of this formula to the intrasublattice con-
tribution of Γnfl is apparent; the differences are the factor
τNl cos θ/τal , the different power of ∆ex/∆l, and the sign
in front of Abl. The latter two features are related to
the fact that Γmfl is an order higher also in ∆ex than Γnfl .
Hence it is reasonable to interpret this correction as aris-
ing from the escape rate difference. Since the same es-
timate as for the intrasublattice term of Γnfl applies, Γmfl
is expected to be subdominant in the entire parameter
space and we do not go deeper in its physical interpreta-
tion.

D. Unconventional anti-damping-like torque

Similarly to the field-like torques, the leading order
effect of the ferromagnetic tunneling gives a sublattice

symmetric contribution to sAy =
〈
a†lσ2al

〉
and sBy =

〈
b†lσ2bl

〉
, albeit the expectation values are staggered

sBy = −sAy . Then the symmetry breaking effects dis-
cussed in the previous subsection should generate a non-
staggered component sAy + sBy , which corresponds to Γndl.
To the leading order in δl/∆l, 1/τ

a
l ∆l, one derives

Γndl =

∫
dε

2π
(nF − nN )

∑

l

1

τal

(
∆ex

∆l

)3

cos θ

× 1

τNl τ
a
l

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl −Abl) , (36)

whose close connection to (30) is clear. This contribution
can be interpreted as caused by the different electron es-
cape rates between A and B sublattices limiting the ex-
pectation value of the y component of the spin. The cos θ
factor is also reasonable as there is no symmetry break-
ing when the ferromagnetic moment is perpendicular to
the Néel vector.

E. Comparison of the torques

The expressions for the four torques given in Eqs. (30),
(33), (35), (36) can be evaluated explicitly once the pa-
rameters of the model Hamiltonian such as the spectra of
the leads and the antiferromagnetic island and the tun-
neling amplitudes are specified. Here, we aim to make
general statements about the relative importance of the
different kinds of spin torque.

A brief look at Eqs. (30), (33), (35), (36) reveals that
the summation in l involves terms that are even in 1/τal
for Γndl, Eq. (36) and odd in 1/τal for the remaining three
torques. Since 1/τal can take both positive and nega-
tive values, cancellations may in principle occur when
evaluating Γmdl , Γnfl and Γmfl . This fact makes general
statements about their magnitude difficult. For the fur-
ther discussion, we therefore assume that 1/τal does not
change sign within the relevant interval of energies.

First, we will be concerned with the comparison of the
two damping-like torques. For this case, one arrives at
the inequality |Γndl| < |Γmdl |, which is a direct consequence
of the following hierarchy of relaxation rates, 1/ |τal | <
1/τFl < 1/τl. Let us discuss the ratio rd = |Γndl/Γ

m
dl | in

two limiting cases. In the limit of weak ferromagnetic
tunneling, one has rd ∼ τNl / |τal | � 1. This implies that
when the first order tunneling approximation is justified,
Γndl is likely negligible compared to the conventional spin
transfer torque Γmdl . In the opposite regime, i.e. 1/τNl �
1/τFl , the ratio can be estimated as rd ∼ τFl /|τal |. The
estimate (16) for the relaxation rates suggests that in
this case rd ∼ |DF↑−DF↓|/(DF↑+DF↓) ∼ ∆F /µF < 1,
where ∆F is the exchange splitting in the ferromagnetic
lead.

Next, we will be concerned with the comparison of the
torques entering Eq. (1) for dm/dt, Γmdl and Γmfl . The
relevant control parameter is |Γmfl /Γmdl | ∼ |δl| τl < |δlτal | <
1. This estimate suggests that the Néel field-like torque
in the absence of spin-orbit coupling is insignificant in
almost all circumstances.

We will now turn to the two torques entering Eq. (2)
for dn/dt, Γndl and Γnfl . Here, the control parameter is
|Γnfl/Γndl| ∼ ∆l|τal | × |tl|2/∆2

ex (assuming that the first
term dominates in expression for Γnfl , Eq. (34)). This
ratio is proportional to |τa| and therefore enhanced for
weak coupling to F. Further, the ratio is strongly affected
by the value of tl, which is difficult to estimate from
microscopic considerations. Since Γnfl is likely negligible
when |tl| � ∆ex, the detection of a significant Γnfl might
be used as an experimental probe into the extent of mi-
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croscopic intersublattice wave function overlap, although
it could be practically difficult to eliminate the possible
field-like contributions from spin-orbit interactions.

For the comparison of Γndl and Γmfl , one can probably
assume |Γmfl | < |Γndl| as |Γmfl /Γndl| ∼ ∆|τal | × δl/∆ex.

In summary, the discussion presented above suggests
the hierarchy |Γmdl | > |Γndl| > |Γmfl |. As for the non-
staggered field-like torque, a sizeable Γnfl requires large
intersublattice overlap amplitudes |tl|. Indeed, its rel-
ative magnitude compared to Γmdl , for which one esti-
mates |Γnfl/Γmdl | ∼ |tl|/∆ex × |tl|τl and compared to Γndl,
for which |Γnfl |/Γndl| ∼ ∆lτ

a
l ×|tl|2/∆2

ex, depends crucially
on the relation between |tl| and ∆ex as well as the relax-
ation rates 1/τal and 1/τl. When the overlap is ignored

tl = 0, one obtains |Γnfl/Γmdl | ∼ |δlτal | ∼
√
µF /Λ where Λ

is the bandwidth of F. Thus one would typically expect
|Γnfl/Γmdl | � 1, as was also found for an interface between
a normal metal and an antiferromagnetic insulator.26

F. Threshold current in the presence of Γn
dl

In contrast to Slonczewski’s spin-transfer torque Γmdl as
well as the conventional field-like torque Γnfl

25,38 and the
Néel field-like torque Γmfl

16, which have all been studied
in the literature in some form, dynamical consequences
of the unconventional anti-damping-like torque Γndl have
hardly been discussed so far in the spintronics literature.
As we have found that the magnitude of Γndl can be a siz-
able fraction (∼ ∆F /µF ) of the usually dominant Γmdl , it
is of a practical interest to explore how Γndl manifests itself
in the antiferromagnetic dynamics. Here, we compute the
threshold current that destabilizes a ground state config-
uration in the presence of both Γmdl and Γndl for a uniaxial
antiferromagnet. To simplify the discussions, we ignore
the generically small Γmfl and also assume |tl| � ∆ex so
that Γnfl is negligible.

The Landau-Lifshitz-Gilbert equations for a uniaxial
bipartite antiferromagnet in the macrospin approxima-
tion are given by

dm

dt
= −n×

(
ωAn

zẑ +
Γmdl

2S
n× ẑF

)

+αn× dn

dt
, (37)

dn

dt
= 2ωEn×m−

Γndl

2S
n× (n× ẑF )

+αn× dm

dt
. (38)

Here ωA and ωE are the crystalline anisotropy and ex-
change field in the unit of frequency respectively, and α
is the bulk Gilbert damping constant. Note that ẑF de-
notes the polarization of the incoming spin current and
ẑ is now fixed in the direction of the anisotropy axis.
We dropped the anisotropy term in the equation for n,
Eq. (38), as it is always negligible compared to the ex-
change term. We pick the ground state configuration

n0 = ẑ,m0 = 0 and consider the linear perturbation
n − n0 = (nx, ny, 0) ,m −m0 = (mx,my, 0). Introduc-
ing the complex variables n+ = nx+iny,m+ = mx+imy,
the linearized equations of motion read

dm+

dt
= iωAn+ −

Γmdl

2S
n+ + iα

dn+

dt
, (39)

dn+

dt
= 2iωEm+ −

Γndl

2S
n+ + iα

dm+

dt
. (40)

Applying the Fourier transform n+ = nωe
−iωt,m+ =

mωe
−iωt, the frequency eigenvalues are determined by

ω

(
ω + i

Γndl

2S

)
= (2ωE − iαω)

(
ωA − iαω + i

Γmdl

2S

)
.

(41)
We discard terms first order in ωA/ωE and second order
in α,Γm,ndl and obtain two eigenfrequencies

ω± = ±
√

2ωEωA − iαωE ± i
√

2ωE
ωA

Γmdl

4S
− iΓ

n
dl

4S
. (42)

As long as the Gilbert damping α > 0 dominates the
imaginary part, the ground state is stable and the sys-
tem stays in the linear regime. The damping-like torques
Γm,ndl can change sign depending on the direction of the
bias field and spin polarization so that they can con-
tribute either positive or negative damping. When the
current is strong enough so that the imaginary part of
one of ω± is positive, the ground state becomes unstable.
We note that the way the two damping-like torques Γm,ndl
contribute to the instability is qualitatively different. Be-
cause of the ± sign in front, Γmdl destabilizes one mode
and stabilizes the other regardless of whether Γmdl ≷ 0.
In contrast, if Γndl is positive (negative), its effect is al-
ways stabilizing (destabilizing) for the both ω± modes.
The threshold current at which the instability sets in is
determined by

αωE =

√
2ωE
ωA

|Γmdl |
4S
− Γndl

4S
. (43)

Therefore, a finite Γndl results in a threshold current that
depends on the signature of Γndl. For instance, one can
switch the sign of Γndl by reversing the direction of the
bias voltage. This asymmetry of the threshold current
with respect to the direction of the applied charge current
can be used to experimentally study the unconventional
damping-like torque Γndl.

IV. CONDUCTANCE AND SPIN
TRANSMISSION

The nonequilibrium stationary state of AF is main-
tained by continual flows of electrons at F/AF and AF/N
interfaces. These charge currents are given by the Meir-
Wingreen formula39;

Iβ = e

∫
dε

2π
tr
[ {
G<a + nβ

(
GRa −GAa

)}
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×W †β
(
GRβ −GAβ

)
Wβ

]
, (44)

where β = F,N for F/AF and AF/N interfaces respec-

tively and GR,Aa,F,N are the retarded and advanced Green’s
functions of AF, F and N respectively, whose details are
given in Appendix A. Similar expressions can be readily
derived for the spin currents;

JzFF =
1

2

∫
dε

2π
tr
[ {
G<a + nF

(
GRa −GAa

)}

×W †F
(
GRF −GAF

)
σ3WF

]
, (45)

JN =
1

2

∫
dε

2π
tr
[ {
G<a + nN

(
GRa −GAa

)}

×W †N
(
GRN −GAN

)
σWN

]
. (46)

Note that the Meir-Wingreen formula is based on the
conservation of the current in the lead so that xF , yF
components of the spin current at F/AF are not mean-
ingful.

A. Magnetoresistance

Since the charge is conserved in the whole system,
IF = −IN holds for stationary states with the latter be-
ing slightly simpler to calculate. Substituting (A44) into
(44) and taking the leading order term in δl/∆l, 1/τ

a
l ∆l

lead to

IN =

∫
dε

2π

∑

l

2e

τNl
(nF − nN ) (Atl +Abl)

×



1− 1

τlτNl

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1



 . (47)

The first line is the tunneling current into the normal
metallic lead (19), which indeed IN reduces to in the
limit of 1/τNl � 1/τFl . The magnetoresistance mani-
festing itself through the θ-dependence of IN thoroughly
comes from the second line. As cl (θ) is a monotoni-
cally decreasing function of sin2 θ, IN is maximum when
θ = π/2 and minimum for θ = 0, π.

In order to infer physical processes responsible for the
angular dependence, we again appeal to the weak fer-
romagnetic tunneling approximation 1/τFl � 1/τNl to
rewrite (47) as

IN ≈
∫

dε

2π
e (nF − nN )

∑

l,±

[
1

τFl±
− τNl(

τFl±
)2

]
(Atl +Abl) ,

(48)
where it has been expressed in terms of the escape rates
to F for the (t,±) eigenstates 1/τFl± = 1/τFl ± cl(θ)/τal .

One can see that the angular dependences from 1/τFl+ and

1/τFl− cancel each other at the first order (i.e. the first
term in the square bracket in Eq. (48)) in accordance

1

⌧ c
l

+
1

⌧a
l

1

⌧ c
l

� 1

⌧a
l

1

⌧ c
l

� 1

⌧a
l

|tl|
�l

1

⌧ c
l

+
1

⌧a
l

|tl|
�l

Ik < I?

FIG. 7. Mechanism of the magnetoresistance. In the per-
turbation in the influence of F on AF σR

l /∆l, 1/τFl± can be
considered to be the rate of particle exchange between F and
AF for up and down electrons respectively. At the leading
order, the charge current is proportional to 1/τFl+ +1/τFl− and
independent of θ. The second order effect is a backflow pro-
portional to −1/(τFl+)2 − 1/(τFl−)2. The sum of the squares
is θ-dependent and it is greatest for the collinear configu-
ration (Left) and smallest for the perpendicular configura-
tion (Right). The backflow is accordingly strongest for the
collinear configuration.

with the two-ferromagnet picture. The sign of the sec-
ond order term (proportional to 1/(τFl±)2) is the opposite
of the first order term, which implies a backflow of the
current from AF to F. It microscopically represents sim-
ple second-order processes where an electron enters from
the lead at the rate 1/τFl±, then exits at the same rate

1/τFl±. This escape rate should be compared with the es-

cape rate to the other lead 1/τNl , the only other source of
relaxation, which accounts for the factor of τNl . Taking
this backflow into account reduces the total current by
the fraction τNl /τ

F
l± in the case of positive bias.

The monotonic increase of the current as a function
of sin2 θ arises from the fact that the angular dependent
splitting of the escape rates is symmetric between the ±
states (Fig. 7). Therefore, when they are added at the
linear order, the angular dependence disappears: 1/τFl+ +

1/τFl− = 2/τFl . When they are added after being squared,
it always increases as the result of a simple algebraic
identity; 1/(τFl+)2 +1/(τFl−)2 = 2/(τFl )2 +2cl(θ)

2/(τal )2 >

2/(τFl )2. The amount of the increase is proportional to
the square modulus of the split cl(θ)/τ

a
l , and the split is

clearly smallest when the ferromagnet is perpendicular
to the antiferromagnet.

Finally, one can rephrase the result in terms of the
conductance in the linear response regime by expanding
nF − nN in terms of µF − µN ;

G =
2e2

h

∑′

l

1

τNl
(Atl +Abl)

×



1− 1

τlτNl

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1



 , (49)

where we have restored ~ and
∑′

denotes summation
over states on the Fermi surface.
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JzF
c Jz

d JzF
c Jz

d ⇠ 0

FIG. 8. Dependence of the spin current transmission on the
mutual orientation of the incoming spin current polarization
and the Néel vector. Left: Operation as a spin current polar-
izer. When ẑF ·N 6= 0, the injected spin current JzF

F is pro-
jected onto the direction of the Néel vector ẑ. The transverse
(x, y) components are projected out and the outgoing spin
current is mainly polarized along the Néel vector; JN ≈ Jz

N ẑ.
Right: Operation as a spin current filter. When ẑF and N
are perpendicular, the output spin current is effectively zero.
This is a direct consequence of transverse spin absorption in
AF by the dephasing mechanism.

B. Input spin current

Next we turn our attention to the spin current trans-
mission. The presence of the spin transfer torque is due
to the efficient absorption of the transverse spin current
by AF. In contrast, the longitudinal component of spin
should be conserved inside AF, at the leading order ap-
proximation in the tunneling, resulting in unhindered
transmission of the longitudinal spin current. Therefore,
AF is expected to act as an effective spin current polar-
izer (Fig. 8). Although ferromagnets as well possess the
above characteristics, they act as a source of spin cur-
rent by themselves, with which the spin polarizing effect
is largely washed out. In addition to the potential for
applications as a spin valve, this property may serve as
a method for detecting the orientation of the Néel vec-
tor by measuring the spin current transmission. Here we
compute both the spin current injected at F/AF inter-
face and the transmission into N. Note that since our
non-perturbative treatment of the coupling to F means
no component of spin is conserved in AF, it does not
make much sense to talk about spin current inside AF.

We start with the spin current at F/AF interface. In
F, the z component of spin current (in the ferromagnetic
frame, namely spin along ẑF ) is conserved and given by

JzFF =

∫
dε

2π

∑

l

(nF − nN )

[
1

τNl
+

1

τFl

(
∆ex

∆l

)2

sin2 θ

]

× 1

τNl τ
a
l

[
1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) . (50)

Its angular dependence is qualitatively similar to that of
the charge current IN , namely taking maximum at θ =
π/2. This is reasonable as IF = −IN and JzFN coincide
in the limit of a fully spin-polarized ferromagnetic lead.

C. Output spin current

The spin in N is fully conserved and all the components
of spin current are well-defined. In the antiferromagnetic
frame, the individual components read

JxN =

∫
dε

2π

∑

l

(nF − nN )
sin θ

τal

|tl|2
∆2
l

(51)

×
(

1

τNl

)2
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) ,

JyN =

∫
dε

2π

∑

l

(nF − nN )
sin θ

τal

cos θ

2τal ∆l

(
∆ex

∆l

)2

(52)

×
(

1

τNl

)2
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl −Abl) ,

JzN =

∫
dε

2π

∑

l

(nF − nN )
cos θ

τal
(53)

×
(

1

τNl

)2
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) .

For AF to work as a spin polarizer, it is first of all nec-
essary that the output spin current is mainly polarized
along the Néel vector, i.e. |JzN | � |Jx,yN |. Comparing
(52) and (53), it is clear that |JzN | � |JyN | holds gener-
ally as the latter is suppressed by sin θ/2τal ∆l. This is
reasonable since the input spin current is polarized along
ẑF = ẑ cos θ − x̂ sin θ and does not have a finite y com-
ponent. The nonzero value of the output y component
|JyN | is therefore due to the nonconservation of spin in-
side AF. |JyN | is also expected to be closely related to
the expectation value of electron spin y component in
AF. Indeed, the unconventional damping-like torque Γndl
given in (36) and |JyN | given in (52) are very similar, in-
dicating their common origin. More precisely, one can

write 2JyN = tr
[
σ2 ⊗ 1SLG

<
aW

†
N

(
GRN −GAN

)
WN

]
while

iΓndl sin θ = ∆extr [σ2 ⊗ 1SLG
<
a ] (c.f. Eq. (27)). Hence

both Γndl and JyN arise from the sublattice asymmetric
part of the dephasing process.

The comparison between JxN and JzN depends on the
strength of the intersublattice overlap tl. When |tl| �
∆ex, we have |JxN | � |JzN | and AF acts as a good spin
current polarizer. The fact that JxN is proportional to

|tl|2 can be understood by recalling the discussion on the
origin of the field-like torque Γnfl . In the absence of the
intersublattice overlap tl, all the electrons that enter AF
undergo the dephasing process and lose their transverse
spin, i.e. the x component. By turning on the overlap tl,
electrons can avoid the dephasing by hopping onto the
other sublattice, generating a finite expectation value for
the x component proportional to |tl|2, which is essentially
the field-like torque iΓnfl sin θ = ∆extr [σ1 ⊗ 1SLG

<
a ]. The

finite spin x component escapes towards the normal

metal lead at the rate 1/τNl ∝ iW †N
(
GRN −GAN

)
WN ,

resulting in the x component of spin current 2JxN ∼
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tr
[
σ1 ⊗ 1SLG

<
aW

†
N

(
GRN −GAN

)
WN

]
(this relation holds

approximately by neglecting subdominant terms).
While we have so far clarified that JxN and JyN share

the same physical origins as the torques Γnfl and Γndl re-
spectively, the z component of spin current JzN does not
appear in the discussions of spin torque. Rather, it is
determined by the conservation of the longitudinal spin
inside AF. If the longitudinal component, i.e. the z com-
ponent, is fully conserved, the output z component JzN
should be the projection of the input JzFF onto the z axis;
JzN = JzFF cos θ. The general relation inferred from Eqs.
(50) and (53) is instead an inequality |JzN | ≤ |JzFF cos θ|
where the equality is satisfied for θ = 0, π. It is again
reasonable since when sin θ 6= 0, the longitudinal spin
conservation inside AF is broken by the influence of F
and therefore the output should be less than the input.

In the context of the spin current polarizer, it is useful
to look at the same results in the ferromagnetic frame.
Taking appropriate linear combinations of JxN and JzN
yields

JxFN =

∫
dε

2π

∑

l

(nF − nN )
cos θ sin θ

τal

(
∆ex

∆l

)2

(54)

×
(

1

τNl

)2
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) ,

JzFN =

∫
dε

2π

∑

l

(nF − nN )
1

τal
cl (θ)

2
(55)

×
(

1

τNl

)2
[

1

τ2
l

−
(
cl (θ)

τal

)2
]−1

(Atl +Abl) .

One can make an estimate of the spin transmission of the
zF component;

JzFN
JzFF

≈
[

1−
(

∆ex

∆l

)2

sin2 θ

]

×
[

1 +
τNl
τFl

(
∆ex

∆l

)2

sin2 θ

]−1

. (56)

The contrast is maximized for tl = 0 and 1/τNl � 1/τFl .
Regardless of the relative strengths between the two tun-
neling barriers, however, one should expect a contrast in
spin transmission of order unity unless the exchange split-
ting ∆ex is much smaller than the intersublattice overlap
|tl|. From our discussions above, the origin of the angu-
lar dependent spin transmission is the same as for Slon-
czewski’s damping-like torque; namely the absorption of
the transverse spin via dephasing. Therefore, we expect
that the spin polarizer effect of antiferromagnets is as
robust as the conventional spin transfer torque.

V. DISCUSSIONS

We have theoretically studied a model F/AF/N junc-
tion without spin-orbit coupling and systematically de-

rived microscopic expressions for spin transfer torques as
well as charge and spin currents in response to a volt-
age or temperature bias. The results for the torques are
discussed in Sec. III and charge conductance and spin
transmission in Sec. IV.

The results strongly support the validity of two
commonly made assumptions, the dominance of Slon-
czewski’s damping-like torque and the cos2 θ dependence
of the magnetoresistance. At the same time, we have
found several additional features that can be of exper-
imental interest. The intersublattice overlap of anti-
ferromagnetic electron wave functions opens up a new
channel of electron transport and results in a contribu-
tion to the non-staggered field-like torque that depends
sensitively on the overlap and relaxation rates. Higher-
order tunneling processes into F generate additional non-
staggered damping-like and staggered field-like torques.
The magnitude of the non-staggered damping-like torque
can become a sizable fraction of Slonczewski’s staggered
damping-like torque and causes the threshold current for
destabilizing the ground state to depend on the direc-
tion of bias voltage. The staggered field-like torque, also
called Néel field-like torque, appears always small in the
present model, suggesting that it is difficult to generate
a sizable torque of this kind without spin-orbit interac-
tions. The same physical mechanisms responsible for the
torques lead to a strong dependence of the spin current
transmission on the angle between the spin polarization
and the Néel vector. In particular, unless the intersub-
lattice overlap overwhelms the exchange splitting, one
may expect a metallic bipartite antiferromagnet to act
as a spin current polarizer. All of the mentioned features
could potentially be used for experimentally probing elec-
tronic properties of antiferromagnetic nanostructures.

In comparing our results with experiments, however,
we have to stress that this study is based on a spe-
cific model and comes with various limitations, some of
which are implicit and not easily quantifiable. For in-
stance, restrictions on macroscopic parameters such as
temperature or the size of the antiferromagnetic island
result from the neglect of electron-electron and electron-
phonon interactions and the associated relaxation pro-
cesses or from limiting the electron dwell time on the
island. Clearly, slow relaxation requires low tempera-
tures and short dwell times require small spatial dimen-
sions. The question whether a given real system is well
described by the model, however, is not easily answered.
We also remark in this context that the antiferromagnetic
Hamiltonian (4) is fairly restrictive due to the assumed
sublattice symmetry. For disordered antiferromagnets,
the symmetry should be implemented only on average,
as we have done here for the tunneling matrices.

It is useful to discuss the connection between the non-
equilibrium Green’s function approach used in this work
and scattering theory methods that have been employed
in similar contexts.21,26 In Appendix C, we present the
scattering matrix derived from our model and show that
it yields strongly spin-dependent reflection and transmis-



14

sion coefficients. We have also included a more elemen-
tary scattering model of an antiferromagnet to illustrate
the spin dependance. These two results indicate that
transverse spin is generically altered upon transmission
through antiferromagnets while the longitudinal spin is
conserved. This spin-dependent transmission underlines
the potential of antiferromagnets for application as spin
current polarizers.

The formalism presented in this work can be applied to
other multilayer models such as F/F/N and AF/AF/N
junctions. These are discussed in Appendix D. In par-
ticular, we demonstrate that for the model AF/AF/N
junction neither spin torques nor spin-dependent trans-
port occur. This conclusion may appear at odds with the
studies of current-induced torques in slowly varying an-
tiferromagnetic textures.28 We clarify the difference be-
tween the two approaches in the appendix and argue that
there is no contradiction.

Our study may be extended in several different ways.
Firstly, knowledge of the non-equilibrium Green’s func-
tion allows us to compute damping constants and spin
current fluctuations induced by the tunneling processes.
They play crucial roles in determining dynamics of
stochastic magnetic switching. Secondly, it would also
be important to develop a theoretical framework that
can handle non-equilibrium transport through multilayer
structures in the presence of spin-orbit interaction. Fi-
nally, a similar theoretical approach can be applied to
structures involving insulating magnets.40 Antiferromag-
netism is more common in insulating metal oxides and
how torques and spin transport depend on microscopic
parameters in insulator nanostructures remains to be ex-
plored.
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Appendix A: The formalism

Starting from the Hamiltonian (3), we study a non-
equilibrium stationary state of AF by employing the
Keldysh Green’s function technique. As indicated in Fig.
1, the non-equilibrium state is driven by the difference in
the equilibrium distribution functions nF,N (ε) of the two

leads. We assume that the system is completely relaxed
and macroscopic observables are independent of time.
Our approach to the problem is based on the formal-
ism developed by Kamenev and his collaborators36,41,42

for the description of ferromagnetic tunneling junctions.
Their two-layer model consists of a ferromagnetic free
layer coupled to a single ferromagnetic lead with fixed
magnetization direction. In addition to the relaxation
into the lead, fast relaxation on the free layer is assumed
without specifying the mechanism. Here, we have explic-
itly included N as the source of relaxation. This allows
us to handle the regime where the two relaxation rates
are comparable. Our results reduce to those obtained in a
two-layer formalism in the limit where the relaxation rate
into F is smaller than the other relaxation rate into N.
The extension to three layers turns out to be necessary for
describing three of the four types of torque Γndl,Γ

m
fl ,Γ

n
fl

as well as the magnetoresistance and the spin current
transmission. Our formulation can also be viewed as
a leading-order truncation of the non-equilibrium Born-
Oppenheimer approximation employed, e.g., in Ref. 43.

1. Dyson’s equation

According to the Keldysh formalism,44 observables
represented by electronic one-body operators follow from

the lesser Green’s function G<ij = i
〈
ψ†jψi

〉
, where ψi,j

are any of alσ, blσ, c
F
kσ, c

N
mσ and the expectation value is

taken over an arbitrary probability distribution of the
quantum mechanical states. Loosely speaking, G<ij can
be considered as a quantum mechanical generalization of
the classical distribution function in statistical mechan-
ics, and can be determined by solving the Dyson’s equa-
tion on the Keldysh time contour, which is translated
into the Dyson’s equation in the Keldysh matrix space
on the real time contour. In our present model, the only
time-dependent parameters in the electronic Hamiltonian
are SA,B and we assume that their dynamics is slow. We
apply the Wigner transform in time and neglect all the
terms that contain time derivatives (leading order non-
equilibrium Born-Oppenheimer approximation). The re-
sulting Dyson’s equation reads

Ĝ =





Ĝ−1
F 0 0

0 Ĝ−1
0 0

0 0 Ĝ−1
N


−




0 WF 0

W †F 0 W †N
0 WN 0





−1

,

(A1)
where the hats indicate nontrivial matrix structures in
the 2 × 2 Keldysh space and the three blocks are as-
signed to the ferromagnetic, antiferromagnetic and nor-
mal metal electrons respectively and labelled by f, a, n
as

Ĝ =



Ĝf Ĝfa Ĝfn
Ĝaf Ĝa Ĝan
Ĝnf Ĝna Ĝn


 .
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Our convention is to use subscripts F, 0, N for the bare
and f, a, n for the corresponding full Green’s functions.
The bare Green’s functions Ĝ0,F,N have the common ma-
trix structure in the Keldysh space

Ĝ0,F,N =

(
GR0,F,N G<0,F,N

0 GA0,F,N

)
, (A2)

where the retarded and advanced Green’s functions
GR,A0,F,N , which are matrices acting on the respective
Hilbert space and contain the information about energy
eigenstates, are given by

(
GR0
)
ll′

= δll′

[
ε+ iδ − 1SP ⊗

(
εl tl
tl εl

)
+ ∆exσ3 ⊗ τ3

]−1

,

(
GRF
)
kk′

= δkk′




(
ε− εFk↑ + iδ

)−1

0

0
(
ε− εFk↓ + iδ

)−1



SP

,

(
GRN
)
mm′ =

δmm′1SP
ε− εNm + iδ

, GA0/F/N =
(
GR0/F/N

)†
,

with δ > 0 being infinitesimally small. One can for-
mally expand the right-hand-side of Eq. (A1) in powers
of WF,N . Elementary algebra leads to

Ĝa ≡
(
GRa G<a
0 GAa

)
=
(
Ĝ−1

0 − Σ̂F − Σ̂N

)−1

, (A3)

where Σ̂F,N are the self-energies arising from the leads

given by Σ̂F/N = W †F/N ĜF/NWF/N . We then impose

the conditions that enforce the non-equilibrium state of
AF to be fully determined by the individual equilibrium
states of F and N, which amounts to choosing

G<F/N = −nF/N (ε)
(
GRF/N −GAF/N

)
. (A4)

We assume that intrinsic relaxation mechanisms inside
AF are negligible so that the lesser component of Ĝ−1

0 is
a pure regularization. The Fermi-Dirac distribution func-
tions nF,N (ε) drive the currents through the differences
in chemical potential µF −µN and temperature TF −TN .
Eqs. (A2) - (A4) fully determine Ĝa and are consistent if
the influence of WF,N on the leads is negligible, in which
case the remaining diagonal components of (A1) trivially

read Ĝf = ĜF , Ĝn = ĜN . The off-diagonal components
of (A1) are needed in deriving the Meir-Wingreen formu-
lae (44) - (46).

2. Self-enegies

The retarded components of the self-energies repre-
senting the tunneling Hamiltonians (5) and (6) are given
by

ΣRF =
∑

k

[
1

2

(
1

ε− εk↑ + iδ
+

1

ε− εk↓ + iδ

)
1SP (A5)

+
1

2

(
1

ε− εFk↑ + iδ
− 1

ε− εFk↓ + iδ

)
SSP (θ)

]

⊗
((
WA
F

)
kl

(
WA
F

)
kl′

(
WA
F

)
kl

(
WB
F

)
kl′(

WB
F

)
kl

(
WA
F

)
kl′

(
WB
F

)
kl

(
WB
F

)
kl′

)

SL

,

ΣRN =
1SP

ε− εNm + iδ
(A6)

⊗
((
WA
F

)
ml

(
WA
F

)
ml′

(
WA
F

)
ml

(
WB
F

)
ml′(

WB
F

)
ml

(
WA
F

)
ml′

(
WB
F

)
ml

(
WB
F

)
ml′

)

SL

.

Solving Eq. (A3) is a matter of matrix inversion. Yet
the self-energies have off-diagonal elements between the
bare orbital energy eigenstates of AF l 6= l′, which ob-
structs making progress analytically. Since we are not
interested in properties attributed to a particular real-
ization of the tunneling matrices WF,N , we assume that

the matrix elements (WA,B
F )kl, (W

A,B
N )ml for each fixed

l are randomly distributed across different lead channels
labelled by k and m. In order to enforce the sublattice
symmetry on average, we further assume that the matrix
elements for A and B sublattices have the same variance.
Mathematically, these conditions can be written as

lim
NF→∞

1

NF

∑

k

(Wα
F )kl = 0, (A7)

lim
NF→∞

1

NF

∑

k

(Wα
F )kl

(
W β
F

)
kl′

= w2
F δαβδll′ , (A8)

lim
NN→∞

1

NN

∑

m

(
W β
N

)
ml

= 0, (A9)

lim
NN→∞

1

NN

∑

m

(Wα
N )ml

(
W β
N

)
ml′

= w2
Nδαβδll′ .(A10)

Here NF,N denote the number of channels for the fer-
romagnetic and normal metal leads, α, β ∈ {A,B}, and
w2
F,N are the variances of the tunneling matrix elements.

Note that we have also assumed that WA
F/N and WB

F/N

are statistically independent, embodied in δαβ in (A8)
and (A10). Although we could have let wF,N depend on
l, here we keep it simple since these variances are used
only for order-of-magnitude estimates. These assump-
tions allow us to ignore the off-diagonal components of
Σ̂F,N in the orbital eigenstate space (ll′ indices)45, as we
demonstrate below.

Using (A8) and (A10), one can estimate the summa-
tions over the channel indices k,m for the diagonal com-
ponents as (α = A,B)

∑

k

∣∣(Wα
F )kl

∣∣2

ε− εFk↑,↓ + iδ
∼ −iNFDF↑,↓w

2
F , (A11)

∑

m

∣∣(Wα
N )ml

∣∣2

ε− εNm + iδ
∼ −iNNDNw

2
N . (A12)

When NF,N are large, one can approximate the distribu-
tions by normal distributions with the same mean and
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variance, in which case one can also make the following
estimates;

∑

k

(Wα
F )kl (W

α
F )kl′

ε− εFk↑,↓ + iδ
∼
√
NFDF↑,↓w

2
F , l 6= l′,(A13)

∑

m

(Wα
N )ml (W

α
N )ml′

ε− εNm + iδ
∼
√
NNDNw

2
N , l 6= l′,(A14)

∑

k

(Wα
F )kl

(
W β
F

)
kl

ε− εFk↑,↓ + iδ
∼
√
NFDF↑,↓w

2
F , α 6= β,(A15)

∑

m

(Wα
N )ml

(
W β
N

)
ml

ε− εNm + iδ
∼
√
NNDNw

2
n, α 6= β,(A16)

∑

k

∣∣(WA
F

)
kl

∣∣2 −
∣∣(WB

F

)
kl

∣∣2

ε− εFk↑,↓ + iδ
∼
√
NFDF↑,↓w

2
F .(A17)

The latter three rely on the statistical independence of
WA
F and WB

F . They imply that all the off-diagonal com-
ponents of ΣRF,N (except in the spin space) are suppressed

by a factor of 1/
√
NF,N compared to the diagonal com-

ponents. The fact that these components can indeed be
neglected in computing the torques and currents follows
from a perturbative expansion analogous to the one pre-
sented in Ref. 45 and we do not repeat it here. Thus drop-
ping the orbital and sublattice off-diagonal terms and the
real parts proportional to 1SP ⊗ 1SL yields Eqs. (A19)
and (A20).

The off-diagonal terms being ignored, the resulting
self-energies can be written as

Σ̂F/N =

(
ΣRF/N −nF/N (ε)

(
ΣRF/N − ΣAF/N

)

0 ΣAF/N

)
,

(A18)

(
ΣRF
)
ll′

= δll′

[
− i

2τFl
1SP ⊗ 1SL + σRl SSP (θ)⊗ 1SL

]
,

(A19)

(
ΣRN
)
ll′

= −δll′
i

2τNl
1SP ⊗ 1SL, ΣAF/N =

(
ΣRF/N

)†
.

(A20)

The real parts proportional to 1SP ⊗ 1SL have been
dropped since they only renormalize εl. The imaginary
parts set the characteristic time scales for the tunneling
processes that are given by Eqs. (13) and (14). As we
explained in Sec. II B, these relaxation times largely de-
termine charge currents in the weak tunneling regime.

The angular dependence of tunneling originates from
the ferromagnetic spin operator in the antiferromagnetic
frame

SSP (θ) = R†SPσ3RSP =

(
cos θ − sin θ
− sin θ − cos θ

)
. (A21)

Its coefficient σRl represents the spin-dependent part of

the self-energy;

σRl =
∑

k

∣∣(WA
F

)
kl

∣∣2 +
∣∣(WB

F

)
kl

∣∣2

2

×1

2

(
1

ε− εFk↑ + iδ
− 1

ε− εFk↓ + iδ

)
. (A22)

The real part of σRl , denoted δl, is essentially the energy
split due to the sublattice symmetry breaking while the
imaginary part, denoted −1/2τal , is the difference in the
rate of escape into the ferromagnet between the ± bands
split by δl.

3. Retarded Green’s function

Fortunately, the matrix inversion in the remaining 4×4
structures can be carried out analytically. The dressed
retarded Green’s function of the antiferromagnet now
reads

(
GRa
)−1

ll′
= δll′

[
ε+

i

2τl
− εl − 1SP ⊗

(
0 tl
tl 0

)

SL

+∆exσ3 ⊗ τ3 − σRl SSP (θ)⊗ 1SL

]
. (A23)

To carry out the matrix inversion, we first note that the
bare part GR0 is diagonalized by a unitary matrix chosen
to be

Ul =

(
cos (θl/2) 0

0 sin (θl/2)

)

SP

⊗ e−iφlτ3/2 (A24)

−i
(

sin (θl/2) 0
0 cos (θl/2)

)

SP

⊗ τ2eiφlτ3/2,

where

cos θl =
∆ex

∆l
, eiφl sin θl = − tl

∆l
. (A25)

Thus one can write
(
GRa
)
ll′

= (A26)

δll′Ul

[
ε+

i

2τl
− εl + ∆l1SP ⊗ τ3 − σRl Ll (θ)

]−1

U†l

with

Ll (θ) = U†l [SSP (θ)⊗ 1SL]Ul

= (σ3 cos θ − σ1sl)⊗ 1SL − σ2 ⊗ τ2 sin θ cos θl

=
[
eiχlσ2/2 ⊗ 1SL

]
(σ3 ⊗ 1SLcl − σ2 ⊗ τ2sl)

[
e−iχlσ2/2 ⊗ 1SL

]
. (A27)

We have introduced sl = sin θ cos θl, cl =
√

1− s2
l and

cosχl =
cos θ

cl
, sinχl =

sin θ sin θl
cl

. (A28)
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Hence one can write

(
GRa
)
ll′

= δll′Vl

(
GRl+ 0

0 GRl−

)

SL

V †l (A29)

where

Vl = Ul

[
eiχlσ2/2 ⊗ 1SL

]



0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


 , (A30)

and the 2× 2 blocks are given by

GRl± =

(
ε+

i

2τl
− εl − hRl±

)−1

, (A31)

hRl± = −
(

∆l ± σRl cl ±σRl sl
±σRl sl −∆l ∓ σRl cl

)

SP

. (A32)

The blocks GRl± belong to two pairs of bands in Fig. 3(c).
The topmost and bottommost bands form one pair, de-
noted as (+), and the two bands in the middle form the
other pair, denoted as (−). When the 2×2 matrices GRl±
are diagonalized, which takes a similarity transformation
by a non-unitary matrix, the diagonal elements read

gRtl± =

(
ε+

i

2τl
− εl − eRl±

)−1

, (A33)

gRbl± =

(
ε+

i

2τl
− εl + eRl±

)−1

, (A34)

where 1/τl = 1/τFl + 1/τNl and

eRl± =

√
∆2
l +

(
σRl
)2 ± 2∆lσRl cl (θ), (A35)

cl (θ) =

√
1−

(
∆ex

∆l

)2

sin2 θ. (A36)

The principal branch (positive real part) is taken for
square roots throughout. Note that cl (θ) = |cos θ|
when tl = 0. We are mainly concerned with the regime∣∣σRl

∣∣ � ∆l where a perturbative picture in terms of the
isolated antiferromagnet makes sense. To the leading or-
der in σl/∆l, one obtains

gRtl± =

(
ε− εl −∆l ∓ δlcl (θ) +

i

2τ±l

)−1

, (A37)

gRbl± =

(
ε− εl + ∆l ± δlcl (θ) +

i

2τ∓l

)−1

, (A38)

where

1

τ±l
=

1

τNl
+

1

τFl
± 1

τal
cl (θ) . (A39)

Note that 1/τ±l are positive since 1/τFl ±1/τal ≥ 0. In this

approximation, ignoring ε dependence of δl, 1/τ
±
l , one ob-

tains the energy dispersion εtl± = εl+∆l±δlcl (θ) , εbl± =

εl−∆l∓δlcl (θ), and the relaxation rates due to the tun-
neling processes are given by 1/τ+

l for (t,+), (b,−) bands

and 1/τ−l for (t,−), (b,+). In terms of gRb,tl±, the blocks

GRl± are expressed as

GRl± =
gRtl± + gRbl±

2
− gRtl± − gRbl±

2

(
CRl±σ3 + SRl±σ1

)
,

(A40)

CRl± =
∆l

eRl±
± σRl
eRl±

cl (θ) , SRl± = ± σ
R
l

eRl±

∆ex

∆l
sin θ. (A41)

4. Lesser Green’s function

While the energy spectrum is fully described by the
retarded component, non-equilibrium problems concern
dynamical occupation of those energy states. This infor-
mation is contained in the lesser component of Eq. (A3),
which becomes

G<a = −GRa
[
nF
(
ΣRF − ΣAF

)
+ nN

(
ΣRN − ΣAN

)]
GAa .
(A42)

To simplify the expression, we use the identity

ΣRF − ΣAF =
(
GAa
)−1 −

(
GRa
)−1 −

(
ΣRN − ΣAN

)
. (A43)

Noting that ΣRN−ΣAN and GRa commute (since the orbital
off-diagonal terms have been discarded), one obtains

G<a = (nF − nN )
(
ΣRN − ΣAN

)
GRaG

A
a − nF

(
GRa −GAa

)
.

(A44)
When nF = nN and hence there is no driving force, G<

reduces to the equilibrium form −nF
(
GRa −GAa

)
. The

first term proportional to nF−nN can be further reduced
by noting

(
GRaG

A
a

)
ll′

= δll′Vl

(
GRl+G

A
+ 0

0 GRl−G
A
l−

)

SL

V †l , (A45)

and GRl±G
A
l± =

∑3
µ=0 Gµl±σµ with σ0 ≡ 1SP where

G0l± =
1 +

∣∣CRl±
∣∣2 +

∣∣SRl±
∣∣2

4iτNl

(∣∣gRtl±
∣∣2 +

∣∣gRbl±
∣∣2
)

(A46)

+
1−

∣∣CRl±
∣∣2 −

∣∣SRl±
∣∣2

2iτNl
<
(
gRtl±g

A
bl±
)
,

G1l± =
i

2τNl
<
[
SRl±

(
gRtl± − gRbl±

) (
gAtl± + gAbl±

)]
, (A47)

G2l± =
i

2τNl
=
(
CRl±S

A
l±
) ∣∣gRtl± − gRbl±

∣∣2 , (A48)

G3l± =
i

2τNl
<
[
CRl±

(
gRtl± − gRbl±

) (
gAtl± + gAbl±

)]
. (A49)

The nonequilibrium contribution is rather complicated at
this stage where no approximation has been made regard-
ing the strength of WF,N . As we shall see, however, in
the regime where

∣∣σRl
∣∣� ∆l and w2

F � w2
N , one recovers

familiar expressions for the tunneling currents.
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Appendix B: Tracing over spin and sublattice indices

Formally, the expressions for the Green’s functions
(A40) and (A46) -(A49) are valid for any values of σRl /∆l.
In computing the torques and currents, one can proceed
without making any further approximations. To carry
out the traces, it is convenient to rewrite G< as

(
G<a
)
ll′

= δll′
3∑

µ=0

[
G<µl+ +G<µl−

2
Vlσµ ⊗ 1SLV

†
l

+
G<µl+ −G<µl−

2
Vlσµ ⊗ τ3V †l

]
. (B1)

The Pauli matrices transform as

Vlσ1 ⊗ 1SLV
†
l = − (σ1 cosχl + σ3 sin θl sinχl)⊗ τ3

+1SP ⊗ (τ1 cosφl + τ2 sinφl)

× cos θl sinχl, (B2)

Vlσ2 ⊗ 1SLV
†
l = −σ2 ⊗ 1SL cos θl cosχl

− (σ1 cosχl sin θl + σ3 sinχl)

⊗ (τ1 sinφl − τ2 cosφl) , (B3)

Vlσ3 ⊗ 1SLV
†
l = 1SP ⊗ (τ1 cosφl + τ2 sinφl) sin θl

+σ3 ⊗ τ3 cos θl, (B4)

Vl1SP ⊗ τ3V †l = −1SP ⊗ τ3 cos θl cosχl

+ (σ1 sinχl − σ3 sin θl cosχl)

⊗ (τ1 cosφl + τ2 sinφl) , (B5)

Vlσ1 ⊗ τ3V †l = −σ2 ⊗ (τ1 sinφl − τ2 cosφl) sin θl

+σ1 ⊗ 1SL cos θl, (B6)

Vlσ2 ⊗ τ3V †l = σ2 ⊗ τ3, (B7)

Vlσ3 ⊗ τ3V †l = (σ1 sin θl sinχl − σ3 cosχl)⊗ 1SL

+σ2 ⊗ (τ1 sinφl − τ2 cosφl)

× cos θl sinχl. (B8)

Now the traces in Eqs. (24) - (27) can be carried out
immediately, yielding

Γmfl = −2∆ex

sin θ

∫
dε

2πi

∑

l

(
G<1l+ +G<1l−

)
cosχl, (B9)

Γmdl =
2∆ex

sin θ

∫
dε

2πi

∑

l

(
G<2l+ −G<2l−

)
, (B10)

Γnfl =
2∆ex

sin θ

∫
dε

2πi

∑

l

[ (
G<1l+ −G<1l−

)
cos θl

+
(
G<3l+ −G<3l−

)
sin θl sinχl

]
, (B11)

Γndl = −2∆ex

sin θ

∫
dε

2πi

×
∑

l

(
G<2l+ +G<2l−

)
cos θl cosχl. (B12)

Plugging (A40) and (A46) - (A49) in and noting

SRl± cos θl + CRl± sin θl sinχl =
∆l sin

2 θl ± σRl cl
cleRl±

sin θ

(B13)
lead to

Γmfl = −∆ex

∫
dε

2π

∑

l,±
(± cos θl cosχl)

{
nF − nN
τNl

×<
[
σRl
eRl±

(
gRtl± − gRbl±

) (
gAtl± + gAbl±

)
]

+2nF=
[
σRl
eRl±

(
gRtl± − gRbl±

)
]}

, (B14)

Γmdl = ∆ex

∫
dε

2π

∑

l,±

cos θl∣∣eRl±
∣∣2
nF − nN
τNl

×=
[(

∆l ± σRl cl
)
σAl
] ∣∣gRtl± − gRbl±

∣∣2 , (B15)

Γnfl = 2∆ex

∫
dε

2π

∑

l,±

{
<
[
σRl cl ±∆l sin

2 θl
cleRl±

×
(
gRtl± − gRbl±

) (
gAtl± − gAbl±

)
]
nF − nN

2τNl

+nF=
[
σRl cl ±∆l sin

2 θl
cleRl±

(
gRtl± − gRbl±

)
]}

,(B16)

Γndl = −∆ex

∫
dε

2π

∑

l,±

± cos2 θl cosχl∣∣eRl±
∣∣2

nF − nN
τNl

×=
[(

∆l ± σRl cl
)
σAl
] ∣∣gRtl± − gRbl±

∣∣2 . (B17)

These are the final results for the torques in their general
form. The leading order expressions in σRl /∆l (30), (33),
(35) and (36) are obtained by using

<
(
eRl±
)

= ∆l

[
1∓ 2δlcl

∆l
+O

({
σRl
∆l

}2
)]

, (B18)

=
(
eRl±
)

=
∓1

2τal

[
cl ±

δls
2
l

∆l
+O

({
σRl
∆l

}2
)]

, (B19)

and expansion in δl/∆l, 1/2τ
a
l ∆l. In so doing, we also

assumed

gRtl± =

(
ε− εl −∆l +

i

2τl

)−1 [
1 +O

(
σRl
E0

)]
, (B20)

and similarly for gRbl± where E0 is a characteristic energy
scale of the antiferromagnet. It is not necessarily ∆l since
perturbative expansions of Green’s functions are written
as their derivatives, whose estimates depend on how they
are integrated over. We also note that in the general re-
sults (B14), (B16), there are equilibrium contributions
that do not vanish when nF = nN . They represent static
effective fields arising from the full eigenstates of the an-
tiferromagnetic electrons whose spins do not align with
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SA,B due to the mixing with the ferromagnetic electrons.
They are higher order in σRl /∆l.

Similarly, the trace in Eq. (44) for the different cur-
rents yields

IN = 4

∫
dε

2πi

∑

l,±

1

τNl

[
G<0l±

2

+inN=
(
gRtl± + gRbl±

) ]
, (B21)

JzFF = 4

∫
dε

2πi

∑

l,±

[
G<0l±
2τal

∓ G<1l±sl +G<3l±cl
2τFl

]
,(B22)

JxN = −4

∫
dε

2πi

∑

l,±

±1

τNl

{
inN=

[ (
gRtl± − gRbl±

)

×
(
CRl± sin θl sinχl + SRl± cos θl

) ]

−G
<
1l± cos θl +G<3l± sin θl sinχl

2

}
, (B23)

JyN = −4

∫
dε

2πi

∑

l,±

1

2τNl
G<2l± cos θl cosχl, (B24)

JzN = −4

∫
dε

2πi

∑

l,±

± cosχl
τNl

{
G<3l±

2

−inN=
[
CRl±

(
gRtl± − gRbl±

)]}
. (B25)

In addition to (B13) one uses

<
(
CRl±cl + SRl±sl

)

= ∓2τal =
(
eRl±
) 1 +

∣∣CRl±
∣∣2 +

∣∣SRl±
∣∣2

2
, (B26)

=
(
CRl±cl + SRl±sl

)

= ±2τal <
(
eRl±
) 1−

∣∣CRl±
∣∣2 −

∣∣SRl±
∣∣2

2
(B27)

to derive

IN = −2e

∫
dε

2π

∑

l,±

nF − nN
τNl

[
2=
(
gRtl± + gRbl±

)

+
1 +

∣∣CRl±
∣∣2 +

∣∣SRl±
∣∣2

2τNl

(∣∣gRtl±
∣∣2 +

∣∣gRbl±
∣∣2
)

+
1−

∣∣CRl±
∣∣2 −

∣∣SRl±
∣∣2

τNl
<
(
gRtl±g

A
bl±
)
]
, (B28)

JzFF = −
∫

dε

2π

∑

l,±

nF − nN
τNl

[
1 +

∣∣CRl±
∣∣2 +

∣∣SRl±
∣∣2

τFl

×
{
τFl
τal

(∣∣gRtl±
∣∣2 +

∣∣gRbl±
∣∣2
)

−2τal =
(
eRl±
) (∣∣gRtl±

∣∣2 −
∣∣gRbl±

∣∣2
)}

+
1−

∣∣CRl±
∣∣2 −

∣∣SRl±
∣∣2

τFl

{
τFl
τal
<
(
gRtl±g

A
bl±
)

−2τal <
(
eRl±
)
=
(
gRtl±g

A
bl±
)}
]
, (B29)

JxN =

∫
dε

2π

∑

l,±

nF − nN
τNl

sin θ

{
<
[
σRl cl ±∆l sin

2 θl
cleRl±

× 1

τNl

(
gRtl± − gRbl±

) (
gAtl± + gAbl±

)
]

+=
[
σRl cl ±∆l sin

2 θl
cleRl±

(
gRtl± − gRbl±

)
]}

, (B30)

JyN = −
∫

dε

2π

∑

l,±

nF − nN
τNl

sin θ cos θl∣∣eRl±
∣∣2

×=
(
σRl cl ±∆l

)
σAl

τNl

∣∣gRtL± − gRbl±
∣∣2 , (B31)

JzN = −
∫

dε

2π

∑

l,±

nF − nN
τNl

cos θ

{
<
[
σRl cl ±∆l

cleRl±

× 1

τNl

(
gRtl± − gRbl±

) (
gAtl± + gAbl±

)
]

+=
[
σRl cl ±∆l

cleRl±

(
gRtl± − gRbl±

)
]}

. (B32)

The expansion in σRl /∆l is carried out similarly to the
torques. It is helpful to note

∣∣CRl±
∣∣2 +

∣∣SRl±
∣∣2 = 1+

s2
l

2 (τal ∆l)
2 +O

({
σRl
∆l

}3
)
. (B33)

Appendix C: Scattering theory description

Scattering theory has been commonly applied to trans-
port problems in spintronics.26,46,47 Based on this ap-
proach, it has also been claimed in Ref. 21 that electron
transmission coefficients of one-dimensional PT symmet-
ric antiferromagnets are generally spin independent, and
thus such systems cannot serve as a spin current filter.
It is therefore worth clarifying the relation between scat-
tering theory and the non-equilibrium Green’s function
approach taken in the present paper. Below we first
present a simple toy model of an antiferromagnetic struc-
ture that results in spin-dependent electron transmission
coefficients. Then we translate our results into the lan-
guage of scattering theory following Bode et al. (Ref. 43)
and show that spin-dependent transmission coefficients
arise, consistent with our spin current computation in
Sec. IV.

Let us consider free electrons scattered by an antifer-
romagnetic exchange field. For simplicity, we consider a
two-dimensional strip of infinite length along x. In the y
direction, we impose a periodic boundary condition with
the period 2πd. We model an antiferromagnet confined
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in a region near x = 0 by the Hamiltonian

H = −∇2 + V (r)σ3, (C1)

V (r) = J
[
e−(x−a)2/2w2 − e−(x+a)2/2w2

]
sin

y

`
. (C2)

The antiferromagnetic exchange field V (r) represents
two banks of 1D antiferromagnetic chains of period ` lo-
cated at x = ±a. The range of the exchange field is given
by w and we assume that there exists an integer N0 such
that N0` = 2πd. Because of the Gaussian window func-
tions e−(x±a)2/2w2

, the exchange field is practically zero
for |x| � w and the eigenstates behave as plane waves in
that region. For a given energy E, we introduce the bare
Green’s function GR0 (r) by

(
E +∇2

)
GR0 (r) = δ (r) (C3)

with an appropriate boundary condition for the retarded
propagation. In the present problem it is explicitly writ-
ten as

GR0 (r) =
1

2πd

∑

n

∫
dk

2π

eikx+iny/2πd

E + iδ − k2 − (n/2πd)
2 . (C4)

We choose an incoming plane wave ψ0kn± =
Neikx+iny/2πd where ± denote up and down spin states
and N is a normalization constant. To obtain the scatter-
ing state, we solve the Lippmann-Schwinger equation44

ψkn± = ψ0kn± ±
∫
dr′GR0 (r − r′)V (r′)ψkn± (r′) .

(C5)
For our purpose of demonstrating spin dependence of the
scattering, we replace ψkn± on the right-hand-side by
ψ0kn±. This leads to a solution in the Born approxima-
tion given by

ψkn± = ψ0kn± ∓
√

2πwJN

∫
dk′ sin [(k − k′) a]

×
{

einy/2πd

E + iδ − k′2 − [(n+N0) /2πd]
2

− e−iny/2πd

E + iδ − k′2 − [(n−N0) /2πd]
2

}

×eik′x+iny/2πd−w2(k′−k)2
/2. (C6)

The spin dependent part does not vanish unless n = 0. In
particular, the transmission coefficients that correspond
to the contributions with k′ > 0 are spin dependent and
lead to non-conservation of the transverse spin current.

Having demonstrated the spin dependence of trans-
mission through the antiferromagnet in a real space
model, we go back to our tunneling junction and con-
struct its scattering theory description. Let us denote
the normalized single particle eigenstates in the leads by∣∣ψFkσ

〉
,
∣∣ψNmσ

〉
. Incoming and outgoing scattering states∣∣ψF±kσ

〉
,
∣∣ψN±mσ

〉
evolving out of

∣∣ψFkσ
〉
,
∣∣ψNmσ

〉
respectively

are given by

∣∣ψF+
kσ

〉
=
∣∣ψFkσ

〉
+
∑

k′,σ′

(
GRFWFG

R
aW

†
F

)σ′σ

k′k

∣∣ψFk′σ′

〉

+
∑

m′,σ′

(
GRNWNG

R
aW

†
F

)σ′σ

m′k

∣∣ψNm′σ′

〉
, (C7)

∣∣ψF−kσ
〉

=
∣∣ψFkσ

〉
+
∑

k′,σ′

(
GAFWFG

A
aW

†
F

)σ′σ

k′k

∣∣ψFk′σ′

〉

+
∑

m′,σ′

(
GANWNG

A
aW

†
F

)σ′σ

m′k

∣∣ψNm′σ′

〉
, (C8)

∣∣ψN+
mσ

〉
=
∣∣ψNmσ

〉
+
∑

m′,σ′

(
GRNWNG

R
aW

†
N

)σ′σ

m′m

∣∣ψNm′σ′

〉

+
∑

k′,σ′

(
GRFWFG

R
aW

†
N

)σ′σ

k′m

∣∣ψFk′σ′

〉
, (C9)

∣∣ψN−mσ
〉

=
∣∣ψNmσ

〉
+
∑

m′,σ′

(
GANWNG

A
aW

†
N

)σ′σ

m′m

∣∣ψNm′σ′

〉

+
∑

k′,σ′

(
GAFWFG

A
aW

†
N

)σ′σ

k′m

∣∣ψFk′σ′

〉
. (C10)

Here the Green’s functions G
R(A)
a,c,d are in the energy repre-

sentation and the energy argument is set to be the eigen-
value of the reference state, namely ε = εkσ for

∣∣ψF±kσ
〉

and ε = εm for
∣∣ψN±mσ

〉
. The scattering matrix is defined

by

S =

(〈
ψF−|ψF+

〉 〈
ψF−|ψN+

〉
〈
ψN−|ψF+

〉 〈
ψN−|ψN+

〉
)
≡
(
rF tF
tN rN

)
. (C11)

The reflection and transmission matrices are given in
terms of the Green’s functions as

rF = 1 +
(
GRF −GAF

)
WFG

R
aW

†
F , (C12)

tF =
(
GRF −GAF

)
WFG

R
aW

†
N , (C13)

rN = 1 +
(
GRN −GAN

)
WNG

R
aW

†
N , (C14)

tN =
(
GRN −GAN

)
WNG

R
aW

†
F . (C15)

We are interested in spin-dependent scatterings due to
the antiferromagnetic order. In order to eliminate any
spin-dependent influence of the ferromagnetic lead, we
assume the c lead is also a normal metal in this section.
It amounts to setting σRl = 0. The antiferromagnetic full
Green’s function GRa then reads

GRa = δll′

[
GRtl +GRbl

2
− GRtl −GRbl

2

{
σ3 ⊗ τ3 cos θl

+1SP ⊗ (τ1 cosφl + τ2 sinφl) sin θl

}]
, (C16)

where

GRtl =
1

ε− εl −∆l + i/2τl
, (C17)
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GRbl =
1

ε− εl + ∆l + i/2τl
. (C18)

Carrying out the matrix multiplications, one obtains the
reflection and transmission coefficients as

(rF )kk′ =δkk′1SP (C19)

− 2πiδ (εk − εk′) (Tkk′1SP + T skk′σ3) ,

(tF )km′ =− 2πiδ (εk − εm′) (Tkm′1SP + T skm′σ3) ,
(C20)

(rN )mm′ =δmm′1SP (C21)

− 2πiδ (εm − εm′) (Tmm′1SP + T smm′σ3) ,

(tN )mk′ =− 2πiδ (εm − εk′) (Tmk′1SP + T smk′σ3) .
(C22)

T and T s are spin independent and dependent parts of
the T matrix given by

Tkk′ =
∑

l

[
GRtl (εk) +GRbl (εk)

2

∑

α=A,B

(Wα
F )kl (W

α
F )k′l

−G
R
tl (εk)−GRbl (εk)

2

{
eiφl

(
WB
F

)
kl

(
WA
F

)
k′l

+e−iφl
(
WA
F

)
kl

(
WB
F

)
k′l

}
sin θl

]
, (C23)

Tkm′ =
∑

l

[
GRtl (εk) +GRbl (εk)

2

∑

α=A,B

(Wα
F )kl (W

α
N )m′l

−G
R
tl (εk)−GRbl (εk)

2

{
eiφl

(
WB
F

)
kl

(
WA
N

)
m′l

+e−iφl
(
WA
F

)
kl

(
WB
N

)
m′l

}
sin θl

]
, (C24)

Tmk′ =
∑

l

[
GRtl (εm) +GRbl (εm)

2

∑

α=A,B

(Wα
N )ml (W

α
F )k′l

−G
R
tl (εm)−GRbl (εm)

2

{
eiφl

(
WB
N

)
ml

(
WA
F

)
k′l

+e−iφl
(
WA
N

)
ml

(
WB
F

)
k′l

}
sin θl

]
, (C25)

Tmm′ =
∑

l

[
GRtl (εm) +GRbl (εm)

2

∑

α=A,B

(Wα
N )ml (W

α
N )m′l

−G
R
tl (εm)−GRbl (εm)

2

{
eiφl

(
WB
N

)
ml

(
WA
N

)
m′l

+e−iφl
(
WA
N

)
ml

(
WB
N

)
m′l

}
sin θl

]
, (C26)

T skk′ = −
∑

l

GRtl (εk)−GRbl (εk)

2

[ (
WA
F

)
kl

(
WA
F

)
k′l

−
(
WB
F

)
kl

(
WB
F

)
k′l

]
cos θl, (C27)

T skm′ = −
∑

l

GRtl (εk)−GRbl (εk)

2

[ (
WA
F

)
kl

(
WA
N

)
m′l

−
(
WB
F

)
kl

(
WB
N

)
m′l

]
cos θl, (C28)

T smk′ = −
∑

l

GRtl (εm)−GRbl (εm)

2

[ (
WA
N

)
ml

(
WA
F

)
k′l

−
(
WB
N

)
ml

(
WB
F

)
k′l

]
cos θl, (C29)

T smm′ = −
∑

l

GRtl (εm)−GRbl (εm)

2

[ (
WA
N

)
ml

(
WA
N

)
m′l

−
(
WB
N

)
ml

(
WB
N

)
m′l

]
cos θl. (C30)

We note that at this stage we cannot yet impose the
statistical sublattice symmetry of the tunneling matrices

WA,B
F,N since the self-averaging has been assumed when

summations over k,m are taken.

Let us now consider specifically an incoming electron
at energy εk in the c lead with spin polarization along
the positive x direction. As before, the antiferromag-
netic quantization axis is along z. Upon scattering by
the antiferromagnet, the spin expectation value of the
injected electron changes. The reflected and transmitted
spin expectation values are given by

〈sxk〉r =
1

2

∑

k′

[
(rF )

↑↑
k′k (rF )

↓↓
k′k + (rF )

↓↓
k′k (rF )

↑↑
k′k

]
, (C31)

〈sxk〉t =
1

2

∑

m′

[
(tN )

↑↑
m′k (tN )

↓↓
m′k + (tN )

↓↓
m′k (tN )

↑↑
m′k

]
,(C32)

〈syk〉r =
1

2i

∑

k′

[
(rF )

↑↑
k′k (rF )

↓↓
k′k − (rF )

↓↓
k′k (rF )

↑↑
k′k

]
, (C33)

〈syk〉t =
1

2i

∑

m′

[
(tN )

↑↑
m′k (tN )

↓↓
m′k − (tN )

↓↓
m′k (tN )

↑↑
m′k

]
.(C34)

We remark that the reflected spin expectation values are
essentially real and imaginary parts of the spin-mixing
conductance46 of the antiferromagnetic junction. We fo-
cus on the transmission here and derive

〈sxk〉t =4π2DF

∑

m

DN

(
|Tmk|2 − |T smk|2

)

=4π2DFDN

∑

ll′,αβ

Λαβll′ (Wα
F )kl

(
W β
F

)
kl′

(C35)

〈syk〉t =4π2iDF

∑

m

DN

(
TmkT smk − T smkTmk

)

=4π2DFDN

∑

ll′,αβ

Παβ
ll′ (Wα

F )kl

(
W β
F

)
kl′
, (C36)

where DF,N are the density of states of the leads taken
to be constant for simplicity, and
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Λαβll′ =
∑

m

[{
GRtl (εm) +GRbl (εm)

2
(Wα

N )ml −
GRtl (εm)−GRbl (εm)

2

(
Wα
N

)
ml
eiναφl sin θl

}

×
{
GAtl′ (εm) +GAbl′ (εm)

2

(
W β
N

)
ml′
− GAtl′ (εm)−GAbl′ (εm)

2

(
W β
N

)
ml′
e−iνβφl′ sin θl′

}

−νανβ
GRtl (εm)−GRbl (εm)

2

GAtl′ (εn)−GAbl′ (εm)

2
(Wα

N )ml

(
W β
N

)
ml′

cos θl cos θl′

]
, (C37)

Παβ
ll′ = i

∑

m

[
(Wα

N )ml

(
W β
N

)
ml′

{
GRtl (εm) +GRbl (εm)

2

GAtl′ (εm)−GAbl′ (εm)

2
νβ cos θl′

−G
R
tl (εm)−GRbl (εm)

2

GAtl′ (εm) +GAbl′ (εm)

2
να cos θl

}
+
GRtl (εm)−GRbl (εm)

2

GAtl′ (εm)−GAbl′ (εm)

2

×
{

(Wα
N )ml

(
W β
N

)
ml′
ναe

iνβφl′ cos θl sin θl′ +
(
Wα
N

)
ml

(
W β
N

)
ml′
νβe

iναφl cos θl′ sin θl

}]
. (C38)

We have introduced the notation A = B,B = A and
the signature function νA = +1, νB = −1. Now that

Λαβll′ ,Π
αβ
ll′ contain a summation over m, one can use the

statistical properties of WF,N to estimate their elements.
We first of all drop the off-diagonal terms in ll′ that are
suppressed by 1/

√
NN . Further, one can discard prod-

ucts WαWα by the same reasoning. This leaves us with

Λααll′ ≈ δll′
∑

m

[
|(Wα

d )ml|
2

∣∣∣∣
GRtl (εm) +GRbl (εm)

2

∣∣∣∣
2

−
{
|(Wα

d )ml|
2

cos2 θl −
∣∣(Wα

d

)
ml

∣∣2 sin2 θl

}

×
∣∣∣∣
GRtl (εm)−GRbl (εm)

2

∣∣∣∣
2
]
, (C39)

Λααll′ ≈ −δll′
∑

m

eiναφl sin2 θl

[
GRtl (εm) +GRbl (εm)

2

×G
A
tl (εm)−GAbl (εm)

2
|(Wα

d )ml|
2

+
GRtl (εm)−GRbl (εm)

2

×G
A
tl (εm) +GAbl (εm)

2

∣∣(Wα
d

)
ml

∣∣2
]
, (C40)

Παβ
ll′ ≈ iδll′δαβνα

∑

m

[
|(Wα

d )ml|
2

cos θl

×
{
GRbl (εm)GAtl (εm)−GRtl (εm)GAbl (εm)

}

+
{
|(Wα

d )ml|
2

+
∣∣(Wα

d

)
ml

∣∣2
}
eiναφl

×
∣∣∣∣
GRtl (εm)−GRbl (εm)

2

∣∣∣∣
2

cos θl sin θl

]
. (C41)

Finally, we also take advantage of the sublattice symme-

try so that
∣∣(Wα

d )ml
∣∣2 =

∣∣(Wα
d

)
ml

∣∣2 under the summa-
tion over m. Then one can see that if sin θl = 0, namely

if there is no intersublattice overlap, both Λαβll′ and Παβ
ll′

are proportional to the interband combinations of the
Green’s functions GRblG

A
tl , G

R
tlG

A
bl that are suppressed by

a factor of 1/τl∆l compared to the intraband products∣∣∣GRt,bl
∣∣∣
2

. Although not presented here, the charge current

transmission is proportional to
∣∣∣GRt,bl

∣∣∣
2

. Therefore, one

concludes that both the x and y components of the trans-
mitted spin per transmitted particle is small by a factor
∼ 1/τl∆l. This suppression represents the result of de-
phasing extensively discussed in the main text. When
there is a finite intersublattice overlap, the transmitted
x and y components are proportional to |tl|2 /∆2

l , |tl| /∆l

respectively. This is also consistent with the result of the
Keldysh approach as tl opens up a channel of transport
through the antiferromagnet in which the transverse spin
is conserved. Regardless of the strength of the intersub-
lattice overlap, this calculation shows that scatterings by
an antiferromagnet are strongly spin dependent and the
transmitted spin per transmitted particle is generally re-
duced from what is injected.

Appendix D: F/F/N and AF/AF/N junctions

The Keldysh formalism we have developed can be eas-
ily applied to F/F/N or AF/AF/N junctions instead of
F/AF/N studied in the main text. In this section, we
first present the spin expectation values of F/F/N junc-
tion to clarify the role of N. It adds a contribution to the
known leading-order tunneling expressions.36 Second, we
demonstrate that AF/AF/N junction in the present for-
malism does not lead to any spin dependence of the elec-
tron transport. We further discuss how the spin-transfer
torques in continuous antiferromagnetic textures, studied
in Ref. 28, could be understood in our framework.

For F/F/N junction, one uses the same Hamiltonian
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(3), but H0,c,d are replaced by

H0 =
∑

l,σ

εla
†
lσalσ −

∆ex

S

∑

l,σσ′

σσσ
′ · SFa†lσalσ′ , (D1)

HF =
∑

kl,σσ′

[
cF†kσ (WF )klR

σσ′

SP alσ′ + h.c.
]
, (D2)

HN =
∑

lm,σ

[
cN†mσ (WN )ml alσ + h.c.

]
. (D3)

The procedure is identical to F/AF/N junction case. One
first obtains the full retarded Green’s function

(
GRa
)
ll′

= δll′

[
gRtl + gRbl

2
+
gRtl − gRbl

2

(
CRl σ3 + SRl σ1

) ]
,

(D4)

where

σRl =
∑

k

|(WF )kl|
2 1

2

(
1

ε− εk↑ + iδ
− 1

ε− εk↓ + iδ

)
,

(D5)

eRl =

√
∆2

ex + 2∆exσRl cos θ +
(
σRl
)2
, (D6)

gRt,bl =
1

ε+ i/2τl − εl ∓ eRl
, (D7)

CRl =
∆ex + σRl cos θ

eRl
, SRl = −σ

R
l sin θ

eRl
. (D8)

The definitions of 1/τF,Nl , 1/τl are also accordingly mod-
ified. The lesser Green’s function yields

(
G<a
)
ll′

= δll′
∑

µ

G<µlσµ, (D9)

G<0l = i
nN − nF
τNl

[
1 +

∣∣CRl
∣∣2 +

∣∣SRl
∣∣2

2

∣∣gRtl
∣∣2 +

∣∣gRbl
∣∣2

2

+
1−

∣∣CRl
∣∣2 −

∣∣SRl
∣∣2

2
<
(
gRtlg

A
bl

)
]

−inF=
(
gRtl + gRbl

)
, (D10)

G<1l = i
nN − nF

2τNl
<
[
SRl
(
gRtl − gRbl

) (
gAtl + gAbl

)]

+inF=
[
SRl
(
gRtl − gRbl

)]
, (D11)

G<2l = −inN − nF
2τNl

=
(
CRl S

R
l

) ∣∣gRtl − gRbl
∣∣2 , (D12)

G<3l = i
nN − nF

2τNl
<
[
CRl

(
gRtl − gRbl

) (
gAtl − gAbl

)]

−nF=
[
CRl

(
gRtl − gRbl

)]
. (D13)

The similarity with the antiferromagnetic case, Eqs.
(A46) - (A49), is clear. Indeed, the antiferromagnetic
Green’s function can be regarded as two copies of the
ferromagnetic ones above with different dispersions char-
acterized by eRl±. The electron spin expectation values at

the leading order in σRl /∆ex read

〈sx〉 ≈ −
∫

dε

2π
(nF − nN )

∑

l

2δl sin θ

∆exτNl

{
1

τ2
l

− cos2 θ

(τal )
2

}−1

×
[
Atl −Abl

τl
− (Atl +Abl)

cos θ

τal

]
, (D14)

〈sy〉 ≈
∫

dε

2π
(nF − nN )

∑

l

sin θ

∆exτNl τ
a
l

{
1

τ2
l

− cos2 θ

(τal )
2

}−1

×
[
Atl +Abl

τl
− (Atl −Abl)

cos θ

τal

]
. (D15)

We have introduced the real δl and imaginary −1/2τal
parts of σRl and the spectral functions At,bl as before. If
τl/τ

a
l is ignored compared to unity, the above expressions

become equivalent to the results in Ref. 36. The mod-
ifications are thus related to the higher-order tunneling
processes between two Fs. Treating those higher order
processes requires inclusion of an additional source of re-
laxation: Otherwise, the repeated tunneling would lead
to an equilibrium between Fs and a trivial result would
follow. As explained in Sec. III, these higher-order terms
are also crucial for deriving Γndl and Γmfl .

The AF/AF/N case can be handled similarly. We keep
H0 as in (4) and modify the c lead and the associated
tunneling as

εkσc
†
kσckσ →

(
c†Akσ c†Bkσ

) [(εk tk
tk εk

)

−σ∆̃exτ3

](
cAkσ
cBkσ

)
, (D16)

HF =
∑

kl,σσ′

[
Rσσ

′ (
c†Akσ c†Bkσ

)

×
(
WAa
F WAb

F

WBa
F WBb

F

)

kl

(
alσ′

blσ′

)
+ h.c.

]
.(D17)

We keep the subscript F for the lead despite it being
antiferromagnetic. The diagonal basis for the antiferro-
magnetic lead is given by

(
αkσ
βkσ

)
= Ukσ

(
cAkσ
cBkσ

)
, (D18)

where

Uk↑ =

(
e−iφk/2 cos (θk/2) −e−iφk/2 sin (θk/2)
eiφk/2 sin (θk/2) eiφk/2 cos (θk/2)

)
,

(D19)

Uk↓ =

(
eiφk/2 cos (θk/2) eiφk/2 sin (θk/2)
e−iφk/2 sin (θk/2) −e−iφk/2 cos (θk/2)

)
.

(D20)

We have defined

γk =

√
∆̃2

ex + |tk|2, (D21)

cos θk =
∆̃ex

γk
, eiφk sin θk = − tk

γk
. (D22)
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Any modification to the lead appears through the asso-
ciated self-energy ΣRF . It is formally written as

ΣRF = R†SP
∑

k

(
WAa
F WAb

F

WBb
F WBb

F

)†

SL

(
Uk↑ 0
0 Uk↓

)†
GRF

×
(
Uk↑ 0
0 Uk↓

)(
WAa
F WAb

F

WBb
F WBb

F

)

SL

RSP , (D23)

where the lead Green’s function GRF for the antiferromag-
netic case is given by

(
GRF
)
kk′

= δkk′




GRk+ 0 0 0
0 GRk− 0 0
0 0 GRk− 0
0 0 0 GRk+


 (D24)

with GRk± = (ε− εk ± γk + iδ)
−1

. Introducing matrices
in the sublattice space by

(K0)
αβ
ll′ =

∑

k

GRk+ +GRk−
2

(D25)

×
[(
WAα
F

)
kl

(
WAβ
F

)
kl′

+
(
WBα
F

)
kl

(
WBβ
F

)
kl′

]
,

(K1)
αβ
ll′ =

∑

k

GRk+ −GRk−
2

sin θk (D26)

×
[(
WAα
F

)
kl

(
WBβ
F

)
kl′

+
(
WBα
F

)
kl

(
WAβ
F

)
kl′

]
,

(K3)
αβ
ll′ =

∑

k

GRk+ −GRk−
2

cos θk (D27)

×
[(
WAα
F

)
kl

(
WAβ
F

)
kl′
−
(
WBα
F

)
kl

(
WBβ
F

)
kl′

]
,

where α, β = a, b are the sublattice indices, the self-
energy can be written as

ΣRF = 1SP ⊗ (K0 −K1) + SSP (θ)⊗K3. (D28)

As before, we invoke the randomness of the tunneling
matrix elements for varying k and estimate the matrices
K0,1,3. Since K1 involves products of tunnelings with A
and B channels of the antiferromagnetic lead, it is sup-
pressed by 1/

√
NF compared to K0 as long as the tun-

nelings through the two channels are uncorrelated. Sim-
ilarly, appealing to the statistical sublattice symmetry of
the tunneling, one can estimate K3 to be again smaller
than K0 by a factor of 1/

√
NF . This implies that at the

leading order in the number of lead channels NF , the
self-energy is independent of spin. Therefore there is nei-
ther spin torque nor spin-dependent current under these
assumptions.

This conclusion may appear unsatisfactory given that
there are a number of theoretical studies reporting the
existence of a spin torque in continuous textures inside
antiferromagnets28. Although the antiferromagnetic or-
ders in the lead and the dynamical antiferromagnetic
free-layer individually do not vary in space in our model,
the difference in the orientation between the lead and dy-
namical antiferromagnetic moments can be considered as
an extreme limit of spatial texture. Hence it is reasonable
to expect a qualitative connection between the present
approach and the continuum theories. There is no im-
mediate contradiction, however, due to our assumption
on the statistical distributions of the tunneling matrices.
In a crystalline antiferromagnet with a spatially varying
order parameter, one can expect that the electron at one
sublattice site has different probabilities of moving to a
next site in the same or the other sublattice. For instance,
when the exchange splitting is strong, an electron at A
site will be more likely to move to another A site than
a B site. Qualitatively, the corresponding situation in
our model would be having different variances for WAa

F
and WBa

F . In deriving the above estimate, however, we
assumed the two variances are the same. If we assume
otherwise, K3 will be of the same order in NF as K0

so that we will see some spin-dependent effects. In the
context of the tunneling junction, we believe that taking
WAa
F and WBa

F to be equivalent is more reasonable and
do not pursue this direction in the present study.
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M. Kläui, and M. Jourdan, Nature Communications 9,
348 (2018).
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