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Abstract 

A classic Onsager reciprocity relation for Fourier heat conduction in the absence of magnetic 
fields states that the thermal conductivity tensor in bulk anisotropic solids is symmetric. 
However, since Fourier’s law fails in thin dielectric films due to ballistic phonon transport effects, 
it is natural to ask whether an analogous Onsager relation can be identified in the boundary 
scattering regime. To answer this question, we solve the Boltzmann transport equation (BTE) 
under the relaxation time approximation for in-plane and cross-plane heat transport for thin 
films with anisotropic phonon dispersion relations and scattering rates. We use these BTE 
solutions to show that the thermal conductivity tensor of thin films is symmetric from the 
diffusive regime through the boundary scattering regime. We illustrate this reciprocity by 
calculating thermal conductivity suppression functions for a model anisotropic material. We 
compare our BTE solution to previous atomistic simulations of arbitrarily aligned graphite thin 
films, and use published first-principles calculations to model anisotropic in-plane heat flow in 
aligned black phosphorus. Our derivation shows how Onsager reciprocity for anisotropic heat 
conduction extends into the boundary scattering regime, and reduces the number of 
independent measurements required to fully characterize heat transport in anisotropic thin 
films. 

___________________________________________________________________________ 

I. INTRODUCTION 
Fourier’s law breaks down in dielectric thin films due to ballistic phonon transport effects, 

which become important when the film thickness t  is comparable to or less than the phonon’s 

intrinsic mean free path Λ . The breakdown of Fourier’s law leads to a reduction in the thermal 

conductivity κ  compared to the bulk value bulkκ . Boltzmann transport equation (BTE) models 

have been developed  [1–6] to quantify this thin film boundary scattering suppression in 
materials that have phonon dispersion relations and scattering rates of sufficiently high 

symmetry such that the heat flux q  is antiparallel to the temperature gradient T∇ . For 

example, these BTE models are used to describe heat transport in silicon thin films [7–10], since 
silicon has a relatively high-symmetry diamond cubic crystal structure. However, for arbitrarily 
aligned materials with anisotropic dispersions and scattering rates, q  is no longer necessarily 

antiparallel to T∇ , an effect described by off-diagonal terms in the κ  tensor. These arbitrarily 
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aligned conditions can be found in thin films with low-symmetry monoclinic or triclinic unit 
cells [11–18], as well in films which have higher symmetry unit cells (e.g. orthorhombic) but have 
temperature gradients imposed in a low-symmetry direction [19–23]. Particular examples of 
recent thermal interest include the phase-change material vanadium dioxide (VO2) in the 
monoclinic phase [24,25], the layered material black phosphorus (which displays anisotropic in-
plane thermal properties) [26], and thermoelectric materials such as SnSe [27] or Bi2Te3  [28]. 
Being able to predict the boundary scattering effects on the thermal properties of these 
materials is important for interpretation of novel transport physics [24] and for applications in 
waste heat scavenging [29]. In addition, other arbitrarily aligned materials have been 
investigated for applications in heat flux sensing and transverse thermoelectric cooling  [23,30].  

In the diffusive regime where Fourier’s law applies, an important Onsager reciprocity 
relation for arbitrarily aligned anisotropic materials  [31,32] mandates that the κ tensor is 
symmetric in the absence of a magnetic field. This prototypical relation dates back to Onsager’s 
first work on reciprocity [31] and fundamentally arises from the microscopic time reversal 
symmetry of the macroscopically irreversible diffusion process. However, this diffusive Onsager 
relation has not been theoretically or experimentally extended into the thin film boundary 
scattering regime where Fourier’s law breaks down due to ballistic phonon effects. In contrast, 
well-known examples of ballistic reciprocity can be found in the four-point probe conductance 
relations from the electrical domain  [33,34]. These electrical results, however, are not easily 
modified to model the ballistic phonon transport of the present work, because the electrical 
four-point probe relations are derived from the Landauer-Büttiker formalism, while thin film 
phonon boundary scattering is analyzed using the Boltzmann equation. 

Here, we identify a generalized version of the Onsager reciprocity relation by using BTE 
solution to show that the κ tensor is symmetric from the diffusive regime through the 
boundary scattering regime for arbitrarily aligned anisotropic thin films. We present an example 
calculation of the thin film reciprocity relation for a model material with an anisotropic Debye 
dispersion relation, and compare our BTE solutions to molecular dynamics simulations  [35] of 
arbitrarily aligned graphite thin films. As a further case study, we combine a tensor 
transformation result from our BTE solutions with previously published first-principles 
calculations [6] to model thermal transport in thin-film black phosphorus, a layered material 
with anisotropic in-plane thermal conductivities. Our BTE solutions extend Onsager’s reciprocity 
relation for heat conduction into the boundary scattering regime, and the reciprocity relation 
reduces the number of independent measurements required to fully characterize heat transfer 
in anisotropic thin films.  

II. THEORY 
A. Boltzmann transport equation  

We begin by deriving BTE solutions for heat transport in arbitrarily aligned anisotropic 
thin films. Under the relaxation time approximation, the steady-state phonon BTE without 
internal energy generation is  
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where ∇  is the gradient in real space, the subscript k denotes the phonon wavevector for a 

given polarization, kv  and τk  are respectively the mode-dependent group velocity and bulk 

relaxation time, fk  is the distribution function (initially unknown), and the equilibrium Bose-

Einstein distribution function 
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. Note that for simplicity of presentation, 

we suppress the index labeling the phonon polarization for all mode-dependent quantities, but 

this is understood to be contained within the symbol k . The phonon angular frequency is ,ωk  

h  is the reduced Planck constant, Bk  is the Boltzmann constant, and T  is the unknown local 

temperature.   

The local heat flux vector is  

 
1  ,f
V

ω= ∑ k k k
k

q vh   (2) 

where V  is the volume of the sample. In Eq. (2) and throughout this paper, a summation over 
k  also implies a sum over polarizations. Conservation of energy dictates that at steady state 

with no heat generation, 0∇ ⋅ =q . Taking the gradient of Eq. (2), noting that 0∇⋅ =kv  for a 

homogeneous material, and substituting for f⋅∇k kv  using the BTE (Eq. (1)), the conservation of 

energy requirement becomes  

 0,( ) 0.f fω
τ

− =∑ k
k k

k k

h
  (3) 

We will obtain BTE solutions for the two different scenarios of imposed temperature 
differences in the cross-plane direction and an in-plane direction. In both cases, we will use the 
recently developed deviational form of the Boltzmann equation [4,36]. In the deviational BTE, 
we consider small temperature differences, such that at any spatial location the difference 

between the actual temperature T  and the reference Fourier temperature profile rT  is much 

smaller than the magnitude ofT . The deviational BTE solution represents the linear response of 
the BTE, and is equivalent to neglecting the temperature dependence of microscopic quantities 
such as the modewise specific heats. 

B. Cross-plane temperature difference 
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We first consider a cross-plane temperature difference imposed across a thin film of 

thickness t , shown in Fig. 1(a). The bottom black surface ( 0)y =  is at a hot temperature hT , 

and the top black surface ( )y t=  is at a cold temperature cT , and thus the cross-plane Fourier 

temperature profile is ( )( ), /r y h h cT T T T y t= − − . We apply periodic boundary conditions in the 

x̂  and ẑ  directions, so the only gradients in fk  and T  are in the ŷ  direction; however, for 

crystals of sufficiently low symmetry, the temperature difference in ŷ  induces heat flows in 

orthogonal directions ( )ˆ ˆ,x z . 

 We solve for the cross-plane deviational energy distribution function 

( ) ( ),0 ,( ) /r y h cg f f T C T Tω≡ − −k k k k kh , where 
,0fC
T

ω
∂

≡
∂
k

k kh  is the modewise specific heat. 

We also introduce the dimensionless parameters /y tη ≡  and , ,Λ /y y tλ ≡k k .  Here, the 

second subscript y  indicates the vector mean free path has been projected along ŷ , that is, 

( ), ˆΛ y τ≡ ⋅k k kv y . Due to this projection, ,Λ yk  is positive (negative) for phonons travelling 

with group velocities along + ŷ  ( ŷ− ). Expressing Eq. (1) in terms of ,gk  and noting that 

( ) ( ) ( ),0 ,0 , ,r y r yf T f T C T Tω ⎡ −⎦ =⎣ − ⎤
k k k kh  for small temperature differences, the BTE becomes   

 ( ), , ,y y y
dg g T
d

λ λ η
η

+ = + Δk
k k k   (4) 

where ( ) ( )( ) ( ), ( ) /y r y h cT T T T Tη η ηΔ ≡ − −  is the (currently undetermined) dimensionless 

deviational cross-plane temperature profile due to the imposed temperature difference in y  . 

Using an integrating factor, we obtain the integral forms of Eq. (4) as  
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Here ( )g η+
k  is the distribution function for phonons travelling upward ( , 0)yλ >k , and ( )g η−

k  

is the distribution function for phonons travelling downward ( , 0yλ <k ). Using the boundary 

condition ( ),0 ,r yf f T=k k  for all phonons emitted from a wall, the integration constants are 

simply ,0 ,1 0g g+ −= =k k . 
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Now we implement the energy conservation requirement. Substituting the definition of 

gk into Eq. (3), we have  

 ( )
1

.y
C CT gη
τ τ

−
⎛ ⎞ ⎛ ⎞

Δ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑k k

k
k kk k

  (7) 

Substituting the integral forms of the BTE (Eqs. (5) and (6)) into Eq. (7) yields an integral 

expression for the unknown yTΔ . This expression can be further simplified using the required 

inversion symmetries [37] of the phonon dispersion relation: time reversal symmetry mandates 

that Ck  is even and kv is odd upon inversion of k , even if the point group of the crystal’s unit 

cell is non-centrosymmetric. We also restrict our attention to the most common phonon 
scattering processes (such as phonon-phonon or phonon-impurity scattering) that do not 

involve magnetic fields and thus obey time-reversal symmetry [31]. Therefore, τk  is also even 

under inversion of k . Using these inversion symmetries, we obtain an integral equation for the 
deviational temperature profile  
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1 1
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y y y y

C C dT T
λ η

η ηη η ηη λ η
τ τ λ λ λ λ

−

> =′

′′
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎛ ⎞ −Δ = − − − + Δ −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∫
k

k k
k

k k k k k k k

  (8) 

The notation in Eq. (8) indicates a summation over all modes that have , 0.yλ >k  To summarize 

this intermediate result, we have derived the temperature profile in response to a cross-plane 

temperature difference ( )h cT T−  applied at the boundaries. We will later use Eq. (8) to derive 

the reciprocity relation.  

C. In-plane temperature difference 

We now move on to consider the conjugate problem of in-plane temperature 

differences along an arbitrarily selected in-plane direction x̂   for a thin film of thickness t  and a 

large length L , as shown in Fig. 1(b). The traditional BTE approach for in-plane transport  [1,2,4] 
never explicitly enforces energy conservation to find the temperature profile, but rather 
assumes that the temperature profile is always the in-plane Fourier reference temperature 

profile ( ) ( )( ), /r x h h cT x T T T x L= − − . However, we will show that the temperature profile in 

arbitrarily aligned thin films can deviate from ,r xT  due to ballistic effects, indicating that the 

energy conservation requirement 0∇ ⋅ =q  must be deployed to solve for the actual 

temperature profile. 

The in-plane solution is very similar to the cross-plane procedure detailed above. We 

solve for the in-plane energy distribution function ( ) ( ),0 ,( ) /r x h cj f f T C T Tω≡ − −k k k k kh , 
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where jk is analogous to gk  from the cross-plane scenario. Introducing the dimensionless x  

location /x Lζ ≡  and substituting into Eq. (1), the BTE becomes   

 , , , ,x y x x
dj dj j T
d d

λ λ λ
ζ η

+ + = + Δk k k k
k k   (9) 

where , ,Λ /x x Lλ ≡k k  and ( ) ( ) ( ), /x r x h cT T T T TηΔ ≡ − − . Since , ,x yλ λ<<k k , we drop the 

derivative involvingζ , and Eq. (9) becomes a first order ODE for ( )j ηk .  

The boundary conditions for in-plane transport should be conjugate to the cross-plane 

scenario boundary conditions. In the cross-plane solution, heat is allowed to flow along x̂ due 
to the temperature difference along ŷ . Similarly, for the in-plane solution, the boundary 

conditions must allow heat to flow along ŷ due to a temperature difference along x̂ . Therefore, 

we treat the bottom and top surfaces ( 0y =  and y t= ) as black emitters maintained at 

( ),r xT x . This choice of boundary conditions allows heat to leave the film through the top and 

bottom surfaces, thereby providing the correct conjugate behavior to the cross-plane scenario.  

Proceeding analogously to the cross-plane case (see Appendix A for the intermediate 
details), we obtain an integral equation for the in-plane deviational temperature profile  
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If the material has a mirror symmetry on reflection across the yz  plane (i.e. ,xλk  is odd and 

,  yλk is even upon taking xk to xk− ), the summation over the first two terms in the square 

bracket of Eq. (10) is zero. In that case, the trivial solution ( ) 0xT ηΔ =  results and no 

temperature gradients develop in the cross-plane direction y . This is the scenario for isotropic 

or aligned anisotropic thin films. However, a cross-plane temperature gradient can develop 
when the mirror symmetry is broken in the arbitrarily aligned scenario. Lastly, because the in-

plane direction x̂  was arbitrarily designated, the results of this section are trivially modified for 

temperature differences applied in the orthogonal in-plane direction ẑ by relabeling the 
subscripts from x  to z  in Eq. (10).   

D. Onsager reciprocity relation for thin film boundary scattering 

We now use our BTE solutions to derive the central result of the paper, which is the 
generalized Onsager reciprocity relation for thin films with anisotropic dispersion relations or 
scattering. We will show that that the κ tensor is symmetric from the diffusive regime through 
the boundary scattering regime. We note that even though Fourier’s law itself breaks down in 
the ballistic regime, it is useful to generalize the thermal conductivity concept into the boundary 
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scattering regime by defining the elements of the κ tensor using the total heat flows, 
temperature differences, and sample dimensions. For example, the in-plane thermal 

conductivity xxκ of thin films is conventionally defined [4] as ' / ( )xx x
dTQ t
dx

κ ≡ − , where 

1
'

0
x xQ t q dη≡ ∫  is the in-plane heat flow divided by the sample width in the ẑ direction w . In the 

diffusive regime where Fourier’s law holds, ,xx xx bulkκ κ= . However, xxκ  is suppressed below 

,xx bulkκ  in the boundary scattering regime where Fourier’s law breaks down due to ballistic 

effects. 

 To prove that the κ tensor is symmetric, we need to determine the six off-diagonal 

components of the tensor.  We begin by calculating xyκ , defined as the ratio of '
xQ  to the cross-

plane temperature difference ( )h cT T− . Substituting the definition of gk  into the definition of 

the heat flux (Eq. (2)) and dividing by ( )h cT T− ,  

 
1

,
0

1 .xy xC v t g d
V

κ η= ∑ ∫k k k
k

  (11) 

We find 
1

0

g dη∫ k  by integrating the BTE (Eq. (4)) from 0η =  to 1 and re-arranging to obtain  

 ( ) ( ) ( )
1 1

,
0 0

 1 0 1 .yyg d g g T dη λ η η⎡ ⎤⎣ ⎦= − − − + Δ∫ ∫k k k k   (12) 

Here ( )0gk and ( )1gk are determined from the integral form of the BTE (Eqs. (5) and (6)) after 

applying the boundary conditions. Substituting into Eq. (11) after again using the inversion 
symmetry of the dispersion and scattering, we obtain an important final result for the off-
diagonal conductivity 
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Here, we have introduced the modewise contribution to the off-diagonal thermal conductivity 

, , ,xy x yC v vκ τ≡k k k k k , such that the bulk off-diagonal thermal conductivity , ,
1

xy bulk xyV
κ κ= ∑ k

k
. 
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In the diffusive regime where , 1yλ <<k  for all phonons, the first term on the right hand side 

(RHS) of Eq. (13) dominates and we recover the Fourier result , xy xy bulkκ κ= . In the ballistic 

regime where , 1yλ >>k , the first two terms on the RHS combine to yield the ballistic 

conductivity 
,

,
0

1

y

xy xC v t
V λ

κ
>

= ∑
k

k k .  

Interestingly, in both the diffusive and ballistic regimes, the last term in Eq. (13) 
including the deviational temperature profile is unimportant and we do not need to solve the 

integral equation for yTΔ (Eq. (8)). This can be seen by noting that in the diffusive regime, yTΔ

is of order ( 1)yλ <<  and the third term in Eq. (13) is smaller than the first term by a factor of 

.yλ  In the ballistic regime, yTΔ  is of order 1/2, and the third term is smaller than the ballistic 

conductivity by a factor of 1/ .yλ In the intermediate regime where , ~ 1yλk , all three terms 

contribute to  xyκ .  

Now, we likewise calculate ( )' /yx y h cQ T Tκ ≡ − , where 
1

'

0

 y yQ L q dζ≡ ∫  is the cross-

plane heat flow divided by w  and ( )h cT T−  is the in-plane temperature difference. We will 

further manipulate '
yQ  into a convenient form for the Onsager relation. First, we note that yq is 

independent of position, which follows from the energy conservation requirement 0∇ ⋅ =q  

and the large L  stipulation that   0.yx qq
x x

∂∂ = =
∂ ∂

 Thus, '
yQ  can equivalently be written as 

1
'

0
y yQ L q dη= ∫ , since 

1 1

0 0
y y yq d q d qη ζ= =∫ ∫ . We choose to represent '

yQ  in this peculiar 

manner to facilitate later comparisons with '
xQ  from the cross-plane scenario, where the 

integral over the dimensionless y  location η arises naturally. Therefore, the off-diagonal 

conductivity 
1

,
0

1 .yx yC v L j d
V

κ η= ∑ ∫k k k
k

  

Proceeding similarly to the development of Eq. (13), we integrate the in-plane BTE (Eq. 

(9)) from 0η =  to 1 to obtain an expression for 
1

0

j dη∫ k , and then determine ( )0jk and ( )1jk  

using the integral form of the BTE. Multiplying by , yC vk k  , summing over all modes, and using 

inversion symmetry, we obtain  
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We have also leveraged the fact that by definition, , ,xy bulk yx bulkκ κ=  and , ,xy yxκ κ=k k . Since the 

first two terms on the RHS of Eq. (14) for yxκ are exactly the same as the first two terms on the 

RHS of Eq. (13) for  ,xyκ  subtracting and rearranging yields  
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The terms in braces that multiply each of the deviational temperature profiles in Eq. (15) have 
already appeared in the integral solutions of the BTE (Eqs. (8) and (10)). Substituting those 
expressions into Eq. (15) and simplifying, we see that  

 ( ) ( ) ( ) ( )
,

1 1

0 , ,0 ' 0

 exp .
y

xy yx y x y x
y y

CtL T T T T d d
V λ η η

η η
κ κ η η η η η η

τ λ λ> = =

⎡ ⎤⎛ ⎞−
⎡ ⎤− = − Δ Δ − Δ Δ⎢ ⎥⎜ ⎟ ⎣ ⎦

′
′ ′ ′⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫
k

k

k k k

  (16) 

The integrand of Eq. (16) is anti-symmetric upon the exchange of variables 

( )( , ') ',η η η η↔ . Since the limits of integration are from 0 to 1 for both η  and 'η , we see 

that every contribution to the integral from ( , ')η η is exactly nulled by the corresponding 

contribution from ( ', )η η  of equal magnitude but opposite sign. Therefore, regardless of the 

functional forms of ( )yT ηΔ  and ( )xT ηΔ , Eq. (16) must always integrate to 0, and so 

 .xy yxκ κ=   (17) 

Thus, we have found a principal result of this paper: a derivation of a thermal conductivity 
reciprocity relation from the BTE. 

 We now extend this ( )x y↔  reciprocity relation to the other two pairs of off-diagonal 

terms in the κ tensor. First, we note that since our distinction between the two orthogonal in-
plane directions ˆ ˆ( , )x z  was entirely arbitrary, the previous proof leading to Eq. (17) also shows 

that .zy yzκ κ= The last pair of off-diagonal thermal conductivities to compute from the BTE are 

the in-plane off-diagonal components zxκ  and xzκ . In Appendix B, we follow a procedure 
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analogous to the development of Eqs. (11)-(17) to show that .zx xzκ κ= Therefore, the BTE 

solutions show that the thermal conductivity tensor is always symmetric for arbitrarily aligned 
anisotropic thin films.  

 Compared to the original diffusive Onsager relation, which was derived in the bulk 
regime and relies on the validity of Fourier’s law  [31], the BTE reciprocity relation is valid from 
the diffusive through the boundary scattering regime in which Fourier’s law breaks down. Both 
reciprocity relations fundamentally arise from the time-reversal symmetry of the carrier 
dynamics [31], which are manifested in the inversion symmetry of the phonon dispersion and 
scattering rates.  

III. RESULTS AND DISCUSSION 
A. Illustration and numerical validation of the Onsager relation 

As a simple illustration of the reciprocity relation (Eq. (17)), we first consider heat 
transport in a model material with an anisotropic Debye dispersion relation [38] 

 2 2 2 2 2.ab ab c cv k v kω = +   (18) 

Here, abv  and cv  ( abk  and )ck are the group velocities (wavevectors) in the âb  and ĉ  

directions of the crystal. The crystal is rotated by an angle Ψ  in the xy  plane; at Ψ 0= , the ĉ  

direction of the crystal is aligned with the ŷ  direction of the film. Figure 2(a) shows the 

reciprocal space representation of the iso-frequency ellipsoid for this anisotropic Debye 
dispersion relation, and illustrates the fact that the group velocity vectors are normal to the iso-
ω  surface (phonon focusing). For simplicity, and to emphasize the impact of the anisotropic 
dispersion, we consider a single phonon polarization, a spherical first Brillouin zone, and focus 

on the high temperature limit where BC k=k  for all phonons. We also take the scattering to be 

gray (τ τ=k  for all k ).  

To quantify the impact of boundary scattering on the off-diagonal thermal conductivities, 

we define the suppression functions xy ,/xy xy bulkS κ κ≡  and yx ,/yx yx bulkS κ κ≡ , which are the 

ratios of the actual BTE thermal conductivities to the bulk values. For the anisotropic Debye 

model considered here, xyS  and yxS are functions of three dimensionless groups: the group 

velocity ratio /ab cv v  , the tilt angle Ψ,  and the dimensionless c -axis mean free path 

/c cv tλ τ≡ .  

Figure 2(b) shows the suppression functions xyS  (points) and yxS  (lines) as functions of 

 cλ for Ψ 30o=  and three values of /ab cv v . We evaluated xyS  and yxS  numerically using two 

separate equations (Eq. (13) and Eq. (14)) and confirmed that xy yxS S=  over all parameter 
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ranges considered (within 0.1% numerical precision).  The fact that xy yxS S=  for all /ab cv v  and 

cλ  in Fig. 2(b) is a specific example of the general result xy yxκ κ= (Eq. (17)). In Fig. 2(b), we see 

that xyS  decreases for larger values of cλ  , representing the suppressed thermal transport due 

to boundary scattering. Interestingly, the difference in the suppression functions between 

/ 0.1ab cv v =  and / 3ab cv v =  is relatively small despite the significant change in group velocity 

ratio, while increasing the velocity ratio to / 10ab cv v =  shifts the suppression function curves 

to smaller cλ . This occurs because for / 1,ab cv v >>  boundary scattering becomes more 

important for small cλ  due to the long mean free paths along the âb -directions.  

B. Comparison with atomistic simulations: arbitrarily aligned graphite 

We next compare our BTE solution for arbitrarily aligned anisotropic thin films to recently 
published non-equilibrium molecular dynamics (NEMD) simulations  [35]. The NEMD simulations 
apply cross-plane temperature differences to graphite films of various thicknesses and basal 
plane alignments. To characterize the basal plane alignment we use the same convention as in 

Fig. 2 where the c -axis of graphite is tilted by an angle Ψ  with respect to the ŷ  direction of 

the thin film: for example, oΨ=0 represents the scenario where the basal plane is parallel to the 
film boundaries.  

In these NEMD thickness-convergence studies  [35], the thermal conductivity was defined as 

, /yy NEMD y
dT
dy

qκ ≡ −  , where the temperature gradient 
dT
dy

within the film is smaller than the 

Fourier result ( ) /c hT T t−  due to the temperature jump at the boundary between the thermal 

reservoirs and the sample. This definition is reasonable within the context of NEMD simulations 

where 
dT
dy

is known, but in experiments where only yq , h cT T− , and t are measured, the typical 

definition used in our BTE solutions / ( )yy y h cq t T Tκ ≡ − is more useful.  Thus, to compare the 

atomistic results with our BTE predictions we apply the conversion 

, ( )( )yy yy NEMD
c h

dT t
dy T T

κ κ=
−

. 

To obtain the BTE prediction, we first construct a simple analytical model describing phonon 
transport in graphite. Because graphite has highly anisotropic group velocities between the 
basal and cross-plane directions  [38], the anisotropic Debye dispersion relation (Eq. (18)) for 

degenerate polarizations simplifies to a quasi-2D dispersion, ab abv kω = . Molecular dynamics 

simulations rely upon classical rather than Bose-Einstein statistics, so to compare with the 

NEMD simulations we take the specific heat of each phonon mode to be BC k=k . As a first 
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approximation, we also assume that the scattering is gray (τ τ=k  for all k ). The benefit of 

these approximations is that the cross-plane thermal conductivity suppression function 

,/yy yy yy bulkS κ κ≡  becomes a universal function which only depends on the y -direction 

dimensionless mean free path siny tλ ≡ Λ Ψ  , where  abv τΛ ≡ . For example, under these 

approximations, yyS does not depend on the size or shape of the first Brillouin zone. 

We use Λ as the only fitting parameter to compare the BTE solutions with the NEMD 
simulations. As shown in Figure 3, the BTE model is in good agreement with the non-

dimensionalized NEMD results for 24 different ( Ψ , t ) pairings using 103Λ =  nm. We can 
assess the self-consistency of this fitting parameter by calculating the basal plane thermal 

conductivity using the quasi-2D expression 
1
2 abCvκ = Λ  and comparing with the bulk NEMD 

values of κ . To determine κ , we use the same input parameters for graphite as in a previous 

modeling study  [38]. We calculate B PUCC k η= , where 28 -35.56*10 mPUCη =  is the primitive 

unit cell density, and we consider two degenerate polarizations with 13, 200abv = -1ms . This 

value for abv  was obtained by averaging the basal-plane group velocities of the acoustic TA and 

TL1 polarizations from Ref.  [38]. We note that we neglect the thermal conductivity contribution 
from the third acoustic (TL2) polarization and from the optical polarizations due to the smaller 
basal-plane group velocities and velocity anisotropy ratios. Finally, using our fit value of Λ  gives

1051κ = -1 -1Wm K , which is within 8% of the NEMD result 1140 30κ = ± -1 -1Wm K . This good 
agreement indicates that the one-parameter anisotropic Debye model combined with the BTE 
solution accurately describes the phonon transport in NEMD atomistic simulations. 

While the NEMD simulations can only be performed for relatively small thicknesses ( t < 45 
nm here) due to computational constraints, the BTE solutions can be readily applied for a 
broader range of film thicknesses, as emphasized by the much larger span of the line as 
compared to the points in Fig. 3. The analytical BTE solution also provides insight into the size 
effects observed in the NEMD simulations: the most crucial parameter dictating the thermal 
conductivity suppression is the y -component of the mean free path, as also observed by 

Minnich for aligned thin films  [4]. 

C. Case study: In-plane off-diagonal transport in black phosphorus 

The thermal properties of black phosphorus nanostructures have received recent 
attention  [6,39–43] due to potential applications of black phosphorus or few-layer black 
phosphorene in nanoelectronics, optoelectronics, and thermoelectric energy conversion  [26]. 
For example, the anisotropic in-plane electrical and optical properties of black phosphorus have 
been leveraged to demonstrate a polarization-sensitive broadband photodetector  [44]. The 
thermal design of such black phosphorus devices will require an understanding of how the heat 
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transfer rates depend on the orientation of the temperature gradient with respect to the crystal 
structure. 

Single-crystal black phosphorus has a larger thermal conductivity along the in-plane zigzag 

direction ( ZZκ ) than in the orthogonal in-plane armchair direction ( ACκ ), with recently 

measured room temperature anisotropy ratios /ZZ ACr κ κ≡  of 2.5 3r = −  [6,40–42]. Due to 

this in-plane anisotropy, a temperature gradient 
dT
dx

 imposed in the x̂  direction oriented at an 

angle θ  to the armchair direction induces a heat flow z zx
dTq
dx

κ= −  in the orthogonal ẑ   

direction (see inset of Fig. 4). In the bulk regime, classic tensor rotation identities [45] show that 

1 ( )sin(2 )
2zx ZZ ACκ κ κ θ= − . We will now show that our BTE solutions predict that this same 

simple identity applies for black phosphorus thin films even in the boundary scattering regime. 

We will then leverage previous first-principles calculations  [6] to model ( , )zx tκ θ of black 

phosphorus thin films. 

We first consider in-plane thermal transport of aligned thin films (i.e. Ψ =0 in Fig. 2). We 

consider a temperature difference imposed along x̂ and want to determine the heat flow in ẑ  

using the off-diagonal conductivity zxκ . In the ( , , )x y z  coordinate system of Fig. 1 the off-

diagonal conductivity zxκ  (Eq. (B3)) of an aligned film is  

 
,

, , ,
,0

11 exp(1 )2 .
y

zx x z y
y

C v v
V λ

κ τ λ
λ>

⎛ ⎞
− −⎜ ⎟⎜

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎦⎠⎣
⎟

⎝
∑
k

k k k k k
k

  (19) 

If we instead choose to express the group velocity projections ,xvk  and ,zvk  in an alternate 

coordinate system ( ', , ')x y z that is rotated about the y  axis by an angle θ , Eq. (19) becomes 

 ( )( )
,

, ' , ' , ' , ' ,
,0

2 cos( ) sin( ) sin( ) cos( ) 1 11 ex ( ) .p
y

zx x z x z y
y

C v v v v
V λ

κ θ θ θ θ τ λ
λ>

⎡ ⎤
= + − +

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
−⎢ ⎥

⎢ ⎥⎣ ⎦
∑
k

k k k k k k k
k

 (20) 

Note that Eqs. (19) and (20) are simply different mathematical representations of the same 

physical quantity zxκ . Multiplying out the different group velocity terms and rearranging, Eq. 

(20) can be written as  
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However, the terms from Eq. (21) in braces are identical to the BTE predictions of the 

conductivities ' 'z zκ , ' 'x xκ , and ' ' ' '( )x z z xκ κ=  that would be identified if temperature gradients 

and heat fluxes were imposed and measured in the ( ', , ')x y z coordinate system. Therefore, our 

BTE solutions lead to the simple transformation identity  

 ' ' ' ' ' '
1 ( sin(2 )) cos(2 ,
2

)zx z z x x z xκ κ κ θ κ θ+−=   (22) 

where we have used the trigonometric identities cos( )sin( ) sin(2 ) / 2θ θ θ= and 
2 2cos ( ) sin ( ) cos(2 )θ θ θ− = . In Appendix C, we show that Eq. (22) also holds for the more 

general case of in-plane rotations of arbitrarily aligned films (i.e. 0Ψ ≠  in Fig. 2). 

Since Eq. (22) is the same relationship used in Fourier heat conduction  [45], we have shown 
that the tensor rotation rules utilized in the bulk regime also apply for in-plane rotations in the 
thin film boundary scattering regime. This relationship indicates that it is not necessary to 

independently measure the in-plane thermal conductivity as a function of many directions θ, 

even for a very thin film in which zxκ will be dramatically reduced from its bulk value due to 

boundary scattering. Instead, only a maximum of three independent in-plane components need 

to be determined for a given t , and then Eq. (22) can be used to calculate zxκ  for any arbitrary 

θ.  

For our example of black phosphorus thin films with 0Ψ = , Eq. (22) further simplifies to 

1 ( )sin(2 )
2zx ZZ ACκ κ κ θ= − . Recently, Smith et al.  [6] performed first-principles calculations to 

determine both the harmonic and anharmonic force constants required to find ZZκ  and ACκ  of 

pure samples (no impurity scattering) without any fitting parameters. They also used the BTE 

solution for in-plane thin film boundary scattering in aligned materials  [4] to calculate ( )ZZ tκ  

and ( )AC tκ . Here, we combine these first-principles predictions of ( )ZZ tκ  and ( )AC tκ  with the 

rotation transformation rule (Eq. (22)) to predict ( , )zx tκ θ  of black phosphorus thin films. Figure 

4 shows the BTE predictions for zxκ  as a function of rotation angle for four different film 

thicknesses. Due to the large conductivity contrast between ( )ZZ tκ  and ( )AC tκ , the off-
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diagonal component ( )zx tκ can be as large as 33 -1 -1Wm K  for thick films ( t =10 μm ). Even for 

films as thin as t =10 nm , zxκ  can be as large as  18 -1 -1Wm K , indicating that the thermal 

conductivity suppression from boundary scattering is relatively weak due to the phonon 
focusing along the in-plane directions.  

These predictions for ( , )zx tκ θ of black phosphorus thin films contain no free parameters 

and can be used to model the thermal performance of electronic and optoelectronics devices of 
any in-plane orientation, enabling improved thermal design of black phosphorus photodetectors, 
thermoelectric devices, or transistors. The tensor rotation relation derived here can also be 
readily applied to study thermal transport in other materials of recent interest with anisotropic 
in-plane thermal conductivities, including ReS2  [16] and black arsenic  [46]. 

D. Discussion: Connection to recent experimental methods 
The BTE solutions and Onsager proof presented here support recently developed 

experimental tools to measure the off-diagonal terms of the thermal conductivity tensor. Feser, 
Liu, and Cahill  [47] developed new “beam offset” time-domain thermoreflectance (TDTR) 
measurement techniques to measure the full κ  tensor of thin films and bulk materials. The 
analysis in Ref.  [47] implicitly assumed that the Onsager relation holds even for thin films, an 
assumption which our BTE solution shows to be rigorously justified. This beam offset method 
has recently been used to measure the diagonal components of the κ  tensor of bulk black 

phosphorus as a function of rotation angle θ   [41], and it should be straightforward to extend 

such measurements to a thin film sample to measure ( , )xz tκ θ  as suggested here in Fig. 4. In 

another class of measurements, Mishra et al. [48] used an electrothermal technique to measure 
the off-diagonal conductivity of arbitrarily aligned bulk mica. This off-diagonal measurement 
technique could plausibly be extended to thin films by adapting elements of the multiple-sensor 
“two-omega” method of Ramu and Bowers  [49] or of the anisotropic thin film measurements of 
Ju, Kurabayashi, and Goodson  [50]. Lastly, the zigzag and armchair thermal conductivities of 
black phosphorus nanoribbons have been measured using suspended heater/thermometer 
platforms  [39] and suspended beams [6]. By measuring multiple samples of different 
alignments, these suspended device measurements could also be used to determine the in-

plane off-diagonal component xzκ and zxκ of arbitrarily aligned nanostructures. Thus, several 

optical and/or electrothermal microscale thermal measurement techniques could be used to 
test the thin film Onsager relation predicted by the BTE theory, and the Onsager relation can 
likewise be used to simplify the analysis and measurement of systems containing anisotropic 
thin films. 

 
IV. SUMMARY 

 In conclusion, we identified an Onsager reciprocity relation for ballistic phonon 
transport in thin films. This reciprocity relation states that the thermal conductivity tensor is 
symmetric from the diffusive regime through the thin film boundary scattering regime, 
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extending Onsager’s original reciprocity relation for anisotropic heat conduction to capture 
ballistic phonon transport effects. We illustrated the boundary scattering suppression and 
reciprocity relation using a simple model for anisotropic materials, compared the BTE solutions 
to atomistic simulations [35] of arbitrarily aligned graphite, and modeled thin-film size effects on 
the off-diagonal thermal conductivity of rotated black phosphorus using previous first-principles 
calculations of only the principal components [6]. This thermal conductivity reciprocity relation 
reduces the number of independent measurements that are required to fully characterize 
thermal transport in anisotropic thin films. 

 

 

  

FIG. 1. Schematic of anisotropic heat transfer in thin films due to (a) cross-plane and (b) in-plane 

temperature differences ( )h cT T− . In arbitrarily aligned anisotropic materials, the heat flux q is 

not necessarily antiparallel to the temperature gradient ,T∇ as represented by non-orthogonal 

adiabats and isotherms in (a,b) and mathematically described by off-diagonal components of 
the thermal conductivity tensor κ  . We use Boltzmann transport equation solutions to prove 
that κ remains symmetric from the bulk through the thin film boundary scattering regime: for 

example, we show that the off-diagonal thermal conductivities xyκ and yxκ  are equal. Here, xyκ  

is the ratio of the heat flow in x  per unit depth '
xQ  to the imposed temperature difference in 

 y (as in (a)), and yxκ  is the ratio of the heat flow in y  per unit depth '
yQ due to the 

temperature difference in  x (as in (b)). 
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FIG. 2.  A numerical demonstration of the reciprocity relation xy yxκ κ= . (a) Reciprocal-space 

schematic of the iso-frequency ellipsoid for a material with an anisotropic Debye dispersion 

relation (Eq. (18)). The ĉ axis of the material is tilted by an angle Ψ  with respect to the ŷ
direction of the film. For simplicity we consider a constant relaxation time τ , high temperatures, 

and a spherical first Brillouin zone. (b) According to the reciprocity relation xy yxκ κ=  (Eq. (17)), 

the off-diagonal thermal conductivity suppression functions ,/ij ij ij bulkS κ κ= are supposed to be 

equal ( )xy yxS S=  for all values of the dimensionless mean free path cλ from the diffusive 

( 1)cλ << through the boundary scattering ( 1)cλ >> regimes.  Here this xy yxS S=  equality is 

verified numerically using Eqs. (13)  and (14) for the particular case of Ψ 30o=  and three values 

of the group velocity anisotropy ratio /ab cv v . 
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FIG 3. Comparing the analytical BTE solutions to non-equilibrium molecular dynamics (NEMD) 
simulations of arbitrarily aligned graphite [35]. The NEMD simulations were performed for 24 

combinations of basal plane alignment angles Ψ  (see Fig 2) and film thickness t . The BTE 
model for highly anisotropic layered materials agrees well with the numerical results using a 

gray mean free path 103Λ = nm. 
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FIG 4. Thin-film boundary scattering reduces the off-diagonal in-plane thermal conductivity zxκ  

of black phosphorus. The BTE solutions show that zxκ can be determined for a given in-plane 

temperature gradient rotation angle θ  using simple tensor transformation identities, even in 
the boundary scattering regime. We use recent first-principles calculations  [6] of thickness-
dependent κ along the zigzag and armchair directions at room temperature to calculate 

( , )zx tκ θ for aligned black phosphorus thin films ( 0Ψ = ).  
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Appendix A: BTE solution for in-plane temperature differences 

 Here, we detail the intermediate steps of the derivation for the BTE solution for in-plane 
temperature differences. Using an integrating factor, we obtain the formal solution to the BTE 
(Eq. (9)) as  
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Here ( )j η+
k  is the distribution function for phonons travelling upward ( , 0yλ >k ), and ( )j η−

k  is 

the distribution function for phonons travelling downward ( , 0yλ <k ). We fix the integration 

constants ,0j
+
k  and ,1j

−
k  using the boundary conditions at the walls. Since the walls are treated 

as black emitters, ( ),0 ,r xf f T=k k  for all phonons leaving the walls. Applying this boundary 

condition to Eqs. (A1) and (A2) yields  ,0 ,1 0j j+ −= =k k . 

Now we implement the energy conservation requirement, which is  
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Plugging Eqs.(A1) and (A2) into Eq. (A3), we obtain  
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Using the inversion symmetries of the dispersion and scattering, we change the summation over 

, 0yλ <k  in Eq. (A4) to an equivalent summation over , 0yλ >k  as  
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Combining the summations in Eq. (A5) and rearranging,  
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After performing the first two integrals in Eq. (A6) analytically, we obtain Eq. (10). 

Appendix B: Proof of the in-plane reciprocity relation xz zxκ κ=   

We begin by using our in-plane BTE solution to find ' / ( )zx z h cQ T Tκ ≡ − , where  '
zQ  is the heat 

flow in the in-plane ẑ  direction divided by t . Our solution proceeds analogously to the 

derivation of the reciprocity relation in the main text (Eq. (17). Substituting our definition of jk
into Eq. (2), integrating over the film thickness, and dividing by ( )h cT T− , we obtain  
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We integrate the in-plane BTE (Eq. (9)) from 0η =  to 1 to obtain an expression for 
1

0

j dη∫ k , and then determine ( )0jk and ( )1jk  using the integral form of the BTE. Substituting 

into Eq. (B1), we obtain  
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Using the symmetries of the dispersion relation to convert the summation over , 0yλ <k  to an 

equivalent summation over , 0yλ >k , we simplify Eq. (B2) as  
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where , , ,xz x zC v vκ τ≡k k k k k  and , ,
1

xz bulk xzV
κ κ= ∑ k

k
. 

 As previously noted in Section II.C , the designation of the in-plane direction x̂  was 

arbitrary. Therefore, to assist in identifying the thermal conductivity component xzκ we can 

write down the deviational temperature profile ( )zT ηΔ due to an imposed temperature 

difference ( )h cT T−   in ẑ  by direct analogy with Eq. (10)  as 
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Here, , , /z zv wλ τ=k k k , where w  is the width of the sample in ẑ . By following the same 

procedure described in the development of Eqs. (B1)-(B3), we find  
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Subtracting Eq. (B5) from Eq. (B3) and rearranging,  
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Using the integral temperature solutions of the BTE (Eqs. (10) and (B4)) to simplify Eq. (B6), we 
find 
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Finally, using the same rationale leading to Eq. (17), the anti-symmetric integrand with 
equivalent limits of integration for Eq. (B7) implies that 0zx xzκ κ− = . Therefore, the BTE solution 

shows that .zx xzκ κ=   

Appendix C: In-plane rotations of arbitrarily aligned thin films  

  We now consider the general scenario of in-plane transport in arbitrarily aligned films (i.e.  

0oΨ ≠  in Fig. 2). A temperature gradient ( ) /h c xT T L− −   imposed along x̂  induces a cross-

plane deviational temperature profile ( )xT ηΔ , which is found by solving the integral form of 

the BTE (Eq. (10)). Rearranging Eq. (10) to separate ( )xT ηΔ  from terms that depend on ,xvk  

gives 
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Due to the arbitrary choice of in-plane direction x̂ , analogous expressions for the deviational 

temperature profiles ( )'xT ηΔ  ( ( )'zT ηΔ ) due to a temperature gradient '( ) /h c xT T L− −  

( '( ) /h c zT T L− − ) imposed along in-plane directions 'x  ( 'z ) can be immediately written down 

by simply changing the subscript x  to 'x  ( 'z  ) in Eq. (C1).  

If we choose to express Eq. (C1) for ( )xT ηΔ  in the rotated ( ', , ')x y z  coordinate system,  

we can use the relation , , ' , 'cos( ) sin( )x x zv v vθ θ= +k k k to write Eq. (C1) as   
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The two terms on the RHS of Eq. (C2) also appear in the RHS of integral equation solutions for 

( )'xT ηΔ  and ( )'zT ηΔ that are analogous to Eq. (C1). After substituting these integral equations, 

Eq. (C2) can be written as 
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By substituting into Eq. (C3), it can be shown that the deviational temperature profile due to a 

temperature gradient along x̂ is ( )' ' ' '( ) ( )cos( ) ( )sin( ) /x x x z z xT L T L T Lη η θ η θΔ = Δ + Δ . We 

note here that our final results will not depend on the macroscopic dimensions 'xL , 'zL , or xL . 

 For arbitrarily aligned films, the off-diagonal thermal conductivity zxκ is (Eq. (B3)) 
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Expressing ,xvk , ,zvk , and ( )xT ηΔ in the rotated ( ', , ')x y z  coordinate system, we see that 
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The first two terms in braces on the RHS of Eq. (C5) are simply ' 'z zκ and ' 'x xκ , while the last two 

terms in braces are ' 'z xκ and ' 'x zκ . Using the Onsager relation ' ' ' 'z x x zκ κ= derived in Appendix B, 

Eq. (C5) can be finally written as  ' ' ' ' ' '
1 ( )sin(2 ) cos(2 )
2zx z z x x x zκ κ κ θ κ θ= − + . Thus, we have 

proved that the same tensor rotation rules utilized in the bulk regime also apply for in-plane 
rotations in the thin film boundary scattering regime. 
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