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We investigate the effect of the valley degree of freedom on Pauli-spin blockade readout of spin
qubits in silicon. The valley splitting energy sets the singlet-triplet splitting and thereby constrains
the detuning range. The valley phase difference controls the relative strength of the intra- and inter-
valley tunnel couplings, which, in the proposed Pauli-spin blockade readout scheme, couple singlets
and polarized triplets, respectively. We find that high conversion fidelity is possible for a wide range
of phase differences, while taking into account experimentally observed valley splittings and tunnel
couplings. We also show that the control of the valley splitting together with the optimization
of the readout detuning can compensate the effect of the valley phase difference. To increase the
measurement fidelity and extend the relaxation time we propose a latching protocol that requires a
triple quantum dot and exploits weak long-range tunnel coupling. These opportunities are promising
for scaling spin qubit systems and improving qubit readout fidelity.

I. INTRODUCTION

The experimental demonstration of high-fidelity quan-
tum dot qubits with long-coherence1,2 that can be cou-
pled to perform two-qubit logic gates3,4 and used to
execute small quantum algorithms5 has positioned sil-
icon as a promising platform for large-scale quantum
computation. Building upon these advances, exciting
new directions forward have been proposed6–13, that ex-
ploit uniformity14, robustness against thermal noise15, or
semiconductor manufacturing16, and aim for operation of
quantum error correction codes17 on qubit arrays.
Despite its promises, silicon poses specific challenges due
to the six-fold degeneracy of its conduction band mini-
mum in bulk. This degeneracy is lifted close to an inter-
face, and a gap opens between perpendicular and in-plane
valley doublets. Interfaces and gate electric fields cause
coupling either in the same or different orbital levels. The
same-doublet same-orbital coupling is the so-called val-
ley mixing, while the others are generally referred to as
valley-orbit coupling18. Whereas silicon quantum dots
can often be operated in the regime of vanishingly small
valley-orbit coupling19–21, valley mixing can not be ne-
glected. It has been shown21–23 that this does not lead
to a direct splitting between the bulk valleys, but the
coupling gives rise to a valley splitting between the val-
ley eigenstates. As a consequence, the valley mixing
is determined by two parameters only24: its phase, the
valley phase, and its modulus, the valley splitting. Typ-
ical valley splittings range from tens of neV to about 1
meV1,25–28 and introduce new challenges for spin qubits
defined in silicon quantum dots. Despite them, it has
been shown that universal quantum computation with
spin qubits is still possible29. On the contrary, conse-
quences of valley phase have been studied only in limited
research, but found to be significant in valley-qubits30

and donors close to an interface31, while they strongly

influence the exchange interaction32. A crucial question
is therefore how much the valley mixing impacts quan-
tum computation with spins in silicon quantum dots in
the general case of non-negligible valley non-preserving
tunnel coupling.
Here, we investigate its effect on readout, now one of
the most challenging operations for spin qubits. We con-
centrate on Pauli-spin blockade readout and show that
high spin-to-charge conversion fidelity is achievable in a
wide parameter range. This readout technique is consid-
ered in large-scale quantum computation proposals14–16

since it requires few electron reservoirs and is compatible
with moderate magnetic fields33,34. However, in standard
Pauli-spin blockade schemes the readout time is limited
due to spin-relaxation35–37. Moreover, usually two spin
states are projected on charge states with different the
electric dipole, leading to a readout fidelity smaller than
the conversion fidelity38,39. A possible solution is to ex-
ploit latching mechanisms in the pulsing scheme, locking
the charge in a long-lived metastable state40–42. The final
states now have a different number of electrons, improv-
ing the readout fidelity39. Here we overcome these limi-
tations and propose a protocol based on a triple quantum
dot, removing the need of an external reservoir.
This work is organized as follows. In Section II, we in-
troduce the model describing a multi-valley two-electron
double quantum dot and discuss Pauli-spin blockade
readout. In Section III, we investigate how the valley
phase difference and splitting energy impact the spin-
to-charge conversion fidelity. We identify the conditions
that enable conversion fidelities beyond 99.9%. A triple
quantum dot scheme combining Pauli-spin blockade with
long lived charge states is proposed and studied in Sec-
tion IV. We discuss the conclusions and opportunities in
Section V.
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FIG. 1: (a) Spin-valley single-particle energy levels of a silicon
double quantum dot. The valley ground states are shown in
red, while the excited valley states, separated by the dot-

dependent valley splitting E
L(R)
v , are in blue. A dot and

valley-dependent Zeeman energy (e.g. EL,−
Z ) splits the spin

states. The constant color arrows represent the intravalley
tunnel coupling t±±, while intervalley coupling t±∓ arrows
have a color gradient. (b) Top: Cross-section of a schematic
device. The confinement gate (C) defines the dots, plunger
gates (G) accumulate the electrons and control the out-of-
plane electric field, while the barrier gates (B) tune the tun-
nel coupling t. Bottom: Schematic stability diagram of a
double quantum dot. Green and orange lines mark the dot-
lead transitions. Interdot intervalley tunneling occurs along
the dashed line, separated from the ground state line by the
right dot valley splitting ER

v .

II. MODEL

A. Silicon Double Quantum Dot Hamiltonian

The model developed in this Section can be general-
ized to other doubly occupied multi-valley double quan-
tum dots, but here we restrict the discussion to quantum
dots at the Si/SiO2 interface. We define the left and right
quantum dots as target and ancilla qubits respectively.
We consider ten single-particle spin-valley states: the
four lowest orbital spin-valley states of each dot shown
in Fig. 1a and the two lowest valley states in the first
excited orbital of the ancilla qubit, needed to build the
same-valley triplet states of the doubly occupied ancilla
qubit. As shown in Fig. 1b, the double dot is tuned by
means of two plunger gates (G), controlling the energy
levels, and two barrier gates (B), setting the interdot tun-
nel coupling. Furthermore we assume a valley splitting
energy Ev = [100µeV, 1 meV] and an orbital splitting
energy close to 10 meV, consistent with experimentally
measured values1,26,27. The order of magnitude larger
orbital splitting, together with operation at a small mag-
netic field, justifies the assumption of a negligibly small
valley orbit coupling and pure valley mixing18,19,21.
Each dot is described by the Hamiltonian Hd

0 = Hd
v +

Hd
Z + δd,RH

R
o , where d = L,R is the dot label, Hd

v de-
scribes the valley spectrum of the dot, Hd

Z the Zeeman
splitting and HR

o the orbital levels of the right dot (δd,R
is the Kronecker delta). In particular:

Hd
v = Edv

∑
v=−,+

δv,+
∑
o=0,1
σ=↓,↑

c†d,o,
v,σ
cd,o,
v,σ

, (1)

Hd
Z =

1

2

∑
o=0,1
v=−,+

Ed,vZ (c†d,o,
v,↑
cd,o,
v,↑
− c†d,o,

v,↓
cd,o,
v,↓

) , (2)

HR
o = ERo

∑
o=0,1

δo,1
∑

v=−,+
σ=↓,↑

c†R,o,
v,σ

cR,o,
v,σ

, (3)

where o, v and σ are the orbital, valley and spin la-
bels respectively. The Zeeman splitting is defined as

Ed,vZ = gd,vµBBd. In general the g-factor is valley and
dot dependent due to spin-orbit coupling43,44. Here we
assume a vanishingly small spin-orbit coubling45–47 aris-
ing from a magnetic field applied along one of the mini-
mizing directions. This assumption is further warranted
by the possibility of low magnetic field operation when
using Pauli-spin blockade readout (low field operations
has several other advantages, see Refs. 14,15). In this

range, finite δEvZ = ER,vZ −EL,vZ can be realized via nano-

magnets, and we restrict to the case ER,vZ > EL,vZ . Hv

describes the splitting between the valley eigenstates due
to the mixing of the k±z bulk valleys induced by the
Si/SiO2 interface and the electric field23,48,49. We con-
sider dot-dependent valley splittings25 due to interface
effects and local variations in electric field19. The val-
ley coupling is ∆v ≡ Eve

iφD , whose modulus is the val-
ley splitting energy and whose phase is the valley phase
(i.e. the phase of the fast Bloch oscillations of the wave
function)50,51. The valley eigenstates are of the form

D± = (1/
√

2)(Dz ± eiφDD−z), where D±z = L±z, R±z
are the bulk ±z valleys wavefunctions of the quantum
dots23,49.
The two-electron double-dot Hamiltonian reads:

H2e = H0 +Hε +HC +Ht. (4)

Here H0 describes two non-interacting quantum dots.
Hε is the detuning term, describing the gate-controlled
shift ε of the ancilla qubit energy levels with respect
to those of the target qubit. Referring to Fig. 1b,
this corresponds to increasing the voltage on G3. The
third term HC accounts for the effect of the Coulomb
potential Vee. For the system considered here and
within the Hund-Mulliken approximation, the Coulomb
exchange integral j = 〈LzR±z|Vee |RzL±z〉 and the val-
ley exchange integral jv = 〈D∓zD±z|Vee |D±zD∓z〉 are
negligible22,52,53. Theoretical works have estimated j ≈
1 µeV for 30 nm separated dots54 and jv � 1 µeV22.
The on-site repulsion in the ancilla (right) dot URo =
〈RvRv(v̄)|Vee |RvRv(v̄)〉, or charging energy, is assumed

to be a few tens of meV26,27. In the Pauli spin block-
ade readout scheme only the ancilla qubit can be dou-
bly occupied, thus the (2, 0) states are neglected and
hence terms of the form 〈LL|Vee |LL〉 do not appear in
HC . The remaining two Coulomb integrals do not appear
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explicitly in HC since the direct Coulomb interaction
k = 〈LzR±z|Vee |LzR±z〉 is an offset, while the Coulomb
interaction enhancement terms s = 〈R±zRz|Vee |L±zRz〉
are part of the tunnel coupling t. It holds that t = t0 +s,
where t0 = 〈Rz|H0 |Lz〉. The last term in H2e is the
tunnel Hamiltonian expressing the hopping of one elec-
tron between the two dots. The different terms of the
Hamiltonian are:

H0 =
∑
d=L,R

Hd
0 , (5)

Hε = −ε
∑
o=0,1
v=−,+
σ=↓,↑

c†R,o,
v,σ

cR,o,
v,σ

, (6)

HC =
∑
o=0,1

URo
∑
o′=0,1
σ,σ′=↓,↑
v,v′=−,+

nR,o,
v,σ

nR,o′,
v′,σ′

, (7)

Ht =
∑
v,v′

o,o′
σ

tvv′c
†
R,o,
v,σ

cL,o′,
v′,σ

∏
r=vR,σR,oR
R=S,V,O

(−1)δr,ESδR,0 +H.c. ,

(8)

where n is the number operator, σR, vR and oR are the
spin, valley and orbital indexes of the right electron and
S, V,O are the spin, valley and orbital numbers of the
two-electron state. The label ES stands for the excited
state of the quantum number expressed by r. The con-
dition S(V,O) = 0 means that the spin (valley or or-
bital) part of the 2-electron wavefunction is a spin singlet
(valley or orbital) built from the single particle states.
t±±and t±∓ are the intravalley and intervalley tunnel
couplings, respectively22,55,56. The first(second) coupling
allows for tunneling between valley eigenstates of the
same(different) form. We note that both terms prevent
tunneling between states that have a different bulk val-
ley index49. It holds22 that t±± = t

2 [1 + e−i∆φ] and

t±∓ = t
2 [1 − e−i∆φ], where ∆φ = φL − φR is the valley

phase difference. The exact value of ∆φ depends strongly
on microscopic origins such as the interface roughness
and the height difference between the dots. For instance,
since φ = 2k0d, where d is the distance from the inter-
face, even a single terrace step (d = a0/4) leads to a
quite large phase difference23 φ ≈ 0.84π. In the case of a
negligibly small height difference and a flat interface the
valley mixing is the same and the valley eigenstates have
the same valley composition. In practice, however, typ-
ical quantum dots have an orbital spacing on the order
of 10 meV, corresponding to a dot size of around 10 nm,
which is comparable to the correlation length range (few
to hundreds of nm) reported for the Si/SiO2 interface32.
As such, we expect different quantum dots to have dif-
ferent valley compositions.

B. Two-electron energy levels

Having considered 10 single-particle spin-valley states,
the Hamiltonian H2e is expressed on a 26-state basis.
These are the twenty-two lower orbital states and four
(0, 2) states describing the same-valley double occu-
pancy of the ancilla qubit. However, these same-valley
double occupancy states contribute significantly to the
eigenstates only at high detuning (i.e. ε & UR + ERo )
and we neglect therefore higher energy (0, 2) states.
The basis states are tensor products49,57 of the form
|(σL, σR)〉 |ψV 〉 |ψO〉 and |χS〉 |ψV 〉 |ψO〉 for the (1, 1) and
(0, 2) charge configurations. Here |χS〉 is the two-spin
wavefunction while |ψV 〉 and |ψO〉 are the symmetrized
two-particle valley and orbital functions. For simplicity,
from here on the orbital part is dropped, while we label

the (0, 2) states as Sv,v
′

(0,2), T
v,v′

0,(0,2) or T v,v
′

±,(0,2).

In this work, we consider the case when ERv & ELv >

ER,LZ and, as shown in Fig. 2a three branches separated
by the valley splitting emerge49: in the lowest (−−) and
highest (++) branch the two electrons have the same
valley number, while in the middle branch they are
opposite (±∓). The (1, 1) same-valley branches consist
of four states each, while in the (0, 2) configuration these
same states include only the spin singlet state, because
of the Pauli exclusion principle. The different-valley
branch includes eight levels when in the (1, 1) and four
states in the (0, 2) charge states. The difference in
Zeeman energy sets the energy splitting between the
antiparallel spin states in the three branches. A small
difference in valley splitting energy splits the (+−) and
(−+) states, as shown in Fig. 2a. The control of ∆φ
allows to select the nature of interdot tunneling, ranging
from intra- to intervalley-only tunneling, as shown in
Fig. 2b. In particular, for ∆φ = 0 the |↓, ↓〉 states are
uncoupled from the (0, 2) charge states in the lowest
orbital and the blocked region extends to the orbital
spacing energy.

C. Two-dot Pauli-Spin Blockade readout

At negative detuning (i.e. ε � UR), the two lowest
eigenstates can be approximated with the basis states
|↓, ↓〉 |−−〉 and |↑, ↓〉 |−−〉. Differing only in the spin ori-
entation of the target qubit, these states are hereafter
used as initial states of the Pauli-spin blockade readout
protocol and their valley label is dropped.
As shown in Fig. 2c, Pauli-spin blockade readout consists
of a spin-to-charge conversion. At the beginning of the
readout protocol, the ancilla qubit is in the ground state
while the target qubit can be either spin up or spin down.
The readout pulse detunes the double quantum dot be-
yond the intravalley anticrossing and inside the blocked

region (UR < εf < UR+ERv −E
R,−
Z ), the brown region in

Fig. 2c. As shown in Fig. 2d, if the two spins are initially
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FIG. 2: (a) Energy levels of a multivalley double quantum dot with Ev > EZ . We distinguish three separate branches of energy
states: the valley ground states (red), the valley excited states (blue), and the valley mixed states (light blue and red). The
difference in valley splitting causes the splitting between the (+,−) and (−,+) sub-branches. The simulation parameters were:

UR
o = 30 meV, t = 1.5 GHz, ∆φ = π/2, E

R(L)
v = 105 (100) µeV, ER

o = 10 meV and E
R(L),−
Z = 28.65 (28.5) µeV. The two-spin

states have a similar order for the three branches and are shown for the lowest branch only. (b) Zoom-in at the intravalley
anticrossing. Increasing the phase difference from 0 to π changes the tunneling from pure intravalley to pure intervalley. The
light brown rectangle highlights the high fidelity detuning range. c) Schematic of Pauli-spin blockade readout sequence. The
states used in the readout protocol are shown with the same colors as in (d). The double quantum dot is initialised either in

|↑, ↓〉 (in blue) or |↓, ↓〉 (in red). The detuning is consequently changed linearly with an adiabatic pulse. Here E
R(L)
v = 300

(305) µeV and δE−Z = 20.7 neV. (d) Results of time evolution simulations, using the same parameters as in (c). Inside the
high fidelity region F is higher than 99.9%. The oscillations at negative detuning in the top panel are the fingerprint of a
singlet (1, 1). The pulse starts at the symmetry point and the pulse duration is set to achieve a high degree of adiabaticity (See
Appendix for more details).

antiparallel (blue level in Fig. 2c) the final state will be
the singlet S−−(0,2) (green level); otherwise, the system will

remain blocked in |↓, ↓〉 (red level) until it relaxes via a
spin flip. Experimentally, the final state can be probed
either by charge sensing33,34 or by gate based dispersive
rf-readout58. However, these techniques require slightly
different pulses. The former detects differences in the
electric field due to a difference in the charge configu-
ration, while the latter probes the level mixing via the
quantum capacitance59. The highest fidelities are ob-
tained far from or close to the intravalley anticrossing60,
respectively.
Here we consider 1 µs long linear adiabatic pulses con-
ceived for charge sensing. (See the Appendix for details
on pulse adiabaticity.) We note that shaped pulses could
improve speed and performance (see Ref. 14 and therein
references), although in arrays operated by shared con-
trol linear pulses could be required14. The duration is
chosen as a trade off between fast pulses and adiabatic-
ity. The conversion fidelity F is defined as the probability
that |↑, ↓〉 evolves to a (0, 2) state while |↓, ↓〉 remains in
a (1, 1) state. Since at the beginning of the readout pro-
tocol the system is either in one of the two lowest lying
eigenstates with the same probability, the conversion fi-

delity is the weighted sum of F|↑,↓〉→(0,2) and F|↓,↓〉→(1,1):

F =
F|↑,↓〉→(0,2) + F|↓,↓〉→(1,1)

2

=
1

2

[ ∑
a∈(0,2)

| 〈a|f〉 |2 +
∑

b∈(1,1)

| 〈b|f ′〉 |2
]
,

(9)

where f and f ′ are the two final states calculated from the
time evolution of the two lowest-lying eigenstates |↑, ↓〉
and |↓, ↓〉, respectively.
From Eq. 9 it can be seen that the ultimate limit to
the readout fidelity is set by the final state composition,
which depends on the valley phase difference. Even a per-
fectly adiabatic pulse results in F < 1 if the final state f ′

has a non negligible contribution from T+−
−,(0,2) (see Fig.

2a).
We recall that we have assumed negligible spin-orbit cou-
pling. Contrarily to bulk silicon, in quantum dots defined
at the Si/SiO2 interface it can be non-negligible. The
structural inversion asymmetry leads to a Rashba spin-
orbit coupling, while the dominant Dresselhaus47 arises
from the interface inversion asymmetry61–63. The spin-
orbit coupling strength depends, apart from the magnetic
field orientation, on the vertical electric field, valley com-
position and the microscopic properties of the interface44.
In actual devices it causes g-factor variability45, val-
ley dependency43,46 and mixing between antiparallel and
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FIG. 3: Fidelity obtained by pulsing from ε = UR−1 meV to
UR + ER

v in 1 µs with ∆t = 1 ps, t = 1.5 GHz and δE−Z = 5
MHz, for a range of experimentally achieved valley splitting
energies (here ER

v = EL
v ). Contour lines are shown in white.

The decrease in F for ∆φ approaching π (i.e. t±± → 0) is
caused by an increase in diabaticity, due to the constant pulse
duration, absent in adiabatic evolution (red). For each point
of the map, we have plotted the maximum achievable fidelity
by taking the optimal detuning.

parallel spin states64. As a consequence, when including
the spin-orbit Hamiltonian in H2e anticrossings between
S−−(0,2) and the polarized triplets emerge38,44. Further,

such mixing would reduce F even for adiabatic pulses.
The shape of the pulse used for Pauli-spin blockade read-
out has to be modified accordingly, i.e. a two-speed lin-
ear pulse, to allow for a diabatic crossing of the S − T−
anticrossing65. Therefore our assumption of negligible
spin-orbit coupling ensures that our results demonstrat-
ing the impact of valley phase are not obscured by spin-
orbit effects.

III. RESULTS

From previous considerations, it emerges that the
larger ERv the greater F . In general, ERv can be tuned via
a vertical electric field1,19,48. In the device shown in Fig.
1b, valley splitting can be controlled via the combined
tuning of G3 and confinement gate C.
In Fig. 3 we show how the phase difference impacts on F
for different valley splittings (here ERv = ELv ). Whenever

ERv > ER,LZ /2, F > 80% can be reached; in general we
find a fidelity higher than 90% for Ev & 40t. For a fixed
valley splitting, the phase-dependence of F is non mono-
tonic, as visible for small splittings (Ev < 30µeV). At low
∆φ the fidelity is high because the intervalley anticross-
ing is very narrow and the two final states have different
charge configurations over a large detuning range. The

FIG. 4: Fidelity obtained by time evolution simulations (color
map with white contour lines) and perfectly adiabatic pulses
(red). The difference between the detuning position of maxi-
mum fidelity obtained from time evolutions simulations (dots)
and adiabatic pulses (dashed line) is due to the finite speed
of the pulse. As a consequence of the chosen parameters (e.g.
δE−Z = 5 MHz, ER

v = 300 µeV, t = 1.5 GHz and pulsing from
UR − 2ER

v to UR + 2ER
v ) a gap where F < 99.9% opens for

intermediate ∆φ. The maximum fidelity has a non-monotonic
dependence on ∆φ, visualized here by the color map of the
dots; a minimum is observed at π/2 (light green), a local
maximum at π (blue), and the maximum at 0 (dark blue).

minimum at ∆φ ≈ π
2 arises from the opposite phase de-

pendence of t±± and t±∓. Here a higher ERv is needed
to realize a large energy separation between the two an-
ticrossings in order to reach the same fidelity (see 90%
contour line in Fig. 3). For ∆φ > π

2 the fidelity in-
creases with increasing phase, since the increasing inter-
valley coupling is compensated by the smaller detuning
needed for the |↑, ↓〉 to evolve to S−−(0,2) (see Fig. 4). The

decrease in F at high ∆φ is due to the increase in the
pulse diabaticity. The conversion fidelity in the adiabatic
case shows that a fidelity higher than 90% can be reached
even for ∆φ ≈ π, as highlighted by the dotted red lines in
Fig. 3, although it requires an impractical slow pulsing
rate.

Properly tuning the readout position given a random
phase difference is beneficial and enables to reach 99%
fidelity threshold in a very large range of valley splittings
and phase differences. The optimal readout point shifts
with ∆φ reflecting the state composition. As shown by
the dots in Fig. 4, for a small phase difference it is con-
venient to readout close to the intervalley anticrossing,
while for a large difference the pulse should end slightly
beyond the intravalley anticrossing. In particular, the
maximum fidelity is reached, as expected, for ∆φ = 0
and ε = ERv while a minimum arises at ∆φ = π/2. In
Fig. 4 the fidelity is higher than 90% except where the
level mixing is strong (e.g. ε ∼ 0 and ∆φ ∼ 0 or ε ∼ ERv
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FIG. 5: Fidelity obtained by time evolution simulations (color
map with white contour lines) and adiabatic pulses (red). A
realistic value of 0.3 meV enables reaching F > 99% for t
up to 4.5 GHz in a wide range of phase differences (here up
to ∆φ = 0.8π). The reduction in fidelity at low t is caused
by higher diabaticity of the pulse. In the top right panel it
prevents reaching F > 99.9%. As in Fig. 4 δE−Z = 5 MHz
and the pulse extremes are UR ± 2ER

v .

and ∆φ ∼ π), but there are two separate regions where
F > 99.9%, because ERv /t ∼ 50.
However, when aiming at F > 99% or higher, the con-
trol of the ancilla qubit valley splitting enables overcom-
ing the low fidelity region at intermediate ∆φ. The two
99.9% regions merge for ERv /t ∼ 54, e.g. when t = 1.5
GHz a valley splitting of at least 0.36 meV is required.
Figure 5 shows that for experimentally obtained valley
splitting high fidelity can be achieved for a quite large
range of tunnel coupling t. For a valley splitting of 0.1
meV and considering perfect adiabatic pulses, a fidelity
beyond 99.9% can be reached for t . 500 MHz and
0 ≤ ∆φ ≤ 0.7π. When the valley splitting is slightly
larger, i.e. 300 µeV, the same fidelity can be achieved
for t < 1.5 GHz. When the valley splitting is 700 µeV,
a fidelity of 99% can be reached when t < 5 GHz and
a fidelity of 99.9% requires t < 3 GHz. Moreover, Fig.
5 shows that t could be used as an additional knob to
improve the fidelity, in the case of limited control of the
valley splitting.

IV. TRIPLE DOT READOUT PROTOCOL

Experimental works on Pauli-spin blockade in silicon
quantum dots show readout fidelity significantly lower
than the conversion fidelities reported here38,39,42. This
reduction is predominantly due to the small sensitivity
of the charge sensor to variations in the electric dipole
caused by a difference in the charge position. Therefore
protocols involving metastable states38–40,42 have been

FIG. 6: (a) Schematic of a triple dot device with negligibly
weak long-range coupling. (b) Left panel: Hysteretic stabil-
ity diagram of a tripled quantum dot with the readout pulse
scheme. The first step (from (I) to (II)) is a standard double-
quantum dot Pauli-spin blockade readout pulse. In the sec-
ond step (from (II) to (III)), charge moves from the target to
the left ancilla qubit only if the target qubit is initially spin
blocked (III’). Transitions between nearest neigbhoring dots
are denoted by two-color interdot transition lines. The edges
of the hysteresis regions are marked by three-color lines. The
line color reflects the involved dots. Right panels: energy level
diagrams showing the triple dot occupation at (I),(II), (III)
and (III’) positions for depending on the initial spin state.
(c) Left panel: The readout is performed by oscillating the
middle and left dot energy levels forcing the system to oscil-
lates between the (1, 0, 1) and (0, 1, 1) charge states. Right
panel: the charge states mixing leads to a capacitive term
measured via rf gate-based dispersive readout. For simplic-
ity, the charge occupation of the right dot is dropped since it
remains constant.

proposed. Typically, after projecting the initial states
onto a singlet (0, 2) or a triplet (1, 1), the system is
pulsed deep in the (0, 2) region, past an excited charge
state. While the singlet (0, 2) is still the ground state,
the triplet (1, 1) relaxes (i.e. an electron tunnels from
or to an electron reservoir) to the excited charge state.
Coulomb blockade leads consequently to a long charge
relaxation time. The variation in the sensor signal in-
duced by a different number of electrons trapped in the
double quantum dot is typically larger by a factor 1.4-4
and fidelities approaching 99.9% have been reported38,39.
Furthermore, such latching mechanisms allow for delayed
readout, splitting the spin-to-charge conversion from the
actual readout process, which can be beneficial when
scaling to large qubit arrays14,16.
Here we replace the reservoir used in recent experimen-

tal works38–40,42 with a third dot (L′) added to the left
side of the double dot considered in the previous Sections,
providing clear benefits in scalability. In the following we
consider that the triple dot is loaded with two electrons
at the beginning of the protocol and then the coupling
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to the electron reservoir is switched off. The triple dot
is controlled by two “virtual” gates GL and GR, which
are linear combinations of the B and G gates shown in
Fig. 6a. In particular, defining µd the chemical potential
of the dot d, we assume that µL′ is kept to a reference
level and that GL shifts only µL. On the other hand,
GR is mainly coupled to µR, but controls also µL. The
interdot transition lines with a positive(negative) slope
in Fig. 6b correspond to µL′(R) = µL. We assume neg-

ligible long-range tunnel coupling tRL
′

between the two
outer ancilla qubits (see Fig. 6a, right panel). This con-
dition results in a stability diagram similar to the case of
hysteretic double quantum dots66. The transition lines
arising from direct tunneling between the ancilla qubits
R and L′ (e.g. the one between (1, 0, 1) and (0, 0, 2)) are
hysteretic and depend on the sweeping direction of the
gate GR. When tRL

′ 6= 0 the condition µL′ = µR leads
to electron transfer. The corresponding transition lines
appear vertical in a stability diagram and are indepen-
dent from GL. However, when tRL

′
= 0, tunneling can

only occur when µL′(R) ≥ µL ≥ µR(L′)
39,66. For increas-

ing voltage GR an electron can be transferred to R from
L′ when µL′ = µL ≥ µR. Consequently, the lines have a
negative slope. For decreasing GR, transfer occurs when
µR = µL ≥ µL′ and the slopes have positive slope, as in
Fig. 6b.
The pulse protocol starts in a (0, 1, 1) charge configura-
tion, position (I) in Fig. 6b. Here µL′(1) > µL(1), µR(1).
The system is detuned inside the (0, 0, 2) spin-blocked
window to position (II) where µL′(1), µR(2)T− > µL(1) >
µR(2)S . Here we assume that ∆φ, t, ε and ERv are op-
timized accordingly to the previous Sections to allow for
high conversion fidelity. The initial state (0, ↑, ↓) is then
converted to a (0, 0, 2) charge state, while (0, ↓, ↓) remains
blocked in a (0, 1, 1) configuration. GL and GR are then
lowered together, raising the chemical potentials µR and
µL.

The detuning direction is parallel to the (0, 1, 1) ↔
(0, 0, 2) charge transition line so that µR(2) < µL(1) and
their relative offset is kept constant. The pulse ends
in the hysteretic (0, 0, 2) region at position (III) where
µL′(1) < µR(2) < µL(1), i.e. past the extension of the
(0, 1, 1) ↔ (1, 0, 1) transition line. The short-range cou-
pling enables spin-to-charge conversion and charge shelv-
ing. If the separated spins were antiparallel, the S(0,0,2)

will remain in the same charge configuration. This holds
even for µL′(1) < µR(2) < µL(1), since no electrons can

tunneling when tRL
′

= 0. Parallel spins, however re-
main in the (0, 1, 1) charge configuration. In that case,
when µL′(1) = µL(1) an electron is transferred between
L and L′. As a consequence, (0, ↓, ↓) and (0, ↑, ↓) evolve
to (1, 0, 1) and (0, 0, 2), respectively. The negligible long
range tunnel coupling extends the spin flip relaxation
time to a charge relaxation time, determined by cotun-
neling.
The next step of the protocol is the actual readout (Fig.
6c). First the tunnel coupling tLR is completely switched
off. The two possible final states of the L′L double dot

are (0, 0) and (1, 0), if at the beginning of the pulse the
two spins were, respectively, antiparallel or parallel. Now
rf gate-based dispersive readout can be used. The pres-
ence or absence of an electron in the L′L double dot can
be translated with high fidelity to the spin state of the
target qubit. We note that in the case of limited con-
trol of tLR this scheme can still be implemented, since
the rf tone is applied such that the system oscillates be-
tween (1, 0, 1) and (0, 1, 1). Importantly, the possibility
to doubly occupy the left ancilla qubit softens the ex-
perimentally demanding requirements of the triple donor
scheme of Ref. 67.

V. CONCLUSIONS

In summary, we have investigated the impact of an
uncontrolled valley phase difference on the conversion fi-
delity of Pauli-spin blockade readout. The damping ef-
fect of the phase can be mitigated by the control of the
valley splitting of the ancilla qubit. In particular, we
have shown that the control of the valley splitting energy
together with the optimization of the readout position
is sufficient to overcome randomness of the valley phase
difference, even when the control of the tunnel coupling
is limited and t assumes realistic values. For ERv > 0.3
meV a fidelity higher than 99.9% can be reached for t < 2
GHz, as long as evolution is adiabatic with respect to the
intravalley anticrossing. In addition, we have proposed
a new protocol based on an isolated triple quantum dot
to extend the Pauli-spin blockade readout measurement
time by orders of magnitude, and significantly improving
readout fidelity.
Our results show that the randomness of the valley phase
difference can potentially lower the readout fidelity. How-
ever, the experimentally demonstrated control of valley
splitting and fine tuning of the detuning can overcome
such variability. The extended relaxation time obtain-
able in a triple dot protocol makes Pauli spin blockade
thereby an excellent method to be integrated in large-
scale spin qubit systems.

Appendix: Adiabaticity threshold

In this Appendix we discuss the adiabaticity condition
for a linear pulse. For two level systems a detailed theory
has been developed and the Landau-Zener formula68,69

p = exp
(
− 4π2t2/hv

)
links the speed v of a linear pulse

to the probability p of a diabatic transition between the
eigenstates of the system. In the case of a multilevel sys-
tem an analytical equation exists for the simple case of
three-state ladder systems70,71, where two states are dif-
ferently coupled to a third state and which successfully
describes coherent adiabatic passage72 or stimulated Ra-
man adiabatic passage73.
Here we consider the three level system described by the
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Hamiltonian:

H3L =

−δE−Z /2 0 t−−
0 δE−Z /2 −t−−
t∗−− −t∗−− URo − ε

 (A.1)

written on the basis [|↑, ↓〉, |↓, ↑〉, S(0,2)]. It approximates
the 30-level system considered in the main close to the
lowest valley branch intravalley anticrossing (ε ∼ UR).
Each of the three eigenstates Ψ1,2,3 of H3L undergoes an
adiabatic evolution when the criterion74∣∣∣∣αmax

i

ωmin
i

∣∣∣∣2 � 1 (A.2)

is satisfied. Here ωmini is the minimum energy differ-
ence between the i-th eigenstate and the closest neigh-
bour, while αmaxi can be seen as the maximum “angular
velocity”74 of the state Ψi since it is defined as

|αi(t)|2 =
∑
j 6=i

|αij(t)|2 =
∑
j 6=i

| 〈Ψ̇i(t)|Ψj(t)〉 |2. (A.3)

It has been shown (Ref. 74 for more details) that the
total diabatic probability pi during the time evolution of
the i-th eigenstate satisfies

pi . max

(∑
j 6=i

∣∣∣∣αij(t)ωij(t)

∣∣∣∣2) < pmax
i =

∣∣∣∣αmax
i

ωmin
i

∣∣∣∣2. (A.4)

From Eq. A.4 the dependency of pi on the pulse speed
can be obtained. Since for a linear pulse the speed v = ε̇

is constant we can rewrite Ψ̇i(t) as Ψ̇i(t) = ∂Ψ(t)
∂ε v. An

upper bound to the diabaticity probability is obtained by
converting the inequality in Eq. A.4 to

pi = v2max

(∑
j 6=i

∣∣∣∣ α̃ij(t)ωij(t)

∣∣∣∣2), (A.5)

where α̃ij(t) is the speed-normalized “angular velocity”.
Equation A.5 can be used as a lower bound for the speed
to obtain a defined pi.
In Fig. 7a α̃1 is plotted, as well as the two contributions
α̃12 and α̃13, as a function of the detuning. At nega-
tive detuning the dominant term is α̃12 meaning that the
Zeeman energy difference sets the adiabaticity condition;
while α̃13 better describes the system around zero detun-
ing. For the particular case shown in Fig. 7 of t−− = 1.5
GHz and δEZ = 10 MHz the peak at zero detuning is
lower than the one related to the Zeeman energy differ-
ence. In such a scenario, it is possible to adiabatically
pulse from S(0,2) to |↑, ↓〉, defining the adiabaticity with
respect to the tunnel coupling only, given a large detun-
ing range and a small p1. For higher tunnel coupling the
zero-detuning peak becomes dominant and the two-level
approximation becomes more accurate.
Eq. A.5 can be used to set the speed of a Pauli-spin
blockade pulse in such a way that pulses with different t

FIG. 7: a) The speed-normalized “angular velocity” α̃1 of
the ground state as a function of the detuning. At negative
detuning it reduces to α̃12, while at positive to α̃13. Here t
= 1.5 GHz, δEZ = 10 MHz and ∆φ = 0. The peak at the
anticrossing correspond to the contribution of a pure two-level
system, while the broad peak is due to the fact that |↑, ↓〉 and
|↓, ↑〉 are coupled to each other only via the singlet (0,2). b)
The “99.9% adiabatic probability” local speed as a function
of detuning. The lower and upper horizontal lines are the
global speed obtained using Eq. A.2 and the Landau-Zener
formula, respectively. The middle one stems for the global
99.8% global probability speed.

satisfy the same adiabaticity condition. The function to
be maximized in the right-hand side of Eq. A.5 can be
viewed as a “local” speed since it is a function of time
and thus detuning. As shown in Fig. 7b, it has the
same trend as α̃1 and can be analogously split in two
contributions. While the speed obtained from Eq. A.5
corresponds tot the global minimum of the “local” speed,
the global speed calculated from pmax

i is orders of mag-
nitude smaller. Since pmax

i is an upper bound, using this
definition will make the pulses much slower than what is
required, and the use of pi allows for faster pulses. The
fidelity of a |↑, ↓〉 → S(0,2) pulse is limited by the adi-
abaticity of the charge transition, therefore the higher
the adiabaticity the higher the fidelity. In general, the
global speed derived using the Landau-Zener formula for
p = 0.1% would result in a fidelity approaching 99.9%,
while setting pi = 0.2 in Eq. A.5 or replacing t with t/2 in
the Landau-Zener formula allows for fidelity higher than
99.9%.
In the time evolution shown in Fig. 2d a linear pulse from
ε = 0 to ε = UR+2ERv , with the pi = 0.2 approximation,
was used.
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Appendix: Valley mixing Hamiltonian

Although the valley degree of freedom can be regarded
as a pseudospin, there are some differences between the
case of silicon bulk valleys and a single spin in a magnetic
field. The general Hamiltonian of a spin 1/2 in a mag-
netic field has three parameters, i.e. the three compo-
nents of the magnetic fields, and the mixing perturbation
is fully described by two angles and the magnitude. The
particular case of the silicon z bulk valleys can be derived
from the general case by setting the z-component of the
(effective) magnetic field (diagonal terms of the Hamil-
tonian) to zero. As demonstrated by early works on val-
ley physics in silicon21–23, the six-fold degeneracy of the
conduction band is first split by confinement, which lifts
the x and y valleys leaving the degeneracy between the
z and −z bulk (or bare) valleys. The remaining degen-
eracy is lifted by the electric field in the z direction and
the interface (and a small contribution from the magnetic
field). This perturbation (Vv) has the same effect on the
two ±z valleys. The valley mixing Hamiltonian written
in the basis spanned by the bulk valley states has equal

diagonal terms, i.e. 〈Dz|Vv|Dz〉 = 〈D−z|Vv|D−z〉 = Λ.
The effective valley Hamiltonian thus reads:

Hv =

[
Λ ∆v

∆∗v Λ

]
(A.1)

As a result, the offset Λ can be extracted and included
in the orbital energy and the mixing of the bulk valleys is
fully described by the complex number ∆v

32. By rewrit-
ing Hv in the eigenstate basis (D±) Eq. 1 of the main is
obtained.
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