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In this paper we study Maxwell lattices with non-rectilinear constraints, where the elastic energy
is determined by the collective motion of three or more particles, in contrast to a rectilinear spring
whose elastic energy only relies on the displacement of two particles attached to the two ends of
the spring. Utilizing polygon-shaped constraints, we found that the Maxwell counting argument
and the topological construction, based on the compatibility matrix and the equilibrium matrix,
can be generalized in our models, and our elastic systems follow the same topological classification.
In addition, we also found that non-rectilinear constraints offers a natural pass towards topological
states with higher topological indices and multiple edge states, which can be achieved even for a
simple unit cell with one degree of freedom per unit cell without enlarging the unit cell in the bulk
or at the edge.

I. INTRODUCTION

In recent studies, it has been realized that topology
plays a very important role in elastic systems1–22. In
particular, for systems in the verge of mechanical insta-
bility, an intriguing class of topological systems has been
proposed and studied, known as Maxwell lattices, where
topologically protected phonon edge modes at zero fre-
quency (floppy modes) emerges as a result of a nontrivial
topological structure of the bulk2,3,16–21.

In this topological construction, a key step is to re-
alize that the information about topology in these sys-
tems are not directly contained in the dynamical matrix
D, which is a standard tool for describing elastic and
acoustic properties for an elastic system. To access the
topological structure, it is necessary to decompose the
dynamic matrix into the product of two matrices, known
as the compatibility matrix C and the equilibrium matrix
Q, which are transpose of each other C = QT. In com-
parison with the dynamical matrix, these two matrices
contain more information about the elastic system. On
the one hand, the C or Q matrix uniquely determines the
dynamical matrix D = QQT, up to some unimportant
coefficients corresponding to the spring constants, which
are irrelevant as far as topological properties in Maxwell
lattices are concerned. On the other hand, however, the
inverse statement is not true. Two different elastic sys-
tems with different topological nature and different C or
Q matrices can share the same dynamical matrix. In
other words, as we convert the C or Q matrix into the
dynamical matrix D, some part of the information about
the elastic system is lost in this procedure. For bulk
properties, i.e. the bulk phonon band structure, this in-
formation loss is irrelevant, and one can choose to work
with either the dynamical matrix D or the C(Q) matrix.
However, for the edge phonon propagation, as well as
the bulk topological structure, key information is coded
in the C and Q matrices, instead of the dynamical matrix
D. This is the fundamental reason why a more elaborate
description, utilizing C and Q matrices, becomes neces-

sary here to characterize the bulk topology and the edge
floppy modes.

In the studies about Maxwell lattices, the main ef-
forts have been largely focused on systems with two-body
central-force elastic interactions, i.e. systems composted
of points connected by ideal springs. In such a system,
the compatibility matrix C describes the relation be-
tween displacement at each site and the length variation
of each spring. The equilibrium matrix Q dictates the
relation between the tension in each spring and the total
force for each site. With C and Q matrices, an effective
Hamiltonian can be defined

H =

(
0 Q
QT 0

)
(1)

The physical meaning of this effective Hamiltonian be-
comes more transparent when we look at the H2, whose
diagonal components contains the dynamical matrix D =
QQT, if we ignore an overall pre-factor from the spring
constant. According to the topological classification of
topological insulators and superconductors, such an ef-
fective Hamiltonian belongs to the BDI class23–25, and
thus an integer topological index can be defined for a 1D
system,

ν =
1

2πi

∫ π

−π
dkTr

(
C(k)−1

dC(k)

dk

)
(2)

where C(k) is the compatibility matrix defined in the k
space. In an electronic system, this topological index re-
veals the number of zero-energy excitations at the end
of the 1D line. Similarly, in a mechanical system, this
index dictates the number and the location of edge de-
formations, which costs zero elastic energy. For the class
BDI, no intrinsic topological index can be defined in 2D
and 3D systems. However, one can use the idea of di-
mension reduction to examine topological properties of
a 2D or 3D Maxwell lattices, treating a 1D line in the
2D or 3D momentum space as a 1D system. For ex-
ample, in a 2D system defined in the x-y plane, each
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fixed kx defines a 1D line in the 2D k-space. For this 1D
line, we can define the same topological index as defined
above. For edges parallel to the x direction, this index re-
veals the number of topologically-protected zero-energy
edge modes at wavevector kx, as well as the location of
these edge modes (i.e. top or bottom edge)2. In ad-
dition, the dimension reduction concept also reveals an-
other topological phenomena, known as mechanical Weyl
modes, a topologically-protected bulk gapless mode16,17.
In systems with elastic Weyl modes, the topological index
changes its value as we scan kx throughout the Brillouin
zone. Because a topological index can only change its
value through the presence of a bulk zero-energy mode,
this topological structure implies that bulk gapless modes
must raise, dubbed as elastic Weyl modes. These Weyl
modes in general have finite wavevectors, in direct con-
trast to conventional bulk zero-energy modes, i.e.. acous-
tic phonons, whose wavevector must be zero.

In this manuscript, we explore elastic systems be-
yond the conventional spring-network setup, focusing on
elastic forces that cannot be treated as rectilinear con-
straints. In Maxwell lattice, one type of non-rectilinear
constraints have been considered (“tri-bond”) in me-
chanical graphene by Socolar and coworkers26. In this
manuscript, we focus on a different type of non-rectilinear
polygon-shaped (planar or non-planar) constraints as
shown in Fig.1, which has been studied in 2D foams and
biological tissues (See for example: Refs:27,28 and refer-
ences therein). Here, point particles, located at vertices
of the polygon, are joined together by the polygon. Mo-
tions of the particles will induce elastic deformation to
the polygon, which costs energy similar to springs. In
principle, the elastic energy for each deformation config-
uration can depend on the variation in perimeter, area,
shape, et. al. Here, to demonstrate the key physical con-
sequence of non-rectilinear constraints, we choose to fo-
cus on a specific case where the elastic energy cost only
depends on the elongation/contraction of the total length
of the perimeter for each polygon. Similar phenomena
can also arise in other more complicated cases, which can
be treated with the same approach as described below.
In our model, the elastic energy is defined as

E =
1

2
KδP2 (3)

where K is an elastic constant, which will be set to unit
for the rest part of the manuscript unless stated oth-
erwise, and δP is the length variation of the perimeter
for the polygon. To the first order approximation, we
neglect any bending energy here. Later, we will study
Maxwell lattices formed by rotors connected with this
type of constraints, and study topological phenomena in
these systems.

In comparison with conventional Maxwell lattices,
which utilizes rectilinear constraints, non-rectilinear con-
straints offers multi-particle interactions that directly
couples the motion of three or more particles. As will be
shown below, this multi-particle interactions allows more

flexibility and enable us to define more complicated C
and Q matrices without increasing the size of a unit cell.
As a result, this construction allows us to explore more
generic topological states, especially those with higher
topological indices and multiple zero-energy edge modes.
It is worthwhile to notice here that non-rectilinear con-
straints are not the only pathway towards topological
states with high topological indices. The same type of
states can also be achieved using rectilinear springs, as
long as a more complicated unit cell with multiple de-
grees of freedom is utilized. From the topological point
of the view, the topological states obtained from this two
different pathways, non-rectilinear constraints or larger
unit cell, have no fundamental difference. In this sense,
both approaches offers a good platform for exploring the
same physics. However, as well be show below, because
with non-rectilinear constrains, the high index states can
be achieved with a simple unit cell with as less as one
degree of freedom per cell, this approach in general can
get the same physics with a smaller C and Q matrices,
making analytic calculations easier. Similarly, as will be
shown below, our construction also allows the realization
of topological Weyl modes with extremely small/simple
C and Q matrices, even down to one-by-one.

II. PERIMETER

For a polygon with n vertices (i = 1, 2, . . . , n) the dis-
placement of the ith particle from its equilibrium posi-
tion, R0i, can be described by the displacement vector
ui = (ui,x, ui,y, ui,z). Here, we demonstrate the most
generic case, where each vertex can move in any direc-
tion in the 3D space (i.e. ui is a 3D vector). However, as
will be shown below, in a real elastic system (or a model
system), additional constraints can be enforced for each
vertex, confining its motion to a lower dimensional space
(1D or 2D). There, the same analysis is applicable. For
small deformations within the linear deformation regime,
the variation of the perimeter δP is a linear function of
the displacement vectors,

δP = ciαuiα (4)

Here, repeated indices are summed over, and α = x, y
or z. The linear coefficients ciα are determined by the
unit vector, n̂ij , along the direction of the edges that are
connected to the ith

ciα = n̂ij,α + n̂ij′,α (5)

where j and j′ are two neighboring vertices of i. n̂ij =
(n̂ij,x, n̂ij,y, n̂ij,z) is a 3D vector component in general
and

n̂ij,α =
(R0i)α − (R0j)α
|(R0i)α − (R0j)α|

(6)
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where i runs from 1 to n, n being the number of sides
of the polygon perimeter enumerating its vertices (sites).
This equation is valid as long as the displacement is small.

For illustration purposes, we compute the compatibil-
ity matrix of a perimeter constraint attached to three
free sites in 2D, see Fig. (1 (a)). The equilibrium po-
sitions in Cartesian coordinates are R01 = (−1, 0.5),
R02 = (0, 0) and R03 = (0.2, 1) for vertex 1, 2 and
3 respectively. There are a total of 6 degrees of free-
dom (dof), therefore, C is a 1x6 dimensional matrix.
The elongation of this one perimeter is e = Cu, where
u = (δx1, δy1, δx2, δy2, δx3, δy3)T. The compatibility
matrix can be written as C = (cx1, cy1, cx2, cy2, cx3, cy3),
which can be easily computed by substituting in Eq. (6),
resulting C = (−1.82, 0.06, 0.70,−1.43, 1.12, 1.37). No-
tice that displacing the site 1 along y-direction (cy1) does
stretch the perimeter slightly, compared with the con-
traction it will suppose to displace along x-axis (cx1).
See Fig. (1 (c)). The dynamical matrix D = CTC gives
the equation of motion, ü = Du, for this perimeter con-
straint. D has still two zero eigenvalues, corresponding
to displacements that do not modify the total perimeter
like the configuration shown in Fig (1 (b)).

In Fig (1 (c and d)), we show the non-central forces ap-
pearing as a result of a displacement of one of the points.
The tension is the same along the entire perimeter and
forces appear in the direction of the polygon side.

III. MODELS AND RESULTS

In this paper, all our models have the same dof per unit
cell (UC). It consists on a planar rotor in the x-y plane,
in which the dof is the variation of the angle referred to
the angle of equilibrium. This rotor might have more
than one end as shown in Fig. (2). Also, the length
from one site to its rotational axis may vary, while the
lattice parameter, a, will be the unit of length. In order
to keep isostaticity, we only need one constraint per UC,
leading to a scalar compatibility matrix. In this section,
our perimeter constraints will be triangles.

We compute topological invariant in 1D (Eq. 2).

A. 1D-model

A simple array of rotors as the one in Fig (2(a)) with
two ends See Fig. (3), give the following C-matrix struc-
ture

C = c−1e
−ikx + c0 + c1e

ikx (7)

where c−1, c0 and c1 are real numbers as a function of
the equilibrium angle θ̄, and rotor radius r1 and r2. For
C-matrix explicit form, see Appendix A. The spectral
gap is represented in Fig. (4). Computing the topolog-
ical invariant in 1D, for different angles of equilibrium
and different values of radius with r2 = a − r1, we find

FIG. 1: (Color online) Perimeter constraint. (a) The perime-
ter is a closed spring connecting the points at the vertices,
three in this case. (b) A different configuration of the three
sites that does not modify the length of the perimeter. (c)
perimeter contraction and (d) perimeter extension.

FIG. 2: (Color online) Rotors used in this paper. Both of
them spin in the x-y plane and have (a) 2 and (b) 3 ends
with different radius. The rotational axis is at the origin of
coordinates in the figure.

three different topological phases, (Fig. 5). Notice from
Eq. (7), that three is the maximum of topological phases
the model can display with a triangular perimeter and
1 dof per UC. Finite system: cutting two perimeters in
consecutive UC, we end up with a finite system (Fig 3).
The two zero modes appear at different edges depending
on the topological phase. See Fig. (6).
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FIG. 3: (Color online) 1D Model. Top figure, the periodic
system with highlighted unit cell. Bottom figure, finite system
after removing two perimeters.

FIG. 4: (Color online) Gap structure of the 1D Model as a
function of r1 and θ with a = r1 + r2 = 1 constant.

FIG. 5: (Color online) Phase diagram of 1D Model. Topolog-
ical phase changes at all the gap closings, except at closing at
θ̄ = π.

FIG. 6: (Color online) Zero modes in 1D model depicted
in Fig. 3, with parameters representing the three different
phases in Fig. 5, a) ν = −1, b) ν = 0 and c) ν = 1.

B. 2D-model

This model is based in the same dof per UC pro-
moted to two dimensions and the triangular perimeter
constraint depicted in Fig (7). C-matrix structure is

C = c00 + c01e
iky + c11e

ikx+iky (8)

which is explicitly written in Appendix A. In this model
r2 = 0.3a. From C structure can be deduced that only
2 different phases along x will appear (two elements in
C with different kx phase)(Fig. 9), 2 phases along y
(for the same reason)(Fig. 10) and 3 in combination
(three phases in total, the maximum a triangular perime-
ter can display). Remember, we compute the 1D topo-
logical invariant (there is no 2D topological invariant in
BDI class). In Fig. (8) is represented the total gap of
the system. This model exhibits finite gaped areas (we
will examine them below) and also gap closings leading
to topological phase transitions for νx as can be seen in
(9). The 1D-topological invariant is not well defined in
gapless systems. For parameters inside the gapless ar-
eas, we observe Weyl points at opposite momenta in the
band structure. These zero modes are topologically pro-
tected by an integer topological invariant defined on a
path that encircles them. While we change the system
in the parameter space, Weyl points move around the
Brillouin Zone (BZ). This phenomenon has been already
studied in distorted squared lattice with springs16,17. In
Fig. (11), we represent a cut of the phase diagram for
fixed r1 = 0.5a. The symbol x signals a topological phase
transition, with a line of zero modes, kx = 0. Gapless ar-
eas are shadowed in yellow and crossed by arrows. Both
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FIG. 7: (Color online) 2D model with a single rotor and one
perimeter per UC, highlighted.

FIG. 8: (Color online) Gap value in the parameter space of
this model for fixed r2 = 0.3a in model 2.

arrows start with the creation of a couple of Weyl points
at (π, π) in the (kx, ky)-BZ. The Weyl points annihilate
at (π, 0) where the end of the arrows are. The spectrum
in the middle of the gapless area, can be seen in Fig (12),
together with the result of the Weyl topological invariant

νW =
1

2πi

∮
C

dkTr

(
C(k)−1

dC(k)

dk

)
(9)

where C encircles a single Weyl point.

C. 3D-model

This model is based in the second rotor in Fig (2)(b)
with r1 = r2 = r3, and the dof per UC is the variation

FIG. 9: (Color online) 1D topological index in x-direction in
2D model.

FIG. 10: (Color online) 1D topological index in y-direction in
2D model.

of the angle in x-y plane. The triangular perimeter con-
straint is represented in Fig. (13). C-matrix structure
is

C = c000 + c100e
ikx + c0−11e

−iky+ikz (10)

where we can deduce that we can get a maximum of two
phases in each direction and three in total, (Fig. 15).
We observe finite areas in the parameter space of gapless
systems Fig. ( 14).

In this areas, lines of Weyl points analogous to elec-
tronic and phononic systems arise. These Weyl lines,
move around the 3D-BZ while the equilibrium parame-
ters are changed within a gapless area. In this model,
they are located at fixed ky. This phenomenon has been
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FIG. 11: (Color online) Gap and topological invariant in x-
direction. The symbol x signals a regular topological phase
transition. Gapless areas are shadowed in yellow and crossed
by arrows (see text).

FIG. 12: (Color online) Spectrum in the 2D-BZ for a gapless
system, we observe two Weyl points with opposite momenta
and opposite Weyl number.

already been studied in pyrochlore lattice with springs29.
In Fig. (16), we represent a slice of the phase diagram
for r1 = 0.9a. The symbol x signals a regular topological
phase transition. Gapless areas are shadowed in yellow
and crossed by arrows. The three arrows start with the
creation of a couple of Weyl lines at ky = π. The Weyl
lines annihilate at ky = 0 where the end of the arrows
are. The Weyl lines inside the gapless area can be seen
in Fig (17).

FIG. 13: (Color online) 3D Model. The periodic system with
highlighted unit cell and top view of the model.

FIG. 14: (Color online) 3D Model. Gap in the parameter
space.

IV. DISCUSSION

In comparison with the earlier study on Maxwell lat-
tices with rectilinear1–3,16–18,22 and non-rectilinear tri-
bond constraints26, our model reveals that polygon
shape-/perimeter-based constraints can achieve the same
type of diversified topological phenomena. Because the
perimeter-based elastic Hamiltonian has been utilized
to study various complex materials and their phase
transitions27,28, this study may pave the road for the
search for topological phenomena in bio-systems and
more other complex systems. In addition, our manuscript
demonstrated that the constraint that we studied here al-
low complicated phases to be realized within models with
only one-band, and multiple edge states can arise in our
model with only one degrees of freedom per unit cell and
without enlarge unit cells at the edge. This observation
can help understand the minimum ingredients necessary
for the realization of various complex topological phases.
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FIG. 15: (Color online) 3D Model. 1D-topological invariant
in the three dimensions. In yellow, gapless areas of the pa-
rameter space, where Weyl lines appear.

FIG. 16: (Color online) Gap and topological invariant in x-
direction for r1 = r2 = r3 = 0.9 in 3D model. The symbol x
signals a regular topological phase transition with a plane of
zero modes. Gapless areas are shadowed in yellow and crossed
by arrows (see text).

A. quadrangular perimeters

An increasing number of phases can be obtained with
perimeter polygons with larger number of edges or ver-
tices. In the case of n = 4, we design the model depicted
in Fig. 18. We use a x-y planar rotor as in Fig. (2 b)
with r2 = r3 = a−r1 = 0.4∗a. We highlight the unit cell
and signal by arrows where the 4 vertices of the perimeter
are attached. Fig. 19 shows the result of four different
phases, which translates into different arrangements of

FIG. 17: (Color online) Weyl points in 3D-BZ for a gapless
system, we observe two lines of Weyl points with opposite
momenta and opposite Weyl number.

FIG. 18: (Color online) Quadrangular perimeter model in 1D
with topological properties.

zero modes for the open system. The C-matrix structure
is,

C = c−2e
−2ikx + c−1e

−ikx + c0 + c1e
ikx (11)

Notice that the four vertices are in four different unit
cells, that is essential to obtain the four different topo-
logical phases. If the four vertices were in three different
unit cells, only three different phases would be possible.
By removing three adjacent perimeters, we open the sys-
tem and we find three zeros modes on the left for ν = −2,
two on the left and one on the rigth for ν = −1 and one
on the left and two on the right for ν = 0, and the three
zero modes on the right for ν = 1.

B. bending

If the inner angles of a planar perimeter of n sides are:
{α1, α2, ..., αn}. One of them can be written in terms of
the other n−1 angles, because the sum of them all is (n−
2)π. The bending energy in each vertex is proportional to
the square of the complementary angle in the harmonic
approximation, and the total bending energy,

Eb =

n∑
i

(π − αi)2 (12)
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FIG. 19: (Color online) Gap and topological invariant of
Quadrangular perimeter model in 1D.

Therefore, we can define a compatibility matrix for
bending Cb, which relates the complementary angle with
the displacement. α′ = Cbx, where α′ and x are column
vectors. Including both elastic and bending energies,
will break the isostaticy, which is beyond the scope of
this paper.

In this paper, we design a mechanical constraint which

can be used to create rich topological phases and topo-
logical phenomena in Maxwell lattices even with very low
number of degrees of freedom per unit cell. Such a con-
struction greatly reduces the dimensions of the C and Q
matrices. For physics observables where matrix diago-
nalization is required in theoretical calculations, e.g. the
dispersion relation and mode shape, these smaller matri-
ces will make analytic treatment more accessible. This
non-rectilinear constrained, in polygon shape could host
up to n different combinations of zero modes in the open
system, where n is the number of sides of the polygon
perimeter constraint. We showed extensively this results
for triangular perimeters in 1, 2 and 3 dimensions and
show the extension to larger number of sides with quad-
rangular perimeters in 1 dimension. Also, Weyl phases
appear in wide regions of the space parameter, creating
and annihilating in pairs.

Acknowledgments: NL thanks Shinsei Ryu for fruitful
discussions and insights. This work has been funded by
MINECO grant FIS2015-64886-C5-5-P. NL acknowledges
financial support from the Spanish Ministry of Economy
and Competitiveness, through The Maŕıa de Maeztu Pro-
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V. APPENDIX A. COMPATIBILITY MATRICES

Here we show the explicit form of the compatibility matrices used along the paper.

A. Model 1D

Compatibility matrix is just a number. First the three side lengths in equilibrium

 l12 =
√

(r1 + r2)2 + a2 − 2a(r1 + r2) cos(θ)
l23 = a

l31 =
√

(r1 + r2)2 + 4a2 − 4a(r1 + r2) cos(θ)

(13)

The elongation in Cartesian coordinates



px1 = (r1+r2) cos(θ)−a
l12

+ (r1+r2) cos(θ)−2a
l31

py1 = (r1 + r2) sin(θ)
(

1
l12

+ 1
l13

)
px2 = a−(r1+r2) cos(θ)

l12
− a

l23

py2 = −(r1+r2) sin(θ)
l12

px3 = 2a−(r1+r2) cos(θ)
l12

+ a
l23

py3 = −(r1+r2) sin(θ)
l31

(14)

and the transformation to polar variablesc−1 = −r1 cos(θ)px1 + r1 sin(θ)py1
c0 = r2 cos(θ)px2 − r2 sin(θ)py2
c1 = r2 cos(θ)px3 − r2 sin(θ)py3

(15)

The last three elements appear in Eq.(7), which we repeat here for convenience.

C = c−1e
−ikx + c0 + c1e

ikx (16)
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B. Model 2D

Compatibility matrix is just a number. First the three side lengths in equilibrium
l12 = a

l23 =
√

(r1 + r2)2 + a2x − 2ax(r1 + r2) cos(θ)

l31 =
√

(r1 + r2)2 + a2x + a2y − 2ax(r1 + r2) cos(θ)− 2ay(r1 + r2) sin(θ)
(17)

The elongation in Cartesian coordinates

px1 = (r1+r2) cos(θ)−aX
l31

py1 =
−ay
l12

+
(r1+r2) sin(θ)−ay

l31

px2 = (r1+r2) cos(θ)−ax
l23

py2 =
ay
l12

+ (r1+r2) sin(θ)
l23

px3 = (ax − (r1 + r2) cos(θ))
(

1
l31

+ 1
l23

)
py3 =

ay−(r1+r2) sin(θ)
l31

− (r1+r2) sin(θ)
l23

(18)

and the transformation to polar variables c0 = −r1 cos(θ)px1 + r1 sin(θ)py1
c01 = −r1 cos(θ)px2 + r1 sin(θ)py2
c11 = r2 cos(θ)px3 − r2 sin(θ)py3

(19)

The last three elements appear in Eq.(8), which we repeat here for convenience.

C = c00 + c01e
iky + c11e

ikx+iky (20)

C. Model 3D

Compatibility matrix is just a number. First the three side lengths in equilibrium
l12 =

√
(r(cos(θ)− cos(θ2))− a)

2
+ (r(sin(θ)− sin(θ2)))

2

l23 =

√
(r(cos(θ2)− cos(θ3)) + a)

2
+ (r(sin(θ2)− sin(θ3)) + a)

2
+ a2

l31 =

√
(r(cos(θ3)− cos(θ)))

2
+ (r(sin(θ3)− sin(θ))− a)

2
+ a2

(21)

where θ3 = θ2 + 2π
3 = θ + 2 2π

3 The elongation in Cartesian coordinates

px1 = r(cos(θ)−cos(θ2))−a
l12

+ r(cos(θ)−cos(θ3))
l31

py1 = r(sin(θ)−sin(θ2))−a
l12

+ r(sin(θ)−sin(θ3))+a
l31

px2 = r(cos(θ2)−cos(θ))+a
l12

+ r(cos(θ2)−cos(θ3))+a
l23

py2 = r(sin(θ2)−sin(θ))
l12

+ r(sin(θ2)−sin(θ3))+a
l23

px3 = r(cos(θ3)−cos(θ))
l31

+ r(cos(θ3)−cos(θ2))−a
l23

py3 = r(sin(θ3)−sin(θ))−a
l31

+ r(sin(θ3)−sin(θ2))−a
l23

(22)

and the transformation to polar variables c000 = −r cos(θ)px1 + r sin(θ)py1
c100 = −r cos(θ2)px2 + r sin(θ2)py2
c0−11 = r cos(θ3)px3 − r sin(θ3)py3

(23)

The last three elements appear in Eq.(10), which we repeat here for convenience.

C = c000 + c100e
ikx + c0−11e

−iky+ikz (24)
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