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Abstract 

Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] 

concerning possible thermoelectric signatures of Dirac composite fermions, we 

perform a systematic experimental study of thermoelectric transport of an 

ultrahigh-mobility GaAs/AlxGa1-xAs two dimensional electron system at filling factor 

v = 1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and 

anti-symmetric with respect to B = 0 T, respectively. The measured properties of 

thermopower Sxx at v = 1/2 are consistent with previous experimental results. The 

Nernst signals Sxy of v = 1/2, which have not been reported previously, are non-zero 

and show a power law relation with temperature in the phonon-drag dominant region. 

In the electron-diffusion dominant region, the Nernst signals Sxy of v = 1/2 are found 

to be significantly smaller than the linear temperature dependent values predicted by 

Potter et al., and decreasing with temperature faster than linear dependence. 

 

 



2 
 

I. Introduction 

The composite fermions (CFs) paradigm has been remarkably successful in our 

understanding of the fractional quantum Hall effect (FQHE) [1-3]. Halperin, Lee, and 

Read (HLR) proposed the CFs as being one electron interacting with two 

Chern-Simons fluxes in a half-filled lowest Landau level (LL) [4] . At the mean field 

level, at v = 1/2, the average Chern-Simons gauge field precisely cancels the external 

magnetic field, so the effective magnetic field seen by CFs is zero and the electronic 

state of half-filling is regarded as a compressible metallic state of CFs with a distinct 

Fermi surface. When filling factors deviate from v = 1/2, CFs execute the 

semi-classical cyclotron orbits under an effective magnetic field ΔB = B – B1/2, 

resembling cyclotron motion of electrons under low magnetic field. Results of major 

experimental studies concerning v = 1/2 states including surface acoustic wave [5,6], 

magnetic focusing [7], and geometric resonance [8] are remarkably consistent with 

HLR theory.   

Son recently emphasized [9,10] that, contrary to the belief that the particle-hole 

symmetry （PHS） should be preserved for the spin-polarized lowest half-filled 

Landau level states in the limit of negligible Landau level mixing [11-16], PHS is not 

explicitly built-in by HLR theory. Son proposed a particle-hole symmetric 

quasi-fermionic picture for v = 1/2 — massless Dirac composite fermions (DCF), 

and the Dirac nature means that there exists a Berry phase of π around the Fermi 

surface of CFs [9,10]. On the other hand, it has been pointed out that the proposal of 

DCF is not entirely different from HLR theory, since it could evolve into the picture 
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of HLR by introducing particle-hole symmetry broken mass [9, 10]. The DCF 

framework has attracted much attention, largely because that it may reveal deep 

connections between the fractional quantum Hall effect and other physical systems, 

such as time reversal symmetry protected topological insulators [17-24]. From the 

point view of PHS, the work [9, 10] has since stimulated several proposals [25-27] to 

experimentally examine the evidence for PHS, or lacking of it, in a half-filled lowest 

Landau level.  

Electrical transport has been a common and most important probe in studies 

concerning the v = 1/2 states [28-32], however, the difference in transport data 

between HLR and DCF theory, as proposed in [9], is difficult to discern in realistic 

experiments. On the other hand, as recently proposed by Potter et al. [25], Nernst 

measurement is a direct and quantitative probe for Berry phase. Note that the Nernst 

signal should probe the Berry phase around the CF Fermi surface, not necessarily the 

Dirac dispersions, so it should reveal general fermiology of composite fermions 

around v = 1/2.    

We now briefly review thermoelectric transport of electrons in a temperature 

gradient and under a perpendicular magnetic field. Electrons will move from the 

hotter end to the colder end by thermally diffusion or momentum transfer with 

phonons (called phonon drag). Note that, among these two contributions, the 

electron-diffusion is dominant at the low temperature region, and the phonon drag 

plays a predominant role at increasing temperatures. A build-in electric field pointing 

to the cold end will be generated, so the electrical current can be written 
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as )()( TEj ▽−+=
∧∧
ασ , where 

∧
σ  and 

∧
α  are electrical conductivity and thermal 

conductivity tensors, respectively. When j = 0, corresponding to the situation in which 

the diffusion current equals to the drift current but with an opposite sign, the formula 

above could be written as E =
∧
S ▽T, where 

∧∧∧
= σαS  or 

∧∧∧
= ρα .S  is the Seebeck 

tensor. Here 
∧
ρ  is the electrical resistivity tensor, 

1−∧∧
= σρ . Thermopower Sxx refers to 

the diagonal part of 
∧
S  and Nernst-Ettingshausen Sxy corresponds to the off-diagonal 

part of
∧
S , where yxyxxxxxxxS αραρ −=  and xyxxxxxyxyS αραρ += . 

According to Potter et al., HLR and DCF can be distinguished by thermoelectric 

measurements [25]. Specifically, the Nernst coefficient Sxy in the diffusion - dominant 

region, where phonon drag is negligible, has a more direct and sensitive relationship 

with Berry phase around the Fermi surface of CFs. Sxy is non-zero for the DCF theory 

with a PHS protected π Berry phase, and zero for PHS-broken HLR theory without 

the Berry phase [25]. However, a recent analysis [33] indicates that HLR theory has 

an emergent PHS and is equivalent to DCF theory in the limit of long-wavelengths 

and low-energies. When HLR theory is treated properly, Nernst coefficients of v = 1/2 

for HLR theory should be non-zero as well [33]. Accordingly, the purpose of 

thermoelectric experiments should be to study the conditions under which PHS is 

preserved in realistic material systems, rather than to distinguish between the two 

theories. 

In this paper, we systematically investigate the dc-transport and thermoelectric 

properties of the v = 1/2 state in a high-mobility two - dimensional electron system 

hosted in GaAs/AlxGa1-xAs materials. In our thermoelectric transport measurements, 
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thermopower Sxx and Nernst Sxy clearly exhibit, respectively, symmetric or 

anti-symmetric signals with respect to B = 0 T, over the measured temperature (T) 

range. At the filling factor v = 1/2, where composite fermions form a compressible 

Fermi liquid in a zero effective magnetic field, thermopower Sxx shows a linear 

relation with T in the diffusive region, while it shows a power law T-dependence for 

the phonon-drag region. This is analogous to the thermopower Sxx of electrons in a 

zero magnetic field, and consistent with previous experimental results [34-36]. As for 

the measured Nernst signals Sxy of v = 1/2, in the phonon - drag region, they exhibit an 

expected power law relation with T. In the electron-diffusion dominated region, for 

the particle-hole symmetric v = 1/2 state, a Nernst signal Sxy with linear T dependence 

is predicted [25, 33]. However, the Nernst signals of v = 1/2 in this regime are found 

by our experiment to be significantly smaller than the values with linear temperature 

dependence predicted by Potter et al., and it decreases with temperature faster than 

linear dependence. 

 

II.  Experimental Method 

A. Sample Characterization 

The data presented here are obtained from a high-mobility GaAs /Al0.24Ga0.76As 

heterojunction wafer grown by molecular beam epitaxy. After a brief illumination 

from a red light-emitting diode the density and mobility (measured at 60mK) are 0.92

×1011 cm-2 and 1.1×107 cm2/V.s, respectively. A 100 μm wide Hall bar mesa was 

patterned on a piece of wafer (size of 10 mm ×1.7 mm ×  0.5 mm) by 
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photolithography and wet etching. Electrodes were defined by e-beam lithography, 

followed by Ni/GeAu evaporation and annealing process. A heater made of Ti/Au 

films was fabricated on one end of the sample, while the other end was indium - 

soldered to a copper cold finger which serves as the thermal ground. A schematic of 

the device is shown in Fig. 1(a). The measurement was carried out in a dilution 

refrigerator equipped with 8.5 T superconducting solenoid.  

To characterize the samples, we performed the electrical transport measurements 

using the standard lock-in technique with an excitation current of 10 nA at f = 17 Hz. 

The electrical transport results are shown in Fig. 1 (b), which shows well-developed 

high-order FQHE states, attesting to the high mobility and the high degree of density 

homogeneity.  

B. The measurement method 

In thermoelectric transport experiments, thermometers are usually attached to the 

back of the sample, but this will induce a strain effect for high-mobility GaAs/ 

AlxGa1-xAs heterostructure samples, or create a non-uniform temperature gradient. To 

determine temperature differences without these drawbacks, we adopted the method 

of integrating the thermal conductance along the sample [36]. So before the 

thermoelectric measurement is carried out, we first measured the temperature 

dependence of the sample’s thermal conductivity κ, which is dominated by phonon 

thermal transport. 

The procedure for determining thermal conductivity κ of our sample is as follows. 
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First, the temperature of the cold finger is maintained at Ti (which is read by a 

calibrated ruthenium oxide sensor), and the resistance minimum Rxx at v = 4/3 is 

measured. Note that Rxx at v = 4/3 has a strong temperature dependence over the 

measurement temperature range between 100 mK and 350 mK, so Rxx (4/3) as a 

function of T can be used as an effective thermometer. Next, Rxx (4/3) is measured at 

the temperature of cold finger Ti + ΔT, where the temperature increment ΔT <10% Ti. 

The above measurement is carried out without applying any power to the heater so 

that the temperature of the cold finger equals the temperature of 2DEG. Subsequently, 

we hold the temperature of the cold finger at Ti again, and adjusted the power 
.

Q  

applied to the heater until Rxx(4/3) becomes close to that at temperature Ti + ΔT. The 

temperature gradient arising from the introduction of power 
.

Q  is thus determined. 

According to K =
.

Q /ΔT, we calculate the thermal conductance K, which is between 

the middle of two measurement contacts and the cold end. The thermal conductance K 

is further divided by the geometric factors of sample, to obtain the thermal 

conductivity κ. By repeating the above procedure at different Ti, the temperature 

dependence of thermal conductivity κ can be systematically determined, which is 

shown in Fig. 2. As shown in Fig. 2, the thermal conductivity κ is found to follow a 

power law against T: i.e., T2.6. The power exponent is reasonably close to that 

expected for phonon dominated heat transport.   

To perform the thermoelectric measurement, a controllable temperature gradient 

▽T was established along the Hall bar by applying a low frequency (f = 7.3 Hz) ac 

current to the heater. The thermal voltage △V between a pair of contacts along the 
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gradient was measured by the lock-in technique at the frequency of 2f = 14.6 Hz. The 

temperature value was obtained by integrating the thermal conductance K of the 

sample, combining the temperature of cold finger and the applied power of the heater. 

The temperature or voltage gradient was further calculated according to the dimension 

of the Hall bar. When sweeping the perpendicular magnetic field, the thermopower Sxx 

and Nernst Sxy will then be determined by Sxx = ▽Vxx/▽Tx and Sxy = ▽Vxy/▽Tx, 

respectively. Note here an "open circuit" condition is satisfied assuming that the 

lock-in amplifier has infinite input impedance.   

 

III. Results and Discussions 

Figure 3(a) displays the thermopower Sxx as a function of positive magnetic field 

B at different temperatures. Meanwhile, Nernst Sxy varying with sweeping B at 

different temperatures are shown in Fig. 4(a) and 4(b). The thermopower Sxx and 

Nernst Sxy show, respectively, symmetric or antisymmetric patterns with respect to B = 

0 T. Both thermopower Sxx and Nernst Sxy increase in magnitude with increasing 

temperature.   

Comparing the thermopower Sxx in Fig. 3(a) and resistivity ρxx in Fig. 1(b), we 

observe that thermopower Sxx exhibits oscillations of integer quantum Hall effect 

(IQHE) and fractional quantum Hall effect (FQHE), very much like ρxx. This is 

consistent with previous studies [34-36]. The IQHE and FQHE oscillations of Sxx have 

been well explained by existing theories. In particular, the diffusion thermopower Sxx
d 

of 2DEG in the QHE regime is given by entropy per particle (quasiparticle) per charge 
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[37-40]. The proportional expression between diffusion thermopower and entropy is 

in accordance with that of non-interacting electrons in a zero magnetic field predicted 

by the Mott formula [41]. Entropy will vanish when the chemical potential µ is in the 

gap of incompressible states, and attain maxima once µ centered in the extended 

states of LLs. On the other hand, in the phonon- drag region, extended states of LLs 

with maximal density of states will be more likely to be scattered by phonons than 

localized states between LLs, leading to the oscillations of phonon-drag thermopower 

Sxx
g in B (similar to that of Sxx

d  ) [42-43]. However, although Sxx
g and Sxx

d have 

similar oscillations, their temperature dependences are entirely different: the diffusion 

Sxx
d，which is proportional to entropy, varies linearly with T, while the phonon-drag 

Sxx
g shows a power law relation (with exponent ~3) as a function of T [39, 41].  

Figure 3(b) depicts the temperature dependence of thermopower Sxx of v = 1/2, 

where blue circles with error bars represent low-temperature thermopower Sxx, and red 

ones correspond to that at higher temperatures. Note that, error bars represent the 

standard deviation from the average of Sxx (shown as circles). Quite clearly, at low 

temperatures T < 160 mK, electron-diffusion is dominant, so the measured Sxx
 shows a 

linear relation through the origin as a function of T. With increasing temperature, 

phonon-drag thermopower contributes more to the signals, leading to Sxx ∝ T2.9. The T 

dependence obtained from our measurements coincides well with previous results 

[34-35]. This comparison also serves a test to our temperature calibration procedure. 

Notably, the T-dependence of thermopower Sxx of the v = 1/2 compressible Fermi 

liquid are similar to those of non-interacting 2DEG at B = 0 T [39, 41,44].  
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According to the prediction by Cooper et al. [39], diffusive thermopower Sxx
d at v 

= 1/2 can be regarded as entropy per quasiparticle per charge and can be written by 

the following expression, which is analogous to the Mott-formula of 2DEG at B = 0 T,  

T
en

pmk
S CFCFB

v
d
xx 2

2

2/1 6
)1(

|
h

+
−==

π .               (1)  

Here n is the density of 2DEG, mCF is the effective mass of composite fermions 

determined by electron-electron interactions and pCF stands for the impurity scattering 

parameter of CFs. Due to the weak energy dependence of impurity scattering rate of 

CFs [39], we take pCF  = 0 here and apply Eq. 1 to our linear fit in Fig. 3(b). Note that 

the resulting slope (hence also the mCF value) of the fit may be slightly dependent on 

the range of data points included. We find that the mCF value spans roughly 0.92 me to 

0.97me for including more data points towards the crossover point. The Fig. 3(b) 

shows the fit to all 6 points in the range, yielding mCF ~ 0.97me. Overall, the 

uncertainty of the mass value due to fitting is within 10%. This mass value is smaller 

than, but roughly agrees with the previous report mCF (v = 1/2) ≈ 1.5me (pCF = 0) 

obtained from thermopower measurement of 2DHS [34]. It is larger than mCF (v = 1/2)

≈ 0.64 me from magnetotransport measurement of 2DES around v = 1/2 [28]. Note 

that to facilitate the comparison we scale the mCF (v = 1/2) values to the same 

magnetic field B = 7.6 T by mCF ∝ B1/2.  

We now turn to the Nernst measurement results of v = 1/2 shown in Fig. 4(a) and 

4(b). In realistic samples, the Sxx and Sxy components could couple to each other. 

Considering that Nernst Sxy is antisymmetric while the thermopower component Sxx 

mixed into Sxy is symmetric with respect to B = 0 T, by taking the sum and difference 
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of the raw Nernst Sxy data under positive and negative magnetic field, we derive the 

“decoupled” Nernst Sxy , which is shown in Fig. 4(a) and 4(b). As shown in Fig. 4(a), 

for high temperature region T > 140 mK, the Nernst signals in the vicinity of v = 1/2 

state increase rapidly with increasing T. As for the Nernst signals Sxy below 130 mK 

shown in Fig. 4(b), the measured traces at different temperatures are shifted vertically 

for clarity.  

Theoretically, in the diffusion dominant regime, the semiclassical longitudinal 

and transverse thermopower of 2DEG under a low perpendicular magnetic field 

satisfy the generalized Mott formula 

                   T
d
d

e
kBTS

Fkjik
B

F
d
ij εεε

σρπε =−= |][
3

),,(
22

 ,          (2)               

where Fε  is the Fermi energy of electrons, ρ , σ  are the electrical resistivity and 

conductivity tensors, respectively [37-39,45]. Moreover, Ref. [46] showed that Eq. (2) 

should be valid for weakly disordered non-interacting 2DEG in the QHE regime. In 

the QHE regime with high magnetic field, since xxρ << xyρ and xxα << xyα , we obtain 

xyxy
d
xxS αρ−≈ or

dB
d

S xy
xy

d
xx

σ
ρ∝ . Therefore, Sxx

d will oscillate similarly to resistivity 

xxρ  as a function of magnetic field B. As for the diffusion Nernst Sxy
d, theories 

predict that Sxy
d ∝  ρxx.dσxy /dB + ρxy.dσxx /dB [37-38, 42]. Namely, when sweeping 

magnetic field in the QHE regime, a typical Sxy
d trace is expected to exhibit first a 

positive peak, then zero at the position of the maxima of xxρ or xxσ , and finally a 

negative peak. In our experiments, as shown in Fig. 4(b), such feature of Sxy
d can be 

clearly observed in the vicinity of the IQH state v = 1 (B ~ 3.5T).  
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Since the FQHE states around v = 1/2 can be viewed as the IQHE states of 

composite fermions, we apply Eq. (2) for analyzing thermoelectric transport in the 

FQHE regime around v = 1/2. We calculated ρxx.dσxy/dB + ρxy.dσxx/dB by using the 

longitudinal resistivity xxρ , Hall resistivity xyρ  of T = 60 mK; the calculated trace is 

shown in top of Fig. 4(b). Remarkably, calculated electron diffusion Nernst signals 

Sxy
d exhibits a series of oscillations in the FQHE regime around v = 1/2, and the 

period and dip positions of these oscillations (marked with blue vertical dashed lines 

in the figure) coincide well with our measured data. As shown in Fig. 4(b), these 

oscillations become more pronounced with the increasing of temperature, 

qualitatively consistent with the proportional relation between Sxy
d and temperature. 

We found a reasonable agreement between our experimental results and theoretical 

predictions, confirming that the measured Nernst signals at low temperatures 

(<130mK) are indeed electron-diffusion dominant.  

We now quantitatively analyze the data in the vicinity of v = 1/2. The Sxy versus B 

traces at the five lowest temperatures in the field range between 7 T and 8.3 T are 

plotted in Fig. 5(a); only the two lowest temperature traces are shifted vertically. We 

note that here the measured Nernst signals Sxy
d at v = 1/2 drops precipitously towards 

low T. Around 100 mK the Nernst signals are of the same order of magnitudes as the 

background fluctuations (the amplitude of background voltage fluctuations is within 

±5 nV).  

We plot the Nernst signals of v = 1/2 against T in Fig. 5(b). The higher T data 

(red solid circles) show a power law relation T 3.2 with T down to a temperature T ~ 
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140 mK. At lower T (in the electron diffusion regime), the predicted Nernst signals 

should crossover to a T-linear relation, as sketched by a dashed line in Fig. 5(b). 

Indeed the data (blue solid circles) begin to deviate from the T 3.2 fitting line at T = 

130 mK. However, remarkably, the data eventually become significantly smaller than 

the predicted linear values (the blue dashed line), or for that matter even smaller than 

the values extrapolated from T 3.2.  

At this point we do not have a concrete explanation for the observation of Sxy
d in 

the electron - diffusion regime. A nearly vanishing Sxy
d could indicate that the PHS is 

broken for v = 1/2 state in our 2DEG system. A possible mechanism for PHS-broken 

is inter-Landau-level mixing. Due to Coulomb interactions in the 2DEG system, 

inter-Landau -level mixing should exist in a finite magnetic field. For our low density 

2DEG sample, v = 1/2 state is at B = 7.6 T, which corresponds to a substantial level of 

Landau level mixing. On the other hand, in GaAs/AlGaAs 2DEG systems, the 

phonon-drag to diffusive crossover occurs at a very low temperature (below 140mK), 

where the electron - diffusion dominated Nernst signals are rather small, with their 

magnitudes comparable to the measurement systematic errors in our experiments. 

IV. Conclusions  

In summary, we have measured the longitudinal thermopower Sxx and transverse 

Nernst Sxy of compressible Fermi liquid states at filling factors v = 1/2 in a 

high-mobility GaAs/AlxGa1-xAs two-dimensional electron system. In the experimental 

temperature range, the thermopower Sxx and Nernst Sxy as a function of B show 

respectively the expected even or odd symmetry with respect to B = 0 T. 
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Thermopower Sxx of v = 1/2 present a power law relation with T in the phonon-drag 

dominant region, and a linear dependence on T in the diffusion dominant region, 

which is consistent with previous studies [34-36]. Furthermore, given the linear T fit 

of the diffusion thermopower and the generalized Mott formula [41], we determine 

the effective mass of composite fermions of v = 1/2 to be (0.97±0.04) me for v = 1/2 

at B = 7.6 T, where me is the mass of free electrons.  

As for the Nernst signals Sxy of v = 1/2, in the phonon-drag dominant region, the 

Nernst signals Sxy are non-zero and have a power law dependence on T. In the electron 

- diffusion dominant region, the Sxy show a series of oscillations in the FQHE regime 

around v = 1/2, which is consistent with the calculated results based on the 

generalized Mott formula. However, the measured diffusive Nernst signal of v = 1/2 is 

much smaller than the T-linear values predicted by relevant theory [25], and decrease 

with temperature faster than the linear dependence.  

In this experiment the v = 1/2 state was set at a modestly-high magnetic field B = 

7.6 T, so the Landau level mixing is not negligible. The influence of Landau level 

mixing to PHS - broken is an interesting theoretical issue which should be further 

addressed. We believe that the present study can provide useful guide for more refined 

experiments. To increase the electron diffusion Nernst signals, the Sxy
d

 of v = 1/2 may 

be measured in Si/SiGe heterostructures. Unlike the piezoelectric GaAs/AlGaAs 

systems, the phonon drag in the Si/SiGe heterostructures is suppressed significantly 

below 1 K [47-49]. As a result, the Sxy
d

 of v = 1/2 could be obtained at higher 

temperatures with correspondingly larger diffusion Nernst signals. 
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Figure Captions 
 

 
 
FIG.1.(a) Sketch map of the device used in our thermoelectric transport measurement. 
(b) Longitudinal resistivity ρxx and Hall resistivity ρxy vs magnetic field at T = 60mK.  

 
 
 

 
 
FIG. 2. The thermal conductivity κ shown as red circles as a function of temperature. 

The black line is the fit through origin to the data and exhibits a power law relation of 

T 2.6. 
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FIG. 3. (a) Longitudinal thermopower Sxx vs magnetic field B at different 

temperatures. Temperature labeled corresponds to traces from top to bottom. Several 

IQHE and FQHE states are marked. (b) The temperature dependence of Sxx at v = 1/2. 

Two black lines are the fit through origin to the data in diffusion (blue circles) and 

phonon drag (red circles) dominant regions, respectively. The Sxx of v = 1/2 shows a 

linear T dependence in diffusion dominant region, while shows a relation of T 2.9 for 

phonon drag dominant region. Note that the fitting to the linear regime is in lower 

temperature. 
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FIG. 4. (a) Nernst signals Sxy vs magnetic field B at different temperatures. 

Temperatures labeled correspond to traces from top to bottom. The v = 1/2 state is 

also labeled. (b) The topmost trace shows the calculated ρxx.dσxy/dB + ρxy.dσxx/dB vs B 

in the FQHE regime around v = 1/2. The measured Nernst Sxy vs B below 130 mK are 

shifted vertically for clarity. Their corresponding base lines are shown as horizontal 

dashed lines and have the same color with measured traces. The v = 1/2 state and 

oscillations in the FQHE regime around v = 1/2 state are marked by vertical dashed 

lines. 
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FIG. 5. (a) This shows a detail of Fig. 4(b), which is in the vicinity of v = 1/2. The v = 

1/2 state is labeled. Only the two lowest temperature traces are shifted vertically. 

Their corresponding base lines are shown as horizontal dashed lines and have the 

same color with measured traces. Around v = 1/2, the three lowest temperatures traces 

are covered by transparent rectangle. The rectangular width describes the maximum 

amplitude of signal fluctuations around v = 1/2 (between 7.5T and 7.7T). (b) The 

temperature dependence of Nernst Sxy at v = 1/2. The data below 130mK are shown as 

blue circles with error bars. The error bar here marks the uncertainty range described 

by rectangular width shown in Fig. 5(a). The blue dashed line shows the predicted 

linear temperature dependent diffusion Nernst signals. The black line is the fit through 

origin to data above 140mK shown as red circles, which shows a power law relation 
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of T 3.2 with T.  


