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Motivated by neutral excitations in disordered electronic materials and systems of trapped ultra-
cold particles with long-range interactions, we study energy-level statistics of quasiparticles with
the power-law hopping Hamiltonian ∝ 1/rα in a strong random potential. In solid-state sys-
tems such quasiparticles, which are exemplified by neutral dipolar excitations, lead to long-range
correlations of local observables and may dominate energy transport. Focussing on the excita-
tions in disordered electronic systems, we compute the energy-level correlation function R2(ω) in
a finite system in the limit of sufficiently strong disorder. At small energy differences the cor-
relations exhibit Wigner-Dyson statistics. In particular, in the limit of very strong disorder the
energy-level correlation function is given by R2(ω, V ) = A3

ω
ωV

for small frequencies ω � ωV and

R2(ω, V ) = 1− (α−d)A1

(
ωV
ω

) d
α −A2

(
ωV
ω

)2
for large frequencies ω � ωV , where ωV ∝ V −α

d is the
characteristic matrix element of excitation hopping in a system of volume V , and A1, A2 and A3

are coefficient of order unity which depend on the shape of the system. The energy-level correlation
function, which we study, allows for a direct experimental observation, for example, by measuring
the correlations of the ac conductance of the system at different frequencies.

In a strongly disordered electronic system, the proper-
ties of charged excitations, such as electrons and holes,
are correlated on short length scales of order of the local-
isation length and decay exponentially with distance. By
contrast, neutral excitations, such as localised electron-
hole pairs, allow for long-range hops via virtual processes
of annihilating a neutral excitation at one location and
creating it elsewhere. It has been demonstrated1, for
example, that dipole excitations in 3D can hop virtu-
ally with the distance dependence ∝ 1/r3. Such power-
law hops may lead to long-range correlations between
physical observables, such as ac conductivity, even when
charged excitations remain localised. While neutral exci-
tations do not carry charge, they are involved in energy
transport and, thus, may dominate heat conductivity.
Moreover, if certain neutral excitations are delocalised
due to the power-law hops they may serve as a bath for
other excitations2,3 and thus lead to the variable-range
hopping of charged excitations.

The dynamics of neutral excitations, therefore, plays
a fundamental role in transport and phase diagrams of
granulated materials, superconducting films in the insu-
lating state4, systems of defects in insulators5 and other
disordered systems, which has motivated recent studies
of conductivity6 and wavefunctions6–9 in systems with
power-law hopping. Excitations with a generic power-law
hopping ∝ 1/rα with tunable α have also been realised
recently in 1D10–13 and 2D14 arrays of trapped ultra-
cold ions. Such systems may be used to simulate dis-
ordered electronic materials, yet serve as a platform for
observing novel fundamental phenomena, for example,
many-body-localisation transitions15 or high-dimensional
disorder-driven effects16. In this paper we study analyti-
cally the energy-level statistics (ELS) of excitations with
power-law hopping Hamiltonians in strongly disordered
systems.

Energy-level statistics in a disordered system reflects
fundamental symmetries and is often used to diagnose
conducting and insulating phases at different disorder
strengths. Abundant numerical data (see Ref. 17 for
a review) suggests also that the ELS is linked to the
chaotic properties of a system; systems such as chaotic
billiards and disordered metals display chaotic or non-
chaotic behaviour depending on whether their statistics
is Wigner-Dyson18 or Poisson. Recently, ELS has also
received much renewed attention in the context of many-
body-localisation transitions15; interacting disordered
systems are expected19 to display Poisson or Wigner-
Dyson statistics of the many-body levels of the system in
many-body-delocalised and many-body-localised states,
respectively19–21 . Similarly, ELS has been demonstrated
numerically22 to distinguish between chaotic and non-
chaotic behaviour in a generalised Sachdev-Ye-Kitaev
model23, which is often used as a toy model in the
studies of quantum chaos. In such studies the many-
body ELS at the transition is used as a numerical tool
for detecting a phase transition, although, unlike the
single-(quasi)particle level statistics, cannot be straight-
forwardly measured in condensed-matter experiments. It
has also been conjectured recently24 that the ELS of sin-
gle quasiparticles reflects an interaction-driven transition
between chaotic and non-chaotic behaviour.

The relation between phase transitions and excitation
statistics can be explored further by analysing the ELS
in the respective phases. Although the ELS of neu-
tral excitations in insulating materials also determines
the heat transport and correlations between local ac re-
sponses, e.g. the ac conductivity, it has largely avoided
researchers’ attention, in contrast with the statistics of
charged excitations17,25,26. In this paper, focussing on
neutral excitations in disordered solids (α = 3), we com-
pute microscopically the correlation functions of energy
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levels of excitations with the power-law hopping ∝ 1/rα.
This paper is organised as follows. Our main results

for the energy-level correlation functions are summarised
in Sec. I. In Sec. II we discuss the model of dipole excita-
tions, the simplest type of neutral excitations in a disor-
dered system. Sec. III deals with the statistics of dipole
excitations in strongly disordered systems in dimensions
d < 3 and sufficiently small disordered 3D systems. The
case of a 3D system, which requires a special consider-
ation, is addressed in Sec. IV. Section V is devoted to
the energy-level correlation functions in systems with a
power-law hopping ∝ 1/rα with an arbitrary power α,
which have recently been realised in experiments with
trapped ultracold particles. We conclude in Sec. VI.

I. SUMMARY OF RESULTS

In this paper, we characterise the statistics of the en-
ergy levels of excitation in a disordered system of a finite
volume V by the correlation function

R2 (ω) =
〈
ν
(
E +

ω

2

)
ν
(
E − ω

2

)〉
dis
/〈ν (E)〉2dis, (1.1)

where ν(E) is the density of states (DoS) of the excita-
tions for a specific disorder realisation, and 〈. . .〉dis is our
convention for disorder averaging.

In the limit of very strong disorder, spatial and en-
ergy correlations between observables in electronic sys-
tems are dominated by dipole excitations, i.e. pairs of
electron and hole excitations located close to each other.
Such dipoles allow for long-range hops with the distance
dependence1∝ 1/r3. In principle, the hopping of more
complicated excitations, consisting of multiple electrons
and holes, has in general the same distance dependence,
but is suppressed due to smaller matrix elements of re-
combination of those excitations at strong disorder.

The density of states of dipole excitations is propor-
tional to the ac conductance27 of the system. This allows
one to observe the correlation function (1.1) in experi-
ment, e.g., by measuring the correlations of ac conduc-
tance G(ω̃) of the system as a function of frequency ω̃ and
computing the correlator R2(ω) ∝ 〈G(Ω)G(Ω + ω)〉Ω,
where 〈. . .〉Ω is the averaging with respect to the fre-
quency Ω in a sufficiently large interval of energies.

Very strong disorder in an electronic system. In the
case of very strong disorder in a solid-state system, we
find

R2(ω, V ) ≈

{
1− (3− d)C1

(
ωV
ω

) d
3 − C2

(
ωV
ω

)2
, ω � ωV

C3
ω
ωV
, ω � ωV

(1.2)

where the characteristic frequency ωV scales with the vol-
ume V of the system as ωV ∝ V −

3
d ; and the coefficients

C1, C2 and C3 are independent of the volume V , but the
coefficients C2 and C3 depend on the shape of the system.
This result applies to all strongly disordered systems in

dimensions d < 3 and to sufficiently small 3D systems.
In such systems, the correlations between energy levels
come from rare resonances between pairs of excitation
states which are located far from each other but have
close energies.

3D systems. In 3D electronic systems, unlike the case
of lower dimensions, excitation states involve resonances
on multiple sites28, which is why the 3D case requires a
special consideration. We find that in 3D systems the
energy-level correlation function R2(ω) is still given by
Eq. (1.2) with the coefficients Ci independent of volume
V only in the limits of small and large volumes. However,
for a 3D system of arbitrary size, these coefficients have
an explicit V dependency, and, thus, the scaling of the
correlation function with system size is different.

Arbitrary power-law hopping. The results for the
energy-level correlations in a system of neutral electronic
excitations with the ∝ 1/r3 hopping may be generalised
to the case of an arbitrary power-law hopping ∝ 1/rα.
Such hopping with arbitrary α my be realised, for exam-
ple, in arrays of trapped ultracold ions10–14 in optical or
magnetic traps. For such hopping we obtain

R2(ω, V ) ≈

{
1− (α− d)A1

(
ωV
ω

) d
α −A2

(
ωV
ω

)2
, ω � ωV

A3
ω
ωV
, ω � ωV

,

(1.3)

where ωV ∝ V −
α
d is the characteristic interaction energy

of dipoles on the system size. In some sense, the scale
ωV is similar to the Thouless energy of quasiparticles in
a disordered metal; this quantity gives the inverse char-
acteristic time required for a perturbation created in the
middle of the system to reach its boundary.

Comparison with the quasiparticle statistics in a metal-
lic grain. For small frequencies ω, the correlation func-
tions (1.2) and (1.3) are linear in the energy difference ω,
i.e. are described by the Wigner-Dyson statistics18 in the
orthogonal symmetry class, similarly to, e.g., quasipar-
ticles in sufficiently small metallic grains. In the latter
system, the correlation function R2(ω) is universal17,29,
with the mean level spacing δ in the grain being the
characteristic energy scale, so long as δ � ETh, where
ETh = DV −

2
d is the Thouless energy and D is the dif-

fusion coefficient. In the opposite case, δ & ETh, the
correlations become non-universal for energy differences
ω & ETh. In contrast to the case of quasiparticles, the
correlations of neutral excitations have the characteristic
scale ωV , the interaction energy on the size of the sys-
tem and are described by functions (1.2) and (1.3) with
non-universal coefficients. The power-law dependency of
the correlation function R2(ω) on the energy difference ω
may signal of a possible chaotic behaviour of the dynam-
ics of the excitations (as we discuss in Sec. VI), which may
be defined and probed, e.g., via out-of-time-order corre-
lators30 of operators characterising transport of neutral
excitations.
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II. MODEL FOR NEUTRAL EXCITATIONS IN
SOLIDS

In what immediately follows we describe the effective
Hamiltonian of electron-hole dipoles, the simplest type of
neutral excitations in an electronic system. The Hamil-
tonian of the dipole excitations in a disordered medium
is given by

Ĥ0 =
∑
r,d

Erdb̂
†
rdb̂rd −

∑
r,d

Jrd

(
b̂†rd + b̂rd

)
+
∑

rd,r′d′

Eint (rd, r′d′) b̂†rdb̂
†
r′d′ b̂r′d′ b̂rd, (2.1)

where b̂
(†)
rd is the annihilation (creation) operator of a

dipole with polarisation d at location r (e.g., the location
of the positive charge in the dipole); Erd is the energy
of the respective dipole state, which strongly fluctuates
from site to site due to the presence of quenched disorder;
Jrd is the matrix element of the recombination of the
dipole (electron hopping to the location of the hole or
vice a versa), which may be assumed real without loss of
generality; we have also introduced the interaction energy

Eint (rd, r′d′) = Q(d̂, d̂′,n)
|d||d′|
|r− r′|3

, (2.2)

Q(d̂, d̂′,n) = d̂ · d̂′ − 3(d̂ · n)(d̂′ · n) (2.3)

between dipoles at locations r and r′ with polarisations
d and d′, respectively, where n = (r− r′)/|r− r′| and

d̂ = d/|d| are unit vectors parallel, respectively, to r− r′

and d.
Long-range hopping. While strong disorder prevents

dipole hopping on short distances, dipole excitations al-
low for long-range virtual hops1 between remote sites
with close energies via annihilating a dipole at the ini-
tial location and then creating it at the final location or
vice a versa. The amplitude of such a hop is given, to
the leading order in the recombination elements Jrd, by

Trd,r′d′ ≈
JrdJr′d′

E2
rd

|d||d′|Q(d̂, d̂′,n)

|r− r′|3
. (2.4)

Thus, in the limit of a strongly disordered system (small
recombination elements Jrd compared to the typical fluc-
tuations of the energies Erd), the dynamics of the dipoles
is effectively a single-particle problem.

In this paper we do not consider many-dipole pro-
cesses, such as one dipole decomposing into two dipoles of
the same total energy. For the case of sufficiently strong
disorder, considered in Sec. III, we assume that such pro-
cesses are suppressed either by a small size of the system
or by the suppressed density of states of the dipoles into
which an excitation may decompose (the dipole density
of states may, e.g., have a gap at sufficiently low ener-
gies.) As discussed in Sec. IV, in very large systems it

may be assumed that effective excitations are already
renormalised by many-dipole processes.
Cotunnelling through excitation states with high ener-

gies. When computing energy-level correlations, we as-
sume that the energies of all sites Erd lie sufficiently close
to each other and do not consider sites with high ex-
citation energies Erd � ω. In principle, cotunnelling
through such high-energy sites in a disordered system
may lead to ultraviolet divergencies in physical observ-
ables31. These divergencies may be treated by means of
the renormalisation-group (RG) procedure described in
Ref. 31, which repeatedly removes highest-energy exci-
tation states from the system while renormalising tran-
sition amplitudes between all other states, with energies
closer to ω. In this paper, we assume that the system we
consider is already renormalised following this procedure
and the recombination elements Jrd already include vir-
tual cotunnelling through excitation states with energies
far from E.

III. STRONG DISORDER IN SOLIDS

In this section we consider the correlations of dipole
energy levels and ac conductances in a strongly disor-
dered system, in which most dipole states are localised
almost entirely on single sites (r,d) (with given polari-
sations) and are weakly perturbed by the tunnelling to
other sites. A dipole is localised almost entirely on one
site (r,d) if there are no other “resonant” sites around
it1,28,32,33 with close energies, |Erd − Er′d′ | . |Trd,r′d′ |.

The number of resonant sited around a given site r
may be estimated as Nrd ∼ ν0n

∑
d′

∫
r′
|Trd,r′d′ | dr′,

where n is the concentration of sites and ν0 is the den-
sity of dipole states at an isolated site. For the hop-
ping element |Trd,r′d′ | ∝ 1/|r − r′|3, given by Eq. (2.4)
and for strong disorder, the average number of reso-
nant sites is significantly smaller than unity near each
given site in dimensions d < 3. In this regime, most of
the dipoles are strongly localised and their states may
be considered unaffected by the resonant sites. In 3D,
however, the number of resonant sites diverges1,28,32,33

∝ nν0〈d2〉J2E−2
rd ln

(
Ln

1
3

)
in the limit of an infinite sys-

tem, L→∞, where J is the characteristic recombination
matrix element.

In this section, we assume that the disorder is strong
and that most dipoles are strongly localised, either due
to a low spatial dimension d < 3 or due to a sufficiently

small size in 3D, L� n−
1
3 exp

(
E2

nν0J2d2

)
.

A. Generic expressions for dipolar energy-level
correlations

In what immediately follows we derive a generic ex-
pression for the correlator R2(ω, r, r′) of the energy lev-
els of a dipole excitation on two sites and then, using it,
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compute the correlator R2(ω) of the energy levels in a
strongly disordered system of volume V .

While most dipoles are strongly localised on single
sites, there exist rare pairs of sites with close energies,
on which dipole states get strongly hybridised due to the
tunnelling. This hybridisation of pairs of sites leads to
correlations between dipole states on arbitrarily long dis-
tances, which lead to correlations between energy levels
and various observables. In the limit of strong disorder
(small system size) under consideration, one may neglect
resonances between clusters of three or more sites.

Correlation function in a system of two sites. The
hybridisation of two dipole states with close energies Erd

and Er′d′ at locations r and r′ and with polarisations d
and d′ leads to the creation of two hybridised states with
energies

E± =
1

2
(Er′d′ + Erd)± 1

2

[
(Erd − Er′d′)

2 + 4 |Trd,r′d′ |2
] 1

2

,

(3.1)

where the hopping amplitude Trd,r′d′ is given by Eq. 2.4.
The density of states on such a pair of sites is given by
ν(E) = δ (E − E+) + δ (E − E−). The correlation func-
tion R2(ω, r, r′) of dipole states on two sites r and r′ is
given by

R2 (ω, r, r′) =
1

4ν2
0

∫
dd1dd2 f (d1) f (d2)〈[

δ
(
E +

ω

2
− E+

)
+ δ

(
E +

ω

2
− E−

)]
[
δ
(
E − ω

2
− E+

)
+ δ

(
E − ω

2
− E−

)]〉
dis

(3.2)

where f(d) is the distribution function of the dipole mo-
ments, assumed independent of the on-site energy fluc-
tuations; 〈. . .〉dis is the averaging with respect to the
realisations of disorder, which affects both the energies
Erd and Er′d′ and the hopping Trdr′d′ via the recombi-
nation elements Jrd; we have also used that the density
of dipole states ν0 at each site may be considered con-

stant close to the energy E under considerations, so long
as ω � E, ν−1

0 .
To make further progress, we assume that the recom-

bination elements Jrd and the on-site energies Erd fluc-
tuate independently. Introducing a variable τ , such that
2Trd,r′d′τ = Erd − Er′d′ , and the distribution function
P (Jrd) of the recombination elements Jrd, the two-site
correlator (3.2) is reduced to

R2 (ω, r, r′) =
1

2

∫
dJrd dJr′d′ P (Jrd)P (Jr′d′)∫

dd1dd2 f (d1) f (d2)

∫
dτ |Trd,r′d′ |

δ
(
ω − 2 |Trd,r′d′ |

√
τ2 + 1

)
. (3.3)

Correlation function on multiple sites. Eq. (3.3) de-
scribes dipole energy correlations in a system of two sites.
In what immediately follows, we derive the energy-level
correlation function for a system of N � 1 sites.

In the absence of dipole tunnelling between sites
(Trd,r′d′ = 0), it is given by

Runcorr
2 (ω) =∑

rd,r′d′

∫
dErddEr′d′ν

2
0δ(E − Erd)δ(E + ω − Er′d′)

(ν0N)2

=
N(N − 1)

N2

N→∞−→ 1

(3.4)

For finite tunnelling, dipole states on different sites get
hybridised, and the correlation function R2(ω) deviates
from unity. In the limit of strong disorder, which we
consider in this section, pairs of resonant sites are rare,
only a small fraction of dipole states get hybridised due
to dipole hopping and resonances of three or more sites
may be neglected.

The correlation function in such a system of multiple
sites may be found by hybridising dipole states on all
pairs of sited with close energies and computing (see Ap-
pendix A for details) the modification of the correlation
function similarly to Eq. (3.3). The full correlation func-
tion in a system of many sites with rare resonances is
given by

R2 (ω) =
1

V 2

∫
dJrd dJr′d′ P (Jrd)P (Jr′d′)

∫
drdr′

∫
dd dd′ f (d) f (d′) Θ

[
1− (2Trd,r′d′/ω)

2
]
/
[
1− (2Trd,r′d′/ω)

2
] 1

2

,

(3.5)

where the hopping element Trd,r′d′ is given by Eq. (2.4)
and Θ(. . .) is the theta-function.

A rigorous evaluation of the correlation function
R2(ω), given by Eq. (3.5), requires making an assump-

tion about the distribution P (Jrd) of the electron-hole
recombination matrix elements Jrd. Since the exact form
of the distribution will affect only numerical coefficient,
we assume, for simplicity, that they are sharply peaked
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near certain value J ,

P (Jrd) = δ(J − Jrd). (3.6)

We will also assume a uniformly random orientation of
the dipole moments in the d-dimensional space,

f(d) = δ (|d| − d0) /
(
Ωdd

d−1
0

)
, (3.7)

where Ωd = 2π
d
2

Γ( d2 )
is the area of a unit sphere in d dimen-

sions.
We note that in general the recombination elements

Jrd may have arbitrary signs, in contrast to our choice of
their distribution (3.6). Indeed, in a system of electrons
in a disordered system such elements are determined by
overlap integrals of oscillating wavefunctions. However,
such fluctuations of the sign do not affect qualitatively
the correlation function R2(ω) in the limit of strong dis-
order considered in this section.

By switching to the integration with respect to the

centre-of-mass r+r′

2 and relative r̃ = r − r′ coordinates,
Eq. (3.5) may be simplified as

R2 (ω) =
1

V

∫
dd dd′ f (d) f (d′)

∫
r̃>r̃ω

dr̃

[
1−

(
r̃ω(d1,d2, r̃/r̃)

r̃

)6
]− 1

2

(3.8)

where we have introduced r̃ω (d1,d2,n) =[
2J2d20
E2

(
|Q(d1,d2,n)|

ω

)] 1
3

, the characteristic distance

at which the the dipole interaction energy is of order ω.
The integral in Eq. (3.8) cannot be evaluated exactly for
arbitrary parameters. Below we compute the asymptotic
behaviour of the correlation function R2(ω) in the limit
of large ω � ωV and small ω � ωV frequencies, where

ωV =
2J2d2

0

E2V
3
d

(3.9)

is the characteristic interaction energy between dipoles
on the length of the system L ∼ V − 1

d .

1. Large-frequency limit

For ω � ωV , the value of the integral (3.8) in dimen-
sions d < 3 comes from distances r̃ of order r̃ω, which in
this limit are significantly shorter than the characteristic
system size V

1
d . The upper limit of integration with re-

spect to r̃ in Eq. (3.8) may be extended to infinity, giving

R2 (ω � ωV ) ≈ 1−
2π

d+1
2 Γ

(
1− d

6

)
Γ
(
d
2

)
Γ
(

1
2 −

d
6

)
d

〈
|Q|

d
3

〉
d

(ωV
ω

) d
3

(3.10)

where
〈
|Q|

d
3

〉
d

=
∫
dd̂1dd̂2dn

∣∣∣Q(d̂1, d̂2,n
)∣∣∣ d3 is our

convention for the function |Q|
d
3 averaged with respect

to the directions d̂1 and d̂2 of the dipole moments d1 and
d2 and of the vector n, where Q describes the angular
dependence of the dipolar interactions [cf. Eq. (2.3)].

Equation (3.10) is our main result for the energy-level
correlation function in a generic strongly disordered sys-
tem in d spatial dimensions in the limit of large frequen-
cies energy differences ω. For d = 2 it gives

Rd=2
2 (ω � ωV ) = 1− 1.28

(ωV
ω

) 2
3

. (3.11)

where we used
〈
|Q|

2
3

〉
≈ 0.95 in two dimensions. Let us

note that for d = 3 the coefficient before the last term
in Eq. (3.10) vanishes, and, in order to obtain the fre-
quency dependency of R2(ω), it is necessary to evaluate
a correction of higher order in 1/ω. Direct integration in
Eq. (3.8) yields

Rd=3
2 (ω � ωV ) = 1− C2

(ωV
ω

)2

, (3.12)

where C2 is a coefficient of order unity which depends on
the shape of the sample.

Eq. (3.10), which accurately describes the large-
frequency behaviour of correlation function in dimensions
d 6= 3, and Eq. (3.12), which applies for d = 3, may be
combined into the interpolation formula

R2 (ω) ≈ 1− (3− d)C1

(ωV
ω

) d
3 − C2

(ωV
ω

)2

. (3.13)

We emphasise that in general in dimensions d 6= 3
the correlation function R2(ω) contains contributions
∝ 1/ωβ with d/3 < β < 2, which exceed the last term
in Eq. (3.13). However, in these dimensions the leading-
order large-frequency behaviour of the energy-level corre-
lations is determined by the first term in the right-hand
side of Eq. (3.13). In 3D, the leading order correlations
are described by the last term of (3.13). Thus, Eq. (3.13)
accurately describes the large-frequency asymptotics of
the of the correlation function R2(ω) in all dimensions.

2. Small-frequency limit

In the limit ω � ωV Eq. (3.8) may be rewritten as

R2 (ω) = C3
ω

ωV
(3.14)

where the coefficient C3 is given by C3 =
π

V 1+ 3
d

∫
dr̃ r̃3

∫
dd1dd2f (d1) f (d2) δ (Q).

Equation (3.14) is our main result for the dipole
energy-level correlation function in a strongly disordered
electronic system in arbitrary dimensions in the limit of
small frequencies. It demonstrates that the correlation
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FIG. 1. (Colour online) The correlation function R2(ω) of
the dipole energy levels in an electronic system as a function of
frequency ω [in units ωV ], obtained from a numerical integra-
tion of Eq. (3.8). The small- and large- frequency asymptotic
behaviour given by Eqs. (3.11), (3.12) and 3.14 are shown in
red.

function is linear in frequency ω for such strongly disor-
dered systems, similarly to the case of a weakly disor-
dered metal in the orthogonal symmetry class17. Such
a linear dependency may also be expected from a phe-
nomenological random-matrix-theory argument25, based
on considering a two-level system with a random Hamil-
tonian.

The whole frequency dependency of the correlation
function R2(ω) for dimensions d = 2 and d = 3, ob-
tained from numerical integration of Eq. (3.8), is shown
in Fig. 1. The dashed lines in Fig. (1) show the low-
frequency behaviour described by the linear dependence
(3.14); the dotted lines show the high-frequency asymp-
totics described by Eqs. (3.11) and (3.12).

IV. ARBITRARY DISORDER STRENGTH IN A
3D ELECTRONIC SYSTEM

In Sec. III we considered energy-level correlations in
a system, which is either sufficiently strongly disordered
or sufficiently small, and only sparse resonances between
pairs of dipole sites are essential for correlations of en-
ergy levels, while higher-order resonances may be ne-
glected. As discussed in Sec. III and as first pointed
out in Refs. 28, 32, and 33, excitations with the hopping
amplitude ∝ 1/r3 have infinitely many resonances in 3D
systems at arbitrarily strong disorder, unlike systems in
lower dimensions d < 3. Therefore, sufficiently large 3D
electronic systems may host rather complicated dipole
states, which involve resonances on multiple sites.

The correlation functions may then be still found by
replacing the dipole states by effective hybridised states
(which may effectively be many-dipole states) on the
scale of the volume V of interest and investigating the
hopping matrix elements for such states. The energies of
the effective hybridised states may be assumed to have
a uniform probability distribution due to the uniform
energy distributions of dipoles on constituent sites and

their independence of the hopping elements. Assuming
that the hybridised states have dipole moments, one may
expect the results of Sec. III for the frequency depen-
dency of the correlator R2(ω) to carry over directly to the
case of weaker disorder, which allows for complicated hy-
bridised states. Namely, one may expect that at low fre-
quencies R2(ω) ∝ ω, while for ω →∞ R2(ω) = 1− const

ω2 .
We emphasise, however, that the dependencies on the
system size (volume V ) may be different from those found
in Sec. III because the effective dipole moments of hy-
bridised states of multiple sites in general depend on the
volume V .

Three decades ago, a renormalisation procedure was
developed in Ref. 28 for constructing hybridised dipole-
like states in 3D by repeatedly hybridising pairs of dipole-
like states with closest energies within a given distance
while increasing the system size or the interaction radius.
A more rigorous recent study6 for a similar 2D problem
with ∝ 1/r2 dipole hopping established the existence of
fixed points in a system on the orthogonal symmetry class
(which is also the focus of this paper) with critical wave-
functions of the dipole states.

In what immediately follows we construct a renormali-
sation procedure at sufficiently strong disorder, similar
to that of Ref. 28, to explore qualitatively the corre-
lations of complex multi-site excitations with effective
renormalised dipole moments and recombination matrix
elements Jrd ≡ 〈0| Ĥ0 |rd〉 (the matrix elements of the
Hamiltonian between the excitation state and the ground
state of a non-interacting system).

When two dipole states (rd) and (r′d′) are hybridised,
they are being replaced by two other states with the an-

nihilation operators b̂r+d+
and b̂r−d−(

b̂r+d+

b̂r−d−

)
=

(
cos θ sin θ
− sin θ cos θ

)(
b̂rd
b̂r′d′

)
, (4.1)

where cot(2θ) ≡ τ = (Erd − Er′d′)/2Trd,r′d′ . The re-
combination matrix elements of the hybridised states
and the elements of hopping to remote sites r̃d̃ with
|r̃− r|, |r̃− r′| � |r− r′| are given by

(Jr+d+
, Jr−d−)T = U(Jrd, Jr′d′)

T , (4.2)

(Tr̃d̃,r+d+
, Tr̃d̃,r−d−)T = U(Tr̃d̃,rd, Tr̃d̃,r′d′)

T . (4.3)

Because the hopping of dipole excitations depends on
the product Jrd ≡ prdd of its recombination element Jrd
and the dipole moment d, it is convenient to introduce a
new variable

prd ≡ Jrdd (4.4)

and describe the evolution of its distribution function
F (prd) when repeatedly hybridising dipole states. As-
suming that the initial distributions of the dipole mo-
ments d and the recombination elements are isotropic,
the distribution F (prd) also remains isotropic under
renormalisation and depends only on the absolute value
of prd.
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The renormalisation procedure involves repeated hy-
bridisation of pairs of dipole states with close energies.
When increasing the system size L (or the interaction ra-
dius), new states are formed out of previously hybridised
states. In the spirit of Ref. 28, we neglect resonances
of three or more sites, which is justified in the limit
of sufficiently strong disorder under consideration, with
ν0〈d2〉J2E−2

rd n � 1, where n = N/V is the density of
the dipoles. Introducing variable ` = logL, where L is
the system size (or the interaction cutoff radius), we ar-
rive at the RG flow equation for the distribution function

F (prd):

∂F (prd)

∂`
=
nν0

E2

∫
dn

∫
dpr1d1dpr2d2F (pr1d1)F (pr2d2)∫

dτ |Q (pr1d1
,pr2d2

,n)| [δ (p− p+) + δ (p− p−)−

δ (p− pr1d1
)− δ (p− pr2d2

)] .
(4.5)

Similarly, when increasing the size of the system (or
the interaction cutoff radius), the energy-level correla-
tion function R2(ω) gets renormalised according to the
equation (see Appendix for details)

∂R2(ω, `)

∂`
=

1

V

∫
dn

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

∫
dτ |Q (pr1d1

,pr2d2
,n)| /E2[

δ
(
ω − 2 |Tr1d1,r2d2

|
√
τ2 + 1

)
− 2δ (ω − 2Tr1d1,r2d2

τ)
]
. (4.6)

The solutions of the RG Eqs. (4.5) and (4.6) describe
the distributions of the parameters of dipole states and
energy-level correlation functions in a 3D system of arbi-
trary size.

Level correlations at intermediate lengths. Because the
hybridised states are very close in structure to large-size
dipoles, it is possible to apply immediately the results of
Sec. III to their energy-level corrections, which gives

R2(ω) =

{
C̃3(V )ω, ω → 0

1− C̃2(V )/ω2, ω →∞. (4.7)

We note, however, that the dependencies of the coeffi-
cients C̃3(V ) and C̃2(V ) on the system of volume V are

in general different from the dependencies C̃3(V ) ∝ V

and C̃2(V ) ∝ 1/V 2 in the case of strong disorder [cf.
Eqs. (3.14) and (3.12)], because the parameters of the
hybridised composite dipoles depend on the system size.
These dependencies will depend on the details of the ini-
tial dipole distributions.

Fixed point. The procedure of the hybridisation de-
scribed above leaves invariant the quantities J2

r1d1
+J2

r2d2

and p2
r1d1

+ p2
r2d2

for pairs of states. As a result, the
quantity prd and the dipole states remains bounded for
the typical renormalised composite dipole states. It is
natural to assume then that the distributions of the pa-
rameters prd of the renormalised dipole states approach
a fixed point F ∗(prd). Such type of a fixed point has
been obtain, under certain approximations, in Ref. 28 for
a similar model for dipoles with the power-law hopping
∝ 1/r3 in 3D. Assuming a similar fixed point exists here,
the typical value of the parameter prd saturates to a con-
stant value in sufficiently large sample, and the results
of Sec. (III) for both the energy and size dependencies
of the energy-level correlator R2(ω) may be carried over

directly. Thus, the energy-level statistics in very large
3D systems are given by Eq. (4.7) with C̃3(V ) ∝ V and

C̃2(V ) ∝ 1/V 2.

V. GENERIC POWER-LAW HOPPING

Excitations with power-law hopping are often simu-
lated by means of ultracold particles in magnetic or op-
tical traps. Recently, excitations with power-law hop-
ping ∝ 1/rα with tunable α = 0 . . . 3 have been realised
in 1D10–13 and 2D14 arrays of trapped ultracold ions.
Excitations with power-law hopping also exist in sys-
tems of Rydberg atoms34 (α = 6 or α = 3) and polar
molecules35,36 (α = 3).

In what follows, we compute energy-level statistics in
a strongly disordered system with a generic power-law
hopping described by the Hamiltonian

H =
∑
r,λ

Erλ′ b̂
†
rλb̂rλ′ −

∑
r,r′,λ,λ′

Trλ,r′λ′ b̂
†
rλb̂r′λ′ (5.1)

where the operators b̂rλ and b̂†rλ annihilate and create ex-
citations at location r; λ labels discrete degrees of free-
dom of excitations at a given location, e.g. the spatial
orientation of the excitations; and we have also intro-
duced the hopping element

Trλ,r′λ′ =
2Qα(λ, λ′)

|r− r′|α
. (5.2)

with the kernel Qα(λ, λ′) which is independent of the
distance but depends on the excitation states λ.
Correlations at strong disorder. In what follows, we

compute the energy-level correlation function in the case
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of very strong disorder, when correlations come from rare
resonances on pairs of sites. Following the same steps as
when deriving Eq. (3.8), we arrive at

R2 (ω) =
1

V

∫
dλ

∫
dλ′ P (λ)P (λ′)

∫
r̃>r̃ω

dr̃

[
1−

(
2Qα (λ, λ′, r̃/r̃)

ωr̃α

)2
]− 1

2

(5.3)

where r̃ω = (2Qα/ω)
1
α and P (λ) is the probability dis-

tribution of the excitation states λ.
The typical splitting between neighbouring energy lev-

els is given by the characteristic matrix element of quasi-
particle hopping

ωV = 2V −
α
d 〈|Q(λ, λ′)|〉λ,λ′ (5.4)

where 〈· · · 〉λ =
∫
dλP (λ) · · · . For sufficiently smooth

probability distributions of the function Q(λ, λ′) and its
moments Q(λ, λ′)β , the coefficients

Aβ =
2β
〈
|Q(λ, λ′)|β

〉
λ,λ′

V
αβ
d ωβV

(5.5)

are of order unity, and ωV is the only energy scale in the
problem. In the limit ω � ωV the correlation function is
given by

R2 (ω � ωV ) ≈ 1−
2π

d+1
2 Γ

(
1− d

2α

)
A d
α

Γ
(
d
2

)
Γ
(

1
2 −

d
2α

)
d

(ωV
ω

) d
α

.

(5.6)

Due to the divergence of the Gamma function
Γ
(

1
2 −

d
2α

)
∼ 2α

α−d when the dimension d approaches α,

the coefficient in the last term in Eq. (5.6) vanishes for
d = α. Therefore, the energy-level correlations in the
dimensions d = α at ω = ωV are described by the next-
leading term in 1/ω:

Rd=α
2 (ω � ωV ) ≈ 1−A2

(ωV
ω

)2

, (5.7)

where A2 is a coefficient of order unity which depends on
the shape of the system. Equations (5.6) and (5.7) may
be combined into one interpolation formula

R2 (ω) ≈ 1− (α− d)A1

(ωV
ω

) d
α −A2

(ωV
ω

)2

. (5.8)

Small-frequency limit. In the limit ω � ωV we obtain,
similarly to Eq. (3.14),

R2 (ω) = A3
ω

ωV
, (5.9)

where the dimensionless coefficient A3 =
π〈|Q(λ,λ′)|〉

λ,λ′

V 1+α
d

∫
dr̃r̃α

∫
dλdλ′P (λ)P (λ′) δ(Qα) de-

pends on the shape of the system.

Behaviour in high and low dimensions. Equations
(5.8) and (5.9) describe energy-level correlations accu-
rately in low dimensions d < α or in sufficiently small
systems in higher dimensions d ≥ α. In that case, the
correlations come from rare resonances between excita-
tion states on pairs of sites. In higher dimensions, d ≥ α,
the number of resonances is infinite in the limit of an
infinite system, which may lead to a strong renormali-
sation of the excitation states. Based on the arguments
similar to those of Sec. IV, we expect that in higher-
dimensional systems the frequency dependency of the
correlation function is still given by Eqs. (5.8) and (5.9),
however, the volume dependence is in general different.

VI. CONCLUSION AND OUTLOOK

Motivated by neutral excitations in disordered elec-
tronic systems and trapped ultracold particles with
power-law interactions, we have computed the energy-
level correlations functions for particles with the power-
law hopping ∝ rα. Our main results for the corre-
lation functions for systems in various dimensions and
various energy intervals are summarised by Eqs. (3.10),
(3.12), (3.14), (5.6), (5.7) and (5.9). In a disordered
electronic systems the correlation function may be ob-
served as a correlator of ac conductances R2(ω) ∝
〈G(Ω)G(Ω + ω)〉Ω, where 〈. . .〉Ω is the averaging with re-
spect to frequency Ω in a sufficiently large energy win-
dow.

At small energy differences, the energy-level correla-
tions displays Wigner-Dyson statistics18 which hints at
the possibility of chaotic dynamics of the excitations in-
volved. This chaotic behaviour could be identified, for
example, via out-of-time-order correlators30 of, e.g., lo-
cal voltages or charges in a system with excitations which
allow for power-law hopping. We do not present such
analysis here and leave them for future studies. Also, al-
though we do not expect many-body processes to change
the form of the correlation function in very large sam-
ples, the role of such processes also deserves a separate
investigation.

Another question, which deserves a study, is the rela-
tion between the disorder strength and the level statistics
in systems with the power-law hopping ∝ 1/rα for suffi-
ciently small α. Indeed, those system support excitations
with the dispersion εk ∝ kα−d. In dimensions d > 3α

2
they display a plenty of unconventional disorder-driven
phenomena, such as disorder-driven transitions or sharp
crossovers in non-Anderson universality classes, uncon-
ventional Lifshitz tails, etc., (see Ref. 16 for a review)
and possibly transitions in the energy-level statics. While
we have obtained the strong-disorder asymptotics of the
respective level statistics in this paper, we leave further
studies of the possibility of such transitions for future
work.
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Appendix A: Change to the level correlation function when adding hopping between two sites

In this section we derive the modification of the correlation function R2(ω), defined by Eq. 1.1, when two dipole
states hybridise. We consider a system of N sites, where two sites (r1,d1) and (r2,d2) are initially isolated from each
other and from the rest of the system and compute the change of R2(ω) when adding hopping Tr1d1,r2d2

between
the two sites. The model under consideration applies to the case of very strong disorder, when resonant pairs of sites
are rare, as well as to dipole hybridisation during one step of the strong-disorder RG, when composite dipole states
may be considered, and the hybridisation between two dipole states being merged and the rest of the system may be
neglected.

The modified density of dipole states after adding the hopping

ν̃(E) =

(
δ(E − E+) + δ(E − E−) +

∑
λ

δ(E − Eλ)

)
(A1)

consists of the contribution of the hybridised-states’ energies E+ and E− and that of the rest of the system [the sum
in Eq. (A1)]. Because the hopping is small, and the hopping and the on-site dipole energies fluctuate independently,
the average density of states is unaltered by the hybridisation 〈ν̃〉dis = 〈ν〉dis = Nν0. The change of to the disorder-
averaged correlation function R2(ω), defined by Eq. (1.1), is given by

δR2(ω) =
1

N2ν2
0

∫
dJr1d1P (Jr1d1)

∫
dJr2d2P (Jr2d2)

∫
dd1 dd2 f (d1) f (d2)

∫
ν0dEr1d1ν0dEr2d2〈

ν̃
(
E +

ω

2

)
ν̃
(
E − ω

2

)
− ν

(
E +

ω

2

)
ν
(
E − ω

2

)〉
λ
, (A2)

where 〈. . .〉λ is the averaging with respect to the disorder in the rest of the system, independent of the parameters on
sites (r1,d1) and (r2,d2).

We note that, according to Eq. (A1), products of the modified densities of states ν̃
(
E + ω

2

)
ν̃
(
E − ω

2

)
in Eq. (A2)

contain three types of terms involving products of δ-functions, (i) δ(E −E±+ω/2)δ(E −E∓−ω/2), (ii) δ(E −E±+
ω/2)δ(E−Eλ−ω/2) and (iii) δ(E−Eλ+ω/2)δ(E−Eλ′ −ω/2). Terms (iii) are cancelled by equivalent contributions
from ν

(
E + ω

2

)
ν
(
E − ω

2

)
. Contributions of type (ii) also vanish, due to the identity∫

dEr1d1
dEr2d2

[δ(E − E+) + δ(E − E−)− δ(E − Er1d1
)− δ(E − Er2d2

)] = 0. (A3)

Equation (A2) may therefore be simplified to include only the averaging with respect to the dipole parameters on
sites (r1,d1) and (r2,d2):

δR2(ω) =
1

N2

∫
dJr1d1

P (Jr1d1
)

∫
dJr2d2

P (Jr2d2
)

∫
dd1 dd2 f (d1) f (d2)

∫
dEr1d1

∫
dEr2d2{[

δ
(
E +

ω

2
− E+

)
+ δ

(
E +

ω

2
− E−

)] [
δ
(
E − ω

2
− E+

)
+ δ

(
E − ω

2
− E−

)]
−[

δ
(
E +

ω

2
− Er1d1

)
+ δ

(
E +

ω

2
− Er2d2

)] [
δ
(
E − ω

2
− Er1d1

)
+ δ

(
E − ω

2
− Er2d2

)]}
. (A4)
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http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
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Changing variables to τ = 1
2Tr,d,r′d′

(Erd − Er′d′) and integrating out 1
2 (Erd + Er′d′) gives

δR2(ω) =
2

N2

∫
dJr1d1P (Jr1d1)

∫
dJr2d2P (Jr2d2)

∫
dd dd2f (d1) f (d2)×

×
∫
dτ |Tr1d1,r2d2

|
[
δ
(
ω − 2 |Tr1d1,r2d2

|
√
τ2 + 1

)
− 2δ (ω − 2τTr1d1,r2d2

)
]
. (A5)

So far, we have obtained the expression for the correction to the level correlation, following the hybridization of a
single pair of dipoles. It is straightforward to obtain the expression for the level correlation given in Eq. 3.5 which

takes into account all resonances in a given volume V by integrating over 1
2
N2

V 2 dr1dr2 and then integrating out the
variable τ .

Application to the strong-disorder renormalisation procedure

The modification of the correlation function R2(ω) when hybridising dipole states may be considered as a step of an
RG procedure, discussed in Sec. IV and applied in Refs. 28, 32, and 33 (see also Ref. 37). During this procedure, pairs
of resonant dipole states are being repeatedly hybridised while increasing the hopping distance r = |r1 − r2| = e` or
the system size.

As discussed in Section. IV, the hopping of dipoles depends only on the product prd = Jrdd, which is why it
is convenient to introduce the distribution function F (prd) of variable prd, which flows under the renormalisation
procedure. We can now obtain the modification to R2(ω) as a result of hybridizing dipoles in the volume element. The
number of dipole pairs separated by vectors r in an infinitesimal element of space, confined by the radii r and r + dr
and the spatial angle dΩ, is given by 1

2r
2dr

∫
dΩ
∫
N
V dr1

N
V dr2δ [r− (r1 − r2)]. Utilizing the expression in Eq. (A5)

for hybridization of a single pair of dipoles and multiplying by the number of dipoles in the volume element, we obtain
the modification of the energy-level correlation function

δR2(ω, `) =r2dr

∫
dΩ

∫
1

2

N

V
dr1

N

V
dr2δ [r− (r1 − r2)] · 1

N2

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

2

∫
dτ |Tr1d1,r2d2 |

[
δ
(
ω − 2 |Tr1d1,r2d2 |

√
τ2 + 1

)
− 2δ (ω − 2τTr1d1,r2d2)

]
(A6)

where the factor of 1
2 in the right-hand side prevents double counting of dipoles.

To make further progress, we note that the contribution to Eq. (A6), which comes from the second δ−function,
may be simplified as∫

dr

2

∫
dr1 dr2

V 2
δ [r− (r1 − r2)]

∫
dpr1d1 dpr2d2F (pr1d1)F (pr2d2)

∫
dτ ·2|Tr1d1,r2d2 | [−2δ (ω − 2τTr1d1,r2d2)] = −1.

(A7)
The correlation function R2(ω) is obtained by integrating Eq. (A6) with respect to ` from ` = 0 to ` = logL, where
L is the size of the system or the interaction cutoff radius. Performing also integration with respect to (r1 − r2) and
1
2 (r1 + r2) over the volume V , we arrive at

`=lnL∫
`=0

∂R2(ω, `)

∂`
d` = −1+

1

V

∫
d3r

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

∫
dτ |Tr1d1,r2d2

|δ
(
ω − 2 |Tr1d1,r2d2

|
√
τ2 + 1

)
.

(A8)
Equation (A8) together with the initial condition R2(ω, ` = 0) = 1 gives

R2(ω, lnL) =
1

V

lnL∫
0

d`

∫
dΩ

∫
dpr1d1 dpr2d2F (pr1d1)F (pr2d2)

∫
dτ
|Q (pr1d1

,pr2d2
)|

E2
δ
(
ω − 2 |Tr1d1,r2d2 |

√
τ2 + 1

)
.

(A9)
Equation (A9) may also be rewritten in the form of the RG flow equation

∂R2(ω, `)

∂`
=

1

V

∫
dΩ

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

∫
dτ
|Q (pr1d1

,pr2d2
,Ω)|

E2[
δ
(
ω − 2 |Tr1d1,r2d2

|
√
τ2 + 1

)
− 2δ (ω − 2Tr1d1,r2d2

τ)
]
. (A10)
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Appendix B: Change to the distribution function of dipoles when hybridising two sites

In this section, we derive the RG flow equation for the distribution function F (prd) of the dipole parameter
prd = Jrdd, the product of the dipole moment d and the recombination matrix element Jrd, discussed in Sec. IV.
When two dipoles with parameters pr1d1 and pr2d2 are hybridised, they get replaced by two other dipole states with
parameters p+ and p−, and the distribution function gets modified according to

δF (prd) =

∫
dpr1d1dpr2d2F (pr1d1)F (pr2d2)

∫
ν0dEr1d1ν0dEr2d2

[δ (p− p+) + δ (p− p−)− δ (p− pr1d1)− δ (p− pr2d2)] (B1)

Changing variables to τ = (Er1d1
− Er2d2

)/ (2Tr1d1,r2d2
), and considering the effects of all resonances in a spherical

shell of radius r → r + dr, with r = |r1 − r2|, gives

δF (prd) =
N

V
r2dr

∫
dΩ

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

∫
ν0 |Tr1d1,r2d2

| dτ

[δ (p− p+) + δ (p− p−)− δ (p− pr1d1
)− δ (p− pr2d2

)] .
(B2)

Introducing the RG parameter ` = log r and using that Tr1d1,r2d2 = Q(pr1d1 ,pr2d2)/
(
E2r3

)
, we obtain the RG flow

equation for the distribution function F (prd):

∂F (prd)

∂`
=
nν0

E2

∫
dΩ

∫
dpr1d1

dpr2d2
F (pr1d1

)F (pr2d2
)

∫
dτ |Q (pr1d1

,pr2d2
)|

[δ (p− p+) + δ (p− p−)− δ (p− pr1d1
)− δ (p− pr2d2

)] . (B3)
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