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Abstract 
 
We present ab initio calculations of thermal conductivity of InN with vacancies and 

substitutional defects using a full solution of the Peierls-Boltzmann transport equation. Our 
parameter-free calculations are in good agreement with experimental measurements 
demonstrating the predictive power of this approach. Phonon-defect scattering rates are 
computed from a Green’s function methodology that is non-perturbative and includes 
interatomic force constant variance induced near the defects. Restricting calculations to first 
order perturbation approaches can overestimate optic phonon scattering rates by nearly three 
orders of magnitude. On the other hand, neglecting the force variance weakens the scattering 
rates by about an order of magnitude, mostly in the low frequency region below 2 THz. This 
work elucidates important properties of phonon-defect scattering in thermal transport and 
demonstrates the predictive power of the coupling of Peierls-Boltzmann transport, Green’s 
function methods and density functional theory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 



I. INTRODUCTION 
 

Defects are ubiquitous in crystalline materials and can provide significant thermal resistivity 
to heat-carrying phonons, especially at low temperatures or when defect concentrations are 
large [1]. Thus, accurately describing phonon-defect scattering is critical for predictive 
calculations of thermal conductivity, particularly toward understanding transport behaviors in 
device-relevant materials.  Prevailing models for this type of scattering are limited to small 
perturbations [2], and typically only include perturbations to the vibrational equations of 
motion due to defect masses  [1–3]. Often, these models are simplified further by assuming a 
linear phonon dispersion in combination with fitting parameters to match experimental 
data [1,4–7]. In spite of these simplifying assumptions, the models have been employed [7] and 
adapted [8] to describe the scattering of phonons by a variety of point defects (e.g., vacancies 
[8] and substitutions [6]), well beyond perturbation regimes and for which structural and force 
variances are large.  
 

Recent ab initio calculations of phonon-defect scattering using a Green’s function 
methodology [9], which is non-perturbative and includes variations of harmonic interatomic 
force constants (IFCs), coupled with Peierls-Boltzmann transport [10–15] have challenged 
fundamental intuition derived from the simplified perturbative methods. The Green’s function 
approach has predicted unusually strong phonon-defect scattering rates arising from IFC 
variance for vacancies in Diamond  [11], BAs [12], graphene [15], GaN  [16] and FeSi  [17], as 
well as for substitutions in SiC [13]. Including IFC variance also generates unexpected frequency 
trends of phonon scattering by dislocations in Si [14] and by substitutions in graphene [15]. 
With the few calculations available to date, we are just starting to gain insights from ab initio 
calculations of phonon-defect scattering beyond first order perturbation theory, particularly as 
relates to thermal transport and other functionalities. More calculations are required to 
continue benchmarking the Green’s function methodology and reviewing our fundamental 
intuition of phonon-defect scattering.  

 
Unfortunately, thermal conductivity measurements of crystalline materials with controlled 

defect types and densities are scarce. A prominent technique to create defects is to irradiate a 
sample with ions as done with GaN  [18], InN  [19] and graphene [7]. Of these, InN is less 
studied, though is a scientifically and technologically interesting material with a large phonon 
bandgap [20] and a small electronic bandgap. This material is useful for optoelectronic and 
photovoltaic applications [20] for which performance can depend critically on its thermal 
properties. More importantly for this study, measured InN thermal conductivity data is 
available as a function of irradiation dose, which can be correlated with vacancy defect 
density [19]. 

 
In this work, we examine phonon-point-defect interactions and their influence on the 

thermal conductivity of InN. We use the full solution of the Peierls-Boltzmann transport (PBT) 
equation coupled with a Green’s function description of phonon-defect scattering, all built from 
interatomic forces derived from density functional theory (DFT).  Specifically, we study the 



conductivity of InN with indium (VacIn) and nitrogen (VacN) vacancies as well as boron (BIn), 
aluminum (AlIn) and gallium (GaIn) substitutions on the indium sites and arsenic (AsN) 
substitutions on the nitrogen sites (Sec. II). Our parameter-free calculations of thermal 
conductivity are compared with experimental values [17] (see Figure 1). The agreement of 
theory and experiment demonstrates the predictive capabilities of the PBT + Green’s function 
methodology to model thermal conductivity of crystals with defects.  

 
From this advanced numerical description of phonon-point-defect interactions we develop 

fundamental insights into phonon transport behavior and test previous intuition.  We explore 
the changes in phonon-defect scattering from non-perturbative to first order perturbation 
approaches as well as from neglecting IFC variance induced by the defects via changes in 
structure and bonding (Sec. III). As expected, first order approximations fail at higher 
frequencies and for large mass variances. However, the magnitude of the deviation from non-
perturbative methods is surprising. Scattering rates of optical phonons from AsN defects using 
first order perturbation theory are larger than the rates from the Green’s function methodology 
by more than 3 orders of magnitude. This large difference may be important in studies of the 
dynamics of coherent optical phonons in the presence of defects [21–23], which are important 
for optoelectronic devices as introducing defects is a common way to increase switching 
speeds [22]. This discrepancy may also play a role in understanding Raman spectra in samples 
with defects [24,25].  

 
The effect of neglecting the IFCs variance is also studied (Sec. III). We focus on the increase 

of scattering in the low frequency spectrum, which is important to correctly capture thermal 
transport at low and intermediate temperatures. Our calculations suggest that (1) the IFC 
contribution is proportional to the square of the relative change in the IFCs and (2) including IFC 
variance enhances scattering by allowing interactions between vibrations on different types of 
atoms. These insights help elucidate the role played by IFC variance on phonon-defect 
scattering.  
 

II. THERMAL CONDUCTIVITY 
 

We calculate the thermal conductivity ߢ of wurtzite InN with dilute point defects on In and N 
sites by summing over contributions from all phonons as  

ఈߢ  ൌ 1Ω ෍ ԰߱ఒ ߲݊ఒ߲ܶఒ ఒఈଶݒ ߬ఒఈ, (1) 

with ߙ a Cartesian direction, ߣ labeling the phonon branch and momentum, ߱ఒ the phonon 
frequency, ݊ఒ the Bose-Einstein distribution, ݒఒఈ the group velocity in the ߙ direction, ߬ఒఈ the 
lifetime along the temperature gradient (also in the ߙ direction), Ω the volume of the sample, ԰ 
the reduced Planck constant and ܶ the temperature. The thermal conductivity tensor for the 
hexagonal wurtzite structure can be described by two components, ߢ௫ (in-plane) and ߢ௭ (c-
axis).  The lifetimes are determined from the deviations from equilibrium of the phonon 
distributions that result from solving iteratively the linearized Peierls-Boltzmann transport 



equation [1,26–32] including intrinsic 3-phonon scattering [1,26], phonon-isotope scattering [2] 
and phonon-defect scattering [9]. In our calculations we assume that phonons scatter 
independently from different defects (as expected in the ‘dilute’ limit), thus phonon-defect 
scattering rates depend only on the number of defects, not on their specific distribution. Details 
of these calculations as applied to InN are given in Appendix A.  Here we elaborate further on 
ab initio calculations of phonon-defect scattering. 
    
    Phonon-defect scattering is computed using a Green’s function methodology based on the 
so-called T-matrix ௗܶ [9]. This approach captures the scattering due to mass and interatomic 
force constant variations (from structure and bonding) introduced by defects.  These variations 
can be large; thus application of common perturbative methods is unjustified.  
 

Within this Green’s function methodology, the scattering rates of phonons due to a dilute 
and random distribution of defects is given by  [9,33] 

  1߬ఒௗ ൌ െ݊ௗ Ωఒ߱ఒ |ߣۦሼ݉ܫ ௗܶ|ۧߣሽ (2) 

with ݊ௗ the number of defects per unit volume and Ωఒ the volume of the simulation domain 
containing the defect where phonon eigenvectors are normalized. Note that Eq. 2 implicitly 
assumes defects are in the dilute limit, i.e., phonons are scattered independently from defects 
at different locations.  Large, correlated defect concentrations require careful consideration of 
supercell samplings, and are not considered here.  The T-matrix is defined by  [9]   

 ௗܶ ൌ ሾܫ െ ௗܸܩ଴ሿିଵ ௗܸ (3) 
with ܫ the identity matrix, ௗܸ ൌ ௗܪ െ  ଴ the perturbation to the dynamical matrix of theܪ
perfect system ܪ଴ with respect to the dynamical matrix of the system with the defect ܪௗ and, ܩ଴ the retarded Green’s function of the perfect system defined as ܩ଴ ൌ ሾ߱ଶܫ െ ଴ܪ െ Σሿିଵ with Σ the self-energy term accounting for the interaction of the atoms not included in ܪ଴ with 
those included in ܪ଴. Further details regarding the calculation of Σ and ܩ଴ are available in the 
literature  [9,34,35]. For all our calculations, ܪௗ includes only one defect and thus ݊ௗ in Eq. 2 is 
the density of defects in the model system. Harmonic and anharmonic IFCs are the only inputs 
to the phonon scattering rates (intrinsic and from defects) and ߢ calculations, which are 
obtained from density functional theory using Quantum Espresso (QE) [36], a plane wave based 
software package. For each defect, IFCs were computed after the host supercell was relaxed. 
Further details of the calculations are given in Appendix A. Note that while the phonon-defect 
scattering rates depend on frequency, they do not depend on temperature as the IFCs are only 
calculated at zero temperature. However, this scattering can play an indirect role in shaping the 
temperature dependence of thermal conductivity as the phonon populations (Bose-Einstein 
distributions in Eq. 1) are both frequency and temperature dependent.    



 

 
Figure 1: Cross-plane thermal conductivity  as a function of He2+ ion irradiation dose. 
Measurements before (blue square, arbitrarily put on the y-axis) and after (black circles) 
irradiation are taken from Levander et al. [19]. Red curves are our ab initio calculations using 
the minimum (upper dashed), maximum (lower dashed) and average (solid) conversion factors 
to determine the number of In and N vacancies from irradiation dose.  These are given in Table 
1 [19].  

 
Our ab initio calculations of cross-plane thermal conductivity  for InN with indium and 

nitrogen vacancies are compared with measured values in Figure 1. The InN samples are single-
crystal films with thickness varying from 0.5 to 2.1 μm, grown by molecular beam epitaxy [19]. 
The measured  Wm-1K-1 for an unirradiated sample is close to the calculated  
Wm-1K-1 for InN with naturally-occurring isotope concentrations. The similarity of these values 
and their magnitude suggest that phonon-phonon interaction processes higher than third order 
 [37] do not play a major role in determining the thermal conductivity of InN. Calculations also 
demonstrate that anisotropy and phonon-isotope scattering from natural isotopic variance are 
relatively small at 300K with  and .  The highly 
crystalline InN films were irradiated with a 2.13 MeV He2+ beam creating point defects 
(vacancies and interstitials)  [19]. At room temperature, interstitials are thought to be generally 
mobile and may migrate and recombine at other defect sites, e.g. dislocations or at surfaces or 
interfaces  [38]. On the other hand, vacancies are immobile  [38]. Thus, we expect the density 
of interstitials to be much smaller than the density of vacancies  [38] and we neglect phonon-
interstitial scattering here. The distribution of vacancies after irradiation was determined to be 
relatively uniform across the samples [19]. Moreover, simulations provided a conversion factor 
to determine induced vacancy concentration from the irradiation dose (inset of Figure 1 of 
Levander et al.  [19]). We use the minimum, average and maximum conversion factors to define 
the concentration of N and In vacancies as a function of irradiation dose (Table 1) in our 
calculations of . Interstitial defects are not considered in this work.  Figure 1 shows our 
computations of cross-plane thermal conductivity on InN using the minimum, average and 
maximum concentrations of In and N vacancies. Phonon-vacancy scattering rates used in the 
calculation are shown in Figure 9(a) in Appendix A. The agreement between measured and 
calculated  values of irradiated InN is reasonable, especially considering the lack of fitting 



parameters.  This successful benchmark demonstrates that predictive ab initio calculations of 
thermal conductivity are possible even in materials with significant point defect concentrations.  

 

 
In 

vac/dose 
(cm-1) 

N 
vac/dose 

(cm-1) 
minimum 2 ൈ 10ସ 0.4 ൈ 10ସ
average 4 ൈ 10ସ 1.7 ൈ 10ସ

maximum 14 ൈ 10ସ 7 ൈ 10ସ
Table 1: Ratio between vacancy concentration (cm-3) and ion irradiation dose (cm-2) used to 

define the minimum, maximum and average density of vacancies from a particular irradiation 
dose. These ratios are extracted from the inset in Figure 1 of Levander et al. [19]. 

Based on the agreement between theory and experiment in Figure 1, the dilute limit 
assumption seems to hold from irradiation doses of 10ଵଷ to 10ଵ଺ He2+cm-2. Over this range, the 
concentration of In vacancies varies from 4 ൈ 10ଵ଻ to 4 ൈ 10ଶ଴ cm-3. Equivalently, the number 
of vacancies changes from one vacancy every 160,000 atoms to one vacancy for every 160 
atoms. Our model for phonon-defect scattering assumes that each impurity center scatters 
phonons independently. This dilute limit assumption holds as long as most of the heat is carried 
by phonons that lose their phase coherence - behave like particles - between scattering events 
(~1.5 nm for a dose of 10ଵ଺ He2+cm-2). Phonon decoherence could arise due to the randomness 
of the defect distribution or due to phonon-phonon interactions [39–41]. Examination of the 
transition from the dilute limit to correlated defects or high defect concentrations requires 
simulations that consider the wave nature of phonons and phonon-phonon interactions. This is 
not considered here. 
 

At 300K and for vacancy concentrations <10ଵ଻ (cm-3), phonon-vacancy scattering in InN is 
not significant.  However, as defect density ݊ௗ increases above ݊ௗ ൌ 10ଵ଻ (cm-3), phonon-
vacancy scattering becomes stronger relative to the intrinsic phonon-phonon interactions. A 
10% decrease of ߢ௭ relative to that of unirradiated InN occurs for an irradiation dose of 2 ൈ 10ଵଷ (cm-2), corresponding to In and N vacancy concentrations of  8 ൈ 10ଵ଻ (cm-3) and 3.4 ൈ 10ଵ଻ (cm-3), respectively and simultaneously. Increasing the defect densities by an order 
of magnitude diminishes ߢ௭ to 60% of that for the unirradiated sample.  For larger vacancy 
concentrations, ߢ௭  drops precipitously with defect density ݊ௗ as phonon-vacancy scattering 
becomes the dominant resistance. Note that with decreasing temperature similar behavior will 
occur as intrinsic phonon-phonon scattering varies ~1/ܶ, while phonon-defect scattering is ܶ-
independent.   



 

 
Figure 2: Cross-plane thermal conductivity of InN with BIn, AlIn, GaIn or AsN substitutional 

defects as well as with In or N vacancies. 

  
We also calculate the effects of substitutional defects on the thermal conductivity of InN. 

Specifically, we calculated thermal conductivity of InN with gallium (GaIn), aluminum (AlIn) and 
boron (BIn) substitutions on In sites as well as with arsenic (AsN) substitutions on N sites. 
Calculations are given for cross-plane thermal conductivity values (Figure 2).  Again, in-plane  
values are similar though slightly smaller (Figure 10). In general, substitutional atoms scatter 
phonons less effectively than vacancies, thus InN with substitutions tends to have higher  than 
with vacancies. However, at higher defect densities, BIn defects scatter phonons more strongly 
than nitrogen vacancies due to larger phonon-defect scattering in the acoustic spectrum 
between 2 and 7 THz (Figure 9(b)). Note that acoustic phonons carry most of the heat, and in 
compound materials with a large mass difference between the constituent atoms, as in InN, the 
acoustic modes are governed by vibrations of the heavy atoms.  Thus, defects on the In sites, 
particularly those that give large mass or force deviations, give a stronger suppression of the 
thermal conductivity than those on the light N atoms.   

 
For In site substitutions, the relative scattering strengths follow common intuition as the 

mass difference increases (first row of Table 2) from Ga to Al to B, the resistance increases, in 
line with mass variance scattering in the Klemens and Tamura models  [2,4]. The scattering 
strength due to B defects on In sites is also larger than that due to As defects on N sites. In this 
case, the larger mass variance of the AsN defect is compensated by the smaller density of states 
from N vibrations in the acoustic spectrum (see Sec. III), thus these defects have less relevance 
to thermal transport. We summarize in Table 2 the defect densities necessary to reduce the 
thermal conductivity of unirradiated InN  by 10% and 50%. Our calculations indicate that 
defect densities on the order of  -  (cm-3) are required to appreciably decrease the 
thermal conductivity. Defect densities on the order of  -  (cm-3) reduce the 
conductivity by 50%. 

 
 

 GaIn AlIn BIn AsN VacIn VacN 



Mass variance  0.15 0.58 0.82 18.91 1 1 
IFC variance  0.37 0.49 1.16 0.66 1.25 1.05 

 from Eq. 7 2.5 3.5 25.0 400.0 30.0 800.0 
 from Eq. 8 2.0 2.8 20.0 4.5 24.0 9.0 

 (  cm-3) when  7.15 5.18 2.29 2.85 1.32 1.63 
 (  cm-3) when  111.8 70.56 26.84 44.87 18.02 27.36 

Table 2: The first two rows give the mass and force constant variances for the point defects 
studied here.  is the difference between the defect mass and the mass of the atom 
replaced by the defect .  is the average relative change of IFCs between defect and 
non-defect systems described in more detail below Eq. 7. The third and fourth rows give the 
value of  extracted by fitting the low frequency scattering rates from the Green’s function 
methodology with Eq. 7 and Eq. 8, respectively. The last two rows show the defect density 
necessary to reduce the thermal conductivity of unirradiated InN  to 90% and 50% of its 
original value. 

III. PHONON-DEFECT SCATTERING 
 
Commonly used approaches to calculate phonon-defect scattering are restricted to small 

perturbations of the dynamical matrix only due to mass differences [2,4]. In spite of these 
critical limitations, the approximations are widely used to describe a variety of point defects, 
and they have laid the groundwork for our current physical intuition of phonon-defect 
scattering. The T-matrix approach does not suffer from these limitations as it includes IFC 
variance and is non-perturbative, though is more challenging to calculate. In this section, we 
explore the breakdown of prevailing approximations in describing phonon-defect scattering and 
develop new insights into these.  
 

 

 



 
Figure 3: (a) Density of states of InN projected on an In site (red) and on a N site (blue). Note 
that the density of states is typically projected on an atomic type, which gives twice the density 
of states projected on a single site as shown in (a). Scattering rates normalized by defect 
density for BIn (b) and AsN (c) substitutions. Black dots are from the Tamura equation (Eq. 4), 
while solid curves are from Eq. 6 with  from Table 2. 

 

We use the Tamura expression [2], a first order perturbation description of phonon 
scattering from mass variance due to isotopes, as our baseline for examining phonon-defect 
scattering rates [2,42] 

  (4) 

with ,  and  the fraction and mass of the  type of atom in 
the th atomic site of the unit cell,  the average mass of that site, and  the 
eigenvector of the  atom in the unit cell.  This Tamura expression is similar to earlier 
approximations by Klemens [4] that gave rise to the empirical equations widely used today to 

describe phonon-defect scattering.  For crystals with cubic symmetry,  in Eq. 4 can 

be written as  , and Eq. 4 simplifies to  [3,43] 

  (5) 

with  the projected density of states on atom . Note this is 

not the usual projected density of states on an atomic type, but it is projected on the single site 
. An example of  for InN projected on an In and a N site is presented in Figure 3(a). For a 

relatively low concentration of mass defects on site , Eq. 5 can be further simplified by 1) 

noting that  and , with , 2) replacing  by its 

weighted average , with  the total density of states 

and, 3) summing over the  sites that can host the defect so that  with  the 
defect density and  the volume per unit cell. Following the steps outlined above we get 

  (6) 

The scattering rates for BIn (solid red curves in Figure 3b) and AsN (solid blue curves in Figure 3c) 
using Eq. 6 closely track calculations using Eq. 4. The agreement demonstrates that the 



scattering rates calculated from the Tamura equation are dictated by the square of the mass 
variance, the square of the phonon frequency and the square of the projected density of states 
divided by the total density of states. 
 

To explore the differences between first order perturbation theory and the non-perturbative 
Green’s function methodology, we compare the phonon-defect scattering rates calculated from 
the T-matrix approach including only mass variance (gray dots in Figure 4) with those from the 
Tamura expression (black dots in Figure 4). As expected, the two methods agree well in the low 
frequency region and for small mass variation, where the strength of the perturbations are 
weak [10]. For example, for GaIn substitutions, the mass variance is small (0.15) and phonon-
defect scattering rates from the two methods are similar over the entire frequency spectrum. 
For larger mass perturbations (first row of Table 2), particularly at higher frequencies, the two 
methods do not agree. For AsN substitutions the mass variance is two orders of magnitude 
larger (18.91) and the scattering rates of optical phonons from Tamura overestimate those 
from the T-matrix by more than three orders of magnitude. On the contrary, the scattering of 
optical phonons for AlIn and BIn substitutions is underestimated by Tamura by about an order of 
magnitude. Note that the disagreement between the T-matrix and Tamura rates indicates that 
the T-matrix rates do not follow the simple relations in Eq. 6.  
 

 
Figure 4: Phonon-substitution scattering rates in InN due to (a) GaIn, (b) AlIn, (c) BIn and (d) AsN 
substitutions normalized by the defect densities. Black dots are the rates from the Tamura 
expression (Eq. 4), gray dots are the rates from the T-matrix approach (Eq. 2) including only 
mass variations.  Colored dots are the rates from the T-matrix approach including mass and IFC 
variations.  

To explore the effect of including the IFC variance, which is directly related to structural 
relaxation and bonding variations, we compare our T-matrix calculations varying only defect 
masses (gray dots in Figure 4) with varying both masses and IFCs (colored dots in Figure 4). In 



general, including IFC variance increases the phonon-defect scattering rates over simple mass 
variance calculations. In the low frequency spectrum where the rates are proportional to ߱ସ, 
IFC variance gives a rigid upward shift of about an order of magnitude. This shift in the 
calculated rates may be important at lower temperatures where phonon-defect scattering is 
stronger than intrinsic scattering and low frequency phonons give larger contributions to 
transport.  

 
To gain insights into the contributions from the IFC variance to the low frequency phonon-

defect scattering rates below 2THz (colored dots in Figure 4), we fit these with a modification of 
Eq. 6 

 
1߬ఒ,௞ௗ ൌ ݊ௗ 6ߨ Ω଴߱ఒଶ ሺ߱ఒሻܦ௞ଶሺ߱ఒሻܦ ቈ൬Δ݉௞݉௞ ൰ଶ ൅  ௞ is a fitting parameter to capture the rates from the T-matrix calculation below 2 THz (coloredܥ ௞቉ (7)ܥ

dots in Figure 4) by shifting Tamura’s rates upward. ܥ௞ gives a measure of the contribution to 
phonon-defect scattering from the IFC variance. An example of the fitting procedure for a Ga 
substitution on an In site is shown in Figure 5(a). When ܥ௞ ൌ 0, Eq. 7 becomes Eq. 6 and the 
rates follow closely Tamura’s expression (black dots in Figure 5(a)). The separation of mass and 
IFC contributions in Eq. 7 is inspired by an analytical derivation of the scattering rates for a 1D 
toy atomic chain. Figure 5(b) shows ܥ௞ as a function of the relative change in IFCs (Δܭ௞/ܭ௞ሻ for 
all the defects studied here. ∆ܭ௞ is the Euclidian norm of the difference between the IFC 
matrices of the system with and without the defect. ܭ௞ is the Euclidian norm of all the IFCs 
between the atom on site ݇ and its neighbors in the system without the defect (see Table 2 for 
calculated values). Note that for vacancies, ∆ܭ௞ does not include the IFCs of the lost bonds. 
Figure 5(b) suggests that the fitting parameter ܥ௞ for defects on a particular site is a function of 
the square of the relative change in IFC (Δܭ௞/ܭ௞), similar to ሺΔ݉௞/݉௞ሻଶ. This is evident from 
the data in Figure 5(b) following closely the dashed lines with slope 2.  
 



 

 
Figure 5: (a) Scattering rates from the Tamura (black dots) and T-matrix (yellow dots) methods 
for a Ga substitutional defect on an In site. The solid curves are given by Eq. 7 using 

 from Table 2,  (solid red curve) and  (solid blue curve). Fitting parameter 
 from Eq. 7 (b) and from Eq. 8 (c) that represents the contribution from the IFC variance to 

low frequency phonon-defect scattering rates below 2 THz (colored dots in Figure 4) for all the 
defects studied here. The dashed lines have slope 2. 

Interestingly, the fitting procedure described above suggests that  for defects on nitrogen 
sites is about 50 times larger than that on indium sites (see dashed lines in Figure 5(b)). 
Moreover,  is about 8 times smaller than  in the low frequency range, and this 
quantity is squared in Eq. 7. Based on these two observations and the expectation that similar 

 should yield similar , we hypothesize that the scattering contribution from IFC 
variance should be proportional to the total density of states  instead of the density of 
states projected on a particular site . Using this hypothesis, we fit the colored scattering 
rates in Figure 4 with the following equation 

  (8) 

where  divided by 4 represents the total density of states per atom in analogy with Eqs. 5 
and 6. Figure 5(c) shows the results of the new fitting, where a single trend line with slope 2 
seems to capture all the data. This suggests that the low frequency scattering rates are 
proportional to the square of the relative change in IFC  for all of the point defects 
studied here, including vacancies and substitutions on nitrogen and indium sites. 

 
The results of the fitting procedure of the scattering rates using  instead of  for 

the IFC variance contribution (Figure 5(c)) suggest that IFC variance breaks the restriction of 
phonon-defect scattering only arising from interactions between vibrations on the same atomic 
site. According to Eq. 4, which does not include IFC variance, the scattering of phonon  to 



phonon ߣᇱ is weighted by หࢋ௞ఒכ · ௞ఒᇲหଶࢋ
. This weighting factor restricts the scattering to 

interactions between vibrations on the same site, which is reflected in the scattering rates 
being proportional to ܦ௞ሺ߱ఒሻ (Eqs. 5, 6 and 7).  We implicitly use this restriction when fitting ܥ௞ 
using Eq. 7 (Figure 5(b)). In this case for similar IFC variance, ܥ௞ for defects on nitrogen sites is 
larger than that on indium sites (Figure 5(b)). Relaxing the restriction improves the fitting 
(Figure 5(c)). Thus, including the IFC variance seems to allow phonon-defect scattering arising 
from interactions between vibrations on different atomic sites, which increases the scattering 
cross section and so the scattering rates. Although this hypothesis seems to work for InN, our 
preliminary calculations using Eq.8 for phonon-defect scattering in BAs does not give ܥ௞ on a 
single trend line with slope 2 for substitutions and vacancies, but rather on two separate lines 
with slope 2. This may suggest that other factors are also important in BAs, or that Δܭ௞/ܭ௞ is 
not well defined.  

 
Previously, we found unusual phonon-defect scattering rate behavior in graphene:  

decreasing rates with increasing frequency for flexural out-of-plane phonons interacting with 
nitrogen substitutions, which was explained in terms of IFC variance  [15]. Figure 4(d) shows 
similar decreasing scattering rates with increasing frequency from about 1.5 to 4.5 THz for AsN 
defects. Here, however, this behavior seems to be driven by ߱ଶܦ௞ଶ/ܦ rather than the IFC 
variance. Note that the Tamura expression overestimates the mass variance scattering for the 
acoustic frequency range above 2.5 THz. This overestimation may compensate the neglected 
IFC variance. 

IV. SUMMARY AND CONCLUSIONS 
 
We examined lattice thermal conductivity of InN with vacancies and substitutional defects.  

Phonon-defect scattering rates are derived from a non-perturbative ab initio Green’s function 
methodology including structural relaxation and variation of the interatomic forces local to the 
defect. These were incorporated into an ab initio full solution of the Peierls-Boltzmann 
transport equation to determine the thermal conductivity of InN with point defects.  We 
demonstrate the predictive power of this parameter-free approach by comparing our 
calculations with measured thermal conductivity data for InN films with induced In and N 
vacancies. Defect densities between 1 to 7 ൈ 10ଵ଼ (cm-3) are required to decrease the thermal 
conductivity of InN by 10%.  

In general, we find that phonon scattering by substitutions is weaker than that by vacancies. 
Our results indicate that neglecting IFC variance weakens the phonon-defect scattering rates by 
about an order of magnitude in the low frequency spectrum. This difference is critical for 
calculations of intermediate temperature thermal conductivity, where phonon-defect 
scattering dominates and the low frequency phonons contribute more significantly to 
transport. We also find that first-order perturbation methods can overestimate the scattering 
rates of optical phonons by about three orders of magnitude. This large overestimation calls for 
a revision of methodologies that rely on first-order perturbation theory to capture the 
scattering of optical phonons with defects.  Our calculations demonstrate that (1) at low 
frequencies the IFC variance contribution to the scattering rates is proportional to the square of 



the relative change in the IFCs due to defects, and (2) including IFC variance increases the 
defect cross section beyond just mass variance, thus enhancing phonon-defect scattering rates.  
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APPENDIX A: SIMULATION DETAILS 
 

Harmonic Interatomic Force Constants (IFCs). We compute the harmonic IFCs from density 
functional theory (DFT) using the plane wave software package QUANTUM ESPRESSO  [36]. 
Each IFC results from a numerical derivative of atomic forces by displacing individual atoms േ0.04 Å from their equilibrium positions. The forces required for these finite displacement 
computations are determined from scf calculations using the pw.x module of QE on 4 ൈ 4 ൈ 3 
supercells of InN (192 atoms). Our scf calculations are done using cut-off energy of 60 Ry, 
electronic convergence threshold of 10ିଵସ Ry, Gaussian smearing with degauss of 0.005 Ry, 
projected augmented-wave pseudopotentials  [45] within the generalized gradient 
approximation PBESOL [46] (In.pbesol-dn-kjpaw_psl.0.2.2.UPF, N.pbesol-n-kjpaw_psl.0.1.UPF) 
and sampling only the Γ point of the Brillouin zone.  

 
System without defects. We build the 4 ൈ 4 ൈ 3 supercell for perfect wurtzite InN starting 

from a relaxed InN unit cell achieved from several vc-relax energy minimizations using the pw.x 
module with a 8 ൈ 8 ൈ 6 sampling of the Brillouin zone with the grid displaced from the origin. 
This process gives lattice constants ܽ ൌ 3.538 Å and ܿ ൌ 5.717 Å, which are in agreement with 
experimental values ܽ ൌ 3.534 Å and ܿ ൌ 5.709 Å  [47].  The IFCs calculated from atomic finite 
displacements in the supercell were considered to the 19th nearest neighbor shell. On that set, 
we enforce space group symmetry 186 and translational invariance using singular value 
decomposition and quadratic programing  [48]. The calculated phonon dispersion is given by 
the solid lines in Figure 6, which agrees with experimental data [47] over the acoustic phonon 
spectra. Despite considering interactions to the 19th nearest neighbor shell, calculations deviate 
from the measured data for some of the high frequency optic modes as we did not include very 
long range Coulomb interactions that drive LO-TO splitting [49] in this region.  Note also that 
the recursive algorithm used to calculate the Green’s function in Eq. 3 relies on real space 
calculations and thus precludes incorporating reciprocal space methods for including long range 
forces.  



 
Figure 6: Calculated phonon dispersion of InN (solid curves) compared with measured data: 
blue dots [47], red triangles [50] and green squares [51].   

System with defects. After inserting a point defect in a  supercell, we relaxed the 
system until the interatomic forces are less than  Ryd-Bohr-1 using vc-relax calculations 
with constant volume. In the relaxed state, the nearest neighbor distances for an atom in the 
defect supercell (not the defect itself)  rapidly tend to those of the system without the defect 

 (Figure 7). For each supercell with a defect, the IFCs were calculated using the finite 
displacement method described above and the space group symmetry was found to be 156 
using the spglib library created by Togo [52] with a tolerance less than . 

 
Figure 7: Changes in the distances of an atom to its nearest neighbors after a point defect is 

introduced and the supercell is relaxed. Given here is the difference between the nearest 
neighbor distances of an atom in an InN supercell with ( ) and without ( ) a defect versus the 
separation from that atom to the defect .  

Green’s function methodology. For the Green’s function calculations, we use a  
rectangular supercell with 720 atoms as the simulation domain. The rectangular shape is 
convenient for calculations of the retarded Green’s function of the perfect system , which are 
done by transforming to a set of decoupled 1D infinite chains following a procedure outlined by 
Mingo et al. [9].  We define the IFCs in the simulation domain by inserting the IFCs between 
atomic pairs within the 19th nearest-neighbor shells of the defect, found from finite 
displacements of the  supercell with a defect, into the  simulation domain. 
The inserted IFCs are modified slightly to enforce the point group symmetry of the defect as 
well as translational invariance on the whole simulation domain using singular value 
decomposition and quadratic programing  [48]. Our scattering rates are well converged with 



respect to the number of IFCs calculated within the simulation domain. Including IFCs between 
atomic pairs within the 19th and 17th nearest-neighbor shells of the defect yield similar 
scattering rates. As this set of IFCs decreases to those bounded by the 11th nearest-neighbor 
shells of the defect, the scattering rates of acoustic phonons decreases slightly (see Figure 8(a)). 
Decreasing the set of IFCs even more causes a decrease of the scattering rates of optical 
phonons as well as an increase in the scattering rates near 2 THz, likely due to changes in the 
IFCs when point group symmetries and translational invariance are enforced (see Figure 8(b) 
and 8(c)). The size of the simulation domain guarantees that atoms near the edges of the 
domain have IFCs equal to those of atoms in the perfect InN system. This ensures that the 
differences between dynamical matrices of the systems with and without the defect 

 are zero outside the simulation domain.  
 

 

 

 
Figure 8: Phonon scattering rates due to a B substitution on an In site including IFCs between 
atomic pairs within the 11th (a), 9th (b) and 5th (c) nearest-neighbor shells of the defect. 

 
Thermal conductivity.  for InN with defects is calculated using the linearized Peierls-

Boltzmann transport equation  [1,26,31] 



 

 
(9) 

with  and  coefficients from three-phonon scattering processes defined in Ref. 
 [28]. Phonon-defect scattering is included using the result from Eq. 2 and do not depend on the 
distribution of modes  and  as the three-phonon interactions do. Eq. 9 is solved iteratively 
 [27] for the deviations from equilibrium  for each phonon mode, which determine the 
transport lifetimes in Eq. 4, . The anharmonic IFCs required in this 
calculation are obtained in a similar manner to the harmonic IFCs above, though using 3x3x3 
supercells and considering interactions to 5th nearest neighbors of the unit cell atoms.  A subset 
of anharmonic IFCs were determined using 4x4x3 supercells and were similar within the 
numerical precision of the calculations. 

 
 

APPENDIX B: SCATTERING RATES 
 

Figure 9(a) gives the scattering rates due to vacancies used in the calculation of thermal 
conductivity of InN shown in Figure 1. Figure 9(b) demonstrates that the scattering rates due to 
BIn substitutions are larger than those due to nitrogen vacancies in the acoustic spectrum 
between 2 and 7 THz.  

 

 
Figure 9: Scattering rates calculated from the Green’s function methodology (Eq. 2) scaled by 
the defect density  and including mass and IFC variances. (a) Rates for vacancies used to 
generate Figure 1. (b) Comparison of the scattering rates due to a BIn substitution and a 
nitrogen vacancy. 



 
Figure 10: In-plane thermal conductivity of InN with BIn, AlIn, GaIn or AsN substitutional defects 
as well as with In or N vacancies. 
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