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Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-
comb generation, and all-optical switching. The development of materials with large nonlinear
susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such
as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced
nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to
subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are
narrowband and sensitive to the nanostructure geometry. Here, we show that graphene nanoribbons,
particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response
in the long-wavelength regime and over a broad frequency range, from terahertz to the nearinfrared.
We use a quantum-mechanical master equation with a detailed treatment of scattering and show
that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity
of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time ap-
proximation. At terahertz frequencies, where intraband optical transitions dominate, the strong
nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the elec-
tron energy distribution, caused by the interband electron scattering mechanisms along with the
intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails
to capture this quantum-mechanical phenomenon and results in a significant underestimation of
the intraband nonlinearity. At the midinfrared to nearinfrared frequencies, where interband optical
transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time
approximation. These findings unveil the critical effect of electron scattering on the optical nonlin-
earity of nanostructured graphene, and also underscore the capability of this class of materials for
nonlinear nanophotonic applications.

I. INTRODUCTION

Nonlinear optics is a promising avenue for all-optical
control of light [1, 2] and has many potential applications,
such as in mode locking [3, 4], frequency-comb generation
[5, 6], optical modulation [7–9], and all-optical switching
[10]. Fulfilling the potential of nonlinear optics is condi-
tional on the presence of strong light–matter interaction.
However, nonlinear optical effects, which rely on matter-
mediated photon–photon interactions, are naturally weak
[11–13]. Therefore, there is ongoing research, experimen-
tal and theoretical, on finding new materials [12] and new
methods[11] to enhance nonlinear optical effects.

In recent years, two-dimensional materials such as
graphene, transition-metal dichalcogenides (TMDs), and
phosphorene have attracted interest for nonlinear op-
tical applications. The quantum confinement in low-
dimensional materials enhances electron–light interaction
and yields intriguing nonlinear optical effects. The non-
linear optical nonlinearity has been measured in graphene
[14–21], TMDs [22–25], and phosphorene [26, 27], among
which graphene has shown the strongest optical non-
linearity. In the telecommunication frequency window
(∼1.3-1.6 µm), graphene’s third-order susceptibility mea-
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sured by the third-harmonic generation (THG) experi-

ment is ∼10−15 m2

V2 [21]. Also, there are a number of
theoretical papers on the nonlinear optical properties of
graphene [28–38] and nanostructured graphene, such as
graphene nanoribbons (GNRs) [39, 40].

In addition to the quantum confinement in low-
dimensional materials, the plasmonic field enhancement
is another promising approach for amplifying nonlinear
optical effects [11]. Surface plasmon polaritons, or sim-
ply plasmons, are collective oscillations of electrons in re-
sponse to an external electromagnetic field [41–44]. Plas-
mons propagate with large wave vectors, far from the
light cone (i.e., in the nonretarded regime). As a re-
sult, they can concentrate the electromagnetic energy in
the subwavelength limit and, consequently, can enhance
the nonlinear optical response [11]. There are many pa-
pers on the plasmon-enhanced nonlinearity in graphene,
graphene nanoislands, and GNRs [13, 32, 45–50]. At
the near-infrared (near-IR) frequencies and for ∼10-nm-
wide GNRs, the calculated plasmon-enhanced Kerr sus-
ceptibility and THG susceptibility are on the order of

10−12 m2

V2 and 10−14 m2

V2 , respectively [45]. Although
plasmons enhance the optical nonlinearity in GNRs, they
make the nonlinear optical response narrowband in the
frequency domain. (GNRs provide a weakly dissipative
environment for plasmons, so plasmon resonances are
sharp and narrow in the frequency domain).[51] Adding
to this the fact that the plasmon frequencies are highly
sensitive to the carrier density, nanostructure geometry,
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and edge termination, it becomes clear that a strong
nonlinear material that is broadband in the retarded
regime would be preferred to the plasmon enhancement
approach. Such a material could be embedded in on-chip
semiconductor waveguides, for the purpose of integrated
nanophotonics.

Here, we show that GNRs have a remarkably strong
third-order optical response in the long-wavelength
regime and over a broad frequency range, from terahertz
to the nearinfrared. We calculate the third-order Kerr
susceptibility and the third-harmonic generation (THG)
susceptibility for graphene nanoribbons (GNRs) in the
long-wavelength limit. At the telecommunication fre-
quency (∼1.3-1.6 µm), the GNRs third-order Kerr sus-
ceptibility and THG susceptibility can be as high as

∼10−10 m2

V2 and ∼10−14 m2

V2 , respectively.

We use a perturbative approach in solving a quantum-
mechanical master equation [51, 52] that accounts for
electron scattering mechanisms accurately and we show
that, in the retarded regime, electron scattering plays a
critical role in the optical nonlinearity of GNRs, which
cannot be captured with the commonly used relaxation-
time approximation. At terahertz frequencies, the in-
traband (particularly, intrasubband) optical transitions
are dominant. In this regime, the nonlinearity (in par-
ticular, the third-order Kerr nonlinearity) is strong be-
cause of the jagged shape of the electron-energy distribu-
tion, caused by the interband electron-scattering mecha-
nisms along with the intraband inelastic electron scatter-
ing mechanisms. Only an accurate quantum-mechanical
model for electron scattering is able to capture this phe-
nomenon. In contrast, semiclassical approaches, such as
the relaxation-time approximation, fail to capture the
jaggedness of the electron-energy distribution and result
in a significant underestimation of the intraband nonlin-
earity. At the midinfrared (mid-IR) to near-IR frequen-
cies, where the interband optical transitions are dom-
inant, the relaxation-time approximation significantly
overestimates the Kerr nonlinearity. These findings un-
derscore the critical role of electron scattering in the op-
tical nonlinearity of nanostructured graphene, and also
suggest GNRs as a suitable core material for nonlinear
integrated nanophotonic applications.

II. METHODS

Here, we study the nonlinear optical response of GNRs
illuminated by a TM-polarized light propagating along
the ribbon (Fig. 1). We base our analysis on the
self-consistent-field approximation within the Markovian
master-equation formalism (SCF-MMEF), a method we
developed in our previous papers [51, 52]. In the SCF-
MMEF, we perturbatively solve the following master
equation describing the time evolution of the density ma-

trix in the Schrödinger picture:

dρe(t)

dt
=− i

~
[He, ρe(t)]−

i

~
[VSCF(t), ρe(t)] + D{ρe(t)}.

(1)

Here, ρe(t) is the electron density matrix, He is the un-
perturbed electronic Hamiltonian, VSCF(t) is the self-
consistent field, and D{ρe(t)} is the dissipator. The
simplest form of the dissipator would be within the
relaxation-time approximation (RTA), i.e., D{ρe(t)} =

−ρe(t)
2τ (with τ being the relaxation time) [45], and we

call it the RTA dissipator. The RTA assumes that all
scattering mechanisms occur on the same time scales and
are energy independent. However, in order to accurately
account for electron scattering, we use a Lindblad-type
dissipator within the Born-Markov approximation that
for brevity, we call it the Lindblad dissipator [52, 55, 56].
In our calculations, we account for electron scattering
via acoustic phonons, longitudinal optical phonons, ion-
ized impurities, surface-optical phonons, and line-edge
roughness. After solving Eq. (1) for the electron den-
sity matrix (ρe), we use it to calculate the macroscopic
quantities such as the nonlinear conductivity, σ(s,ps), and
the nonlinear susceptibility, χ(s,ps), where s and ps de-
note the response order and the corresponding harmonic,
respectively. The second-order optical response vanishes
because of the lattice centrosymmetry; therefore, we cal-
culate the optical response up to third order. The third-
order electron-density matrix oscillates either at the fun-
damental frequency (i.e., Kerr nonlinearity) or at three
times the fundamental frequency (i.e., THG) (Fig. 1a).
For the Kerr nonlinearity (s, ps) = (3, 1), and for the
THG (s, ps) = (3, 3). For details of the SCF-MMEF and
the Lindblad dissipator, see Appendix A.

ω
3ω

ω

Substrate

Kerr response

THG response

FIG. 1. Schematic of a GNR on a substrate. The incident
light with frequency ω causes the third-order Kerr response
(oscillating with ω) and the THG response (oscillating with
3ω).
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III. RESULTS AND DISCUSSION

A. Intraband regime

At terahertz frequencies (100 GHz–10 THz) and at
large-enough sheet carrier densities (& 1011 cm2), the in-
traband (intrasubband) optical transitions dominate and
the interband optical transitions are negligible. There-
fore, it is appropriate to show the nonlinear optical be-
havior in terms of the conductivity, σ(s,ps)(ω). The con-

ductivity is
σ
(s,ps)
l

W , with σ
(s,ps)
l and W being the line

conductivity and the GNR width, respectively. Here, we
focus on the armchair graphene nanoribbons (aGNRs),
which have stronger optical nonlinearity than the zigzag
graphene nanoribbons (zGNRs). The results for the non-
linear response of the zGNRs are provided in Supplemen-
tal Material [53].

aGNRs are categorized into three families, based on
the number of dimers in a unit cell: 3N , 3N + 1, and
3N + 2, with N being an integer [54]. Dimers are the
carbon pairs oriented along the ribbon. (3N +2)-aGNRs
are semimetallic and have the smallest band gap. How-
ever, by increasing the width, the band gap in all three
families decreases. Calculation of the optical nonlinear-
ity of nanomaterials requires an accurate band structure.
So, we use a third-nearest-neighbor tight-binding method
to calculate the band structure of hydrogen-passivated
GNRs. These results are in an excellent agreement with
the results of the ab initio calculations [54]. According to
Son et al., who used the local spin density approximation
in their calculations, bond shortening near the edges of
aGNRs, which happens because of hydrogen termination,
has a crucial effect on their band structure [54]. There-
fore, in our tight-binding method, we modify the edge-
bond lengths, which corresponds to the change of hop-
ping energies between carbon atoms at the edges. The
details of the calculation of the aGNR band structure are
provided in [51].

We begin by looking at the frequency dependence of
the third-order conductivity, σ(3)(ω). In Fig. 2, we
show the magnitude of the third-order conductivity for
three ∼10-nm-wide aGNRs on two different substrates:
SiO2 and hBN. The third-order conductivity asymptot-
ically drops as ω−3; however, different characteristic
time scales corresponding to different electron scatter-
ing mechanisms cause deviations from the ω−3-behavior.
Figure 2 also shows that, between the two substrates,
supported-on-hBN aGNRs show a moderately stronger
nonlinearity. However, independent of the substrate or
the aGNR family type, the Kerr nonlinearity is at least
an order of magnitude larger than the THG. The green
shaded areas in Fig. 2 illustrate the third-order conduc-
tivity calculated via the RTA dissipator for the relaxation
times in the range of 10−14−10−11 s. It can bee seen that,
even for relaxation times as large as 10−11 s, the RTA dis-
sipator significantly underestimates the third-order con-
ductivity obtained with the accurate Lindblad-type dis-
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FIG. 2. The absolute value of the the third-order Kerr
conductivity (solid) and the THG conductivity (dashed) for
three different aGNRs, on two different substrates: SiO2 (left)
and hBN (right). The green shaded area shows the third-
order conductivity calculated via the RTA dissipator for the
relaxation times in the range of 10−14 − 10−11 s. The sheet
carrier density is 5×1012 cm−2 (i.e., the line carrier density is
∼ 5× 106 cm−1). The third-order conductivity is normalized
to σ0 = e2/h.

sipator.

To understand the dependence of σ(3)(ω) on the aGNR
width and carrier density, we calculate the third-order
conductivity for different (3N+2)-aGNRs at ω = 10 THz
(∼= 41 meV) (Fig. 3). The results for zGNRs and other
types of aGNRs are provided in Supplemental Material
[53]. As Fig. 3 shows, the third-order nonlinearity has
a strong dependence on the line carrier density and can
be tuned over several orders of magnitude by changing
the line carrier density or, equivalently, the Fermi level.
We also calculated σ3(ω) via the RTA dissipator with
the relaxation times extracted from the dc mobility. The
RTA dissipator (open circles in Fig. 3) not only fails to
capture the carrier-density dependence, but also signifi-
cantly underestimates the nonlinear conductivity in the
intraband regime. To understand the reason for these
behaviors, we look at the electron-energy distribution.

The perturbation expansion of the lth-subband

electron-energy distribution is fl(k) = f0
l (k)+f

(1,1)
l (k)+

· · · , where f0
l (k) is the lth-subband Fermi-Dirac distri-

bution and f
(1,1)
l (k) is the lth-subband first-order first-

harmonic electron-energy distribution calculated from

ρ
(1,1)
e . Figure 4 shows the first-order electron-energy dis-

tribution for the first conduction subband of a 38-aGNR,
which is one of the aGNRs appearing in the valley in
Fig. 3, for different carrier densities. The large third-
order conductivity of GNRs occurs because the electron-
energy distribution is jagged. At their onset, the inelas-
tic intraband scattering mechanisms and the intersub-
band scattering mechanisms cause dips in the electron-
energy distribution. The jaggedness is more pronounced
near the subband extrema (owing to the large electronic
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FIG. 3. The absolute value of the third-order THG conduc-
tivity (left) and the third-order Kerr conductivity (right) at
10 THz and for different (3N + 2)-aGNRs. The third-order
conductivity is calculated via the Lindblad dissipator (solid)
and the RTA dissipator (open). The RTA dissipator signifi-
cantly underestimates the third-order conductivity.

density of states) and also close to the maximum of

f
(1,1)
l (k). The f

(1,1)
l (k) maximum occurs approximately

at the Fermi energy; therefore, when the Fermi level is
far from the subband extrema, the effect of electron scat-
tering is dampened. This explains the carrier-density de-
pendence of σ3(ω) in Fig. 3. Unlike the Lindblad dissipa-
tor, the RTA dissipator fails to capture these quantum-
mechanical phenomena.

In short, electron scattering plays a nontrivial role
in the strong third-order optical response of GNRs at
THz frequencies and requires an accurate quantum-
mechanical model to be captured, rather than simplified
semiclassical models based on the RTA. As a consequence
of the complicated interplay among different electron-
scattering mechanisms and the Fermi-level position, the
third-order nonlinearity of GNRs (particularly (3N + 2)-
aGNRs) can be tuned by varying electronic density, for
example by a back gate.

B. Interband regime

In the range of mid-IR to near-IR frequencies, photons
have enough energy to mediate interband electronic tran-

sitions. In other words, the nonlinear optical response is
dominated by the interband optical transitions instead
of the intraband ones. Therefore, it is more appropri-
ate to show the nonlinear optical response in terms of
susceptibility, χ(s,ps)(ω).

In Fig. 5, we show the third-order susceptibility,
χ(3)(ω), of 81, 82, and 83-aGNRs, which are all approx-
imately 10-nm wide. The THG susceptibility can be as

large as 10−14 m2

V2 in the near-IR and at least three orders
of magnitude smaller than the third-order Kerr suscepti-
bility. The third-order Kerr susceptibility can be as large

as 10−10 m2

V2 , considerably greater than the plasmon-
enhanced third-order Kerr susceptibility, which can be

as large as 10−12 m2

V2 [45]. In addition to the larger third-
order susceptibility, the long-wavelength-limit nonlinear
response is more broadband than the plasmon-enhanced
nonlinear response. In GNRs, owing to the low electronic
density of states and thus lower rates of electron scatter-
ing, plasmon resonances are sharp and narrowband [51].

In order to compare the RTA dissipator and the Lind-
blad dissipator, we also calculate the third-order suscep-
tibility via the RTA dissipator (dashed curves in Fig. 5).
We extracted the relaxation times from the dc mobility.
The THG susceptibility calculated via the RTA dissi-
pator and the Lindblad dissipator are in a good agree-
ment with each other; however, the RTA dissipator sig-
nificantly overestimates the Kerr nonlinearity, unlike in
the intraband regime, in which the RTA dissipator un-
derestimates the Kerr nonlinearity by several orders of
magnitude. Moreover, the RTA dissipator does not cal-
culate the phase of the third-order Kerr susceptibility
accurately. The phase of χ(3,1)(ω) is as important as its
magnitude, because it determines how the GNR χ(3,1)(ω)
adds to the χ(3,1)(ω) of other materials in the waveguide.
The bottom line is that the relaxation time corresponding
to the dc mobility fails to reproduce the Kerr nonlinearity
in the interband regime.

Figure 5 also shows that, in the interband regime, the
third-order susceptibility has a very weak dependence on
the carrier density or, equivalently, on the Fermi energy.
In the interband regime, the dominant optical transi-
tions are those happening between a full subband in the
valence band and an empty subband in the conduction
band; both subbands involved are far from the Fermi en-
ergy. However, this phenomenon makes the frequency
dependence of the third-order susceptibility quite com-
plex. When the frequency equals the interband oscilla-
tion energy, it is an onset of a new pathway for opti-
cal transitions and the susceptibility shows sharp jumps
(Fig. 6a). This means that the third-order susceptibility
strongly depends on the electron-energy dispersion, and
consequently depends on the GNR edge orientation and
width.

For understanding the width dependence of the GNR
optical nonlinearity, we calculate the third-order Kerr
susceptibility at a telecommunication frequency (1.55
µm) for different aGNRs (Fig. 6b). The aGNR widths
are in the range of ∼3 to 12 nm. The Kerr susceptibility
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FIG. 4. (a) The electron-energy dispersion of a 38-aGNR. The arrows show a few of the electronic transitions due to
different electron scattering mechanisms. (b) The first-order electron-energy distribution for the first conduction subband of
the 38-aGNR for three different carrier densities. The intrasubband inelastic electron scattering mechanisms and intersubband
electron-scattering mechanisms cause dips in the electron-energy distribution. For the 5× 1012 cm−2 carrier density, the Fermi
level is far from the subbands extrema and the electron scattering effect is reduced.

can be as large as 10−10 m2

V2 , when an interband oscilla-
tion energy falls in the telecommunication window. This
suggests that, by edge and strain engineering, one can
maximize the GNRs Kerr susceptibility at the frequen-
cies of interest. Like in the intraband regime, the hBN-
supported aGNRs show a stronger optical nonlinearity
than those on SiO2. It should be noted that the Kerr
nonlinear susceptibility of the zGNRs is at least an order
of magnitude smaller than the Kerr nonlinear suscepti-
bility of the aGNRs; see SM for details.

In addition to the third-order susceptibility, another
important figure of merit in nonlinear-optics applications
(e.g., all-optical switching) is the phase shift caused by
the nonlinearity, which must ideally be about π for ef-
ficient switching [12]. The phase shift, ∆φ, is equal to
E2

E2
0
, with E being the electric field. E0 is the character-

istic electric field and equals
√
|χ(1,1)|
|χ(3,1)| . The lower the

characteristic electric field, the lower the electric field
required to achieve the same phase change. Figure 6c
shows the characteristic electric field for different aGNRs
at the telecommunication frequency. The characteristic
field can be as low as ∼ 5kV

cm . Therefore, for a phase shift
comparable to π, the corresponding optical field intensity
can be as low as 0.3 MW

cm2 . Also, as a direct consequence of

larger |χ(3,1)| for hBN-supported aGNRs, the characteris-
tic electric field is smaller for aGNRs supported on hBN.
In short, large third-order Kerr susceptibility, along with
a relatively small characteristic electric field, [12] make
GNRs a promising material for nonlinear nanophoton-
ics applications, and particularly for all-optical switching
applications.

IV. CONCLUSION

In the long-wavelength regime, the third-order suscep-
tibility (particularly the Kerr susceptibility) of GNRs
(particularly, aGNRs) is remarkably large and also
broadband, from terahertz to the nearinfrared. The large
third-order susceptibility lowers the required optical field
intensity and makes GNRs a promising material for in-
tegrated nonlinear nanophotonics applications. We used
a quantum-mechanical master equation that accurately
accounts for electron scattering to show that, in the re-
tarded regime, electron scattering plays a critical role in
the optical nonlinearity of GNRs. At terahertz frequen-
cies, where the intraband optical transitions are domi-
nant, the strong nonlinearity (in particular, third-order
Kerr nonlinearity) stems from the jagged shape of the
electron energy distribution, caused by the interband
electron scattering mechanisms along with the intraband
inelastic scattering mechanisms. The relaxation-time ap-
proximation fails to capture this quantum-mechanical
phenomenon and results in a significant underestimation
of the intraband nonlinearity and a significant overesti-
mation of the interband nonlinearity. At the midinfrared
and nearinfrared frequencies, the interband optical tran-
sitions are dominant and Kerr nonlinearity of GNRs can

be as large as 10−10 m2

V2 . Unlike in the intraband regime,
the relaxation-time approximation significantly overesti-
mates the Kerr nonlinearity in the interband regime. In
short, electron scattering has a critical effect on the opti-
cal nonlinearity of nanostructured graphene and must be
accurately computed within a quantum transport frame-
work.
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Appendix A: Nonliear response via SCF-MMEF

Here, we use the SCF-MMEF along with the per-
turbation theory to calculate the nonlinear optical re-
sponse of GNRs. The self-consistent potential energy,
with the frequency of ω and the wave vector of q, can
be written as VSCF(t) = VSCFe

iqx−iωt + V ∗SCFe
−iqx+iωt,

where x-axis is aligned along the GNR. By assuming
the self-consistent field as the perturbation, the sth-order
pths -harmonic conductivity, we start with the continu-

ity equation, −eωn(s,ps)
` = qJ

(s,ps)
` , where n` and J`

are, respectively, the induced charge line density and
the induced current line density and are assumed to be
uniformly distributed across the ribbon. (Note: ` de-
notes line.) Also, the constitutive relation between the
self-consistent electric field and the current density is

J
(s,ps)
` = σ

(s,ps)
` (ESCF)ps+ s−ps

2 (E∗SCF)
s−ps

2 , with σ` being
the line conductivity. Incorporating the continuity equa-
tion, the constitutive equation, and −eESCF = −iqVSCF,
we obtain

σ
(s,ps)
` (q, ω) =

(−i)pseω
q2

(
e

q
)s−1P

(s,ps)
` (q, ω). (A1)

In the above equation, P
(s,ps)
` is the line polarization and

is defined as the ratio between the induced charge line
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aGNRs on SiO2 (left) and hBN (right).

density and the self-consistent field:

P
(s,ps)
` (q, ω) =

−en(s,ps)
l (q, ω)

VSCF
ps+ s−ps

2 V ∗SCF

s−ps
2

. (A2)

The sth-order line polarization defined above has units
of C

m Js . To avoid confusion, we denote the (volume)
polarization (the dipole moment volume density) with
P. The (volume) polarization P and the induced charge

volume density relate as iqP(s,ps) = − en
(s,ps)
`

Wd , where W
and d are the width and the thickness of the GNR, re-
spectively. Incorporating this equation, the constitutive

equation P(s,ps) = ε0χ
(s,ps)(ESCF)ps+ s−ps

2 (E∗SCF)
s−ps

2 ,
and Eq. (A1) yields

χ(s,ps)(q, ω) =
iσ(s,ps)

ε0psωd
, (A3)

where χ(s,ps) is the nonlinear susceptibility and σ = σ`

W
denotes the nonlinear (sheet) conductivity. Knowing the
nonlinear conductivity [Eq. (A1)] and, consequently,
the nonlinear susceptibility [Eq. (A3)] requires knowing

the polarization, P
(s,ps)
` . We generalize the SCF-MMEF

[51, 52] to calculate the nonlinear polarization. We start
with the total Hamiltonian within the self-consistent-field

approximation that is H(t) = He +VSCF(t) +Hcol +Hph.
He is the unperturbed Hamiltonian of the electronic sys-
tem, with the eigenkets and eigenenergies of He being
represented by |kl〉 and εkl, respectively. k is the wave
vector along the x axis, l is the band index. (Note: l
denotes the subband index and ` denotes line.) Hph de-
notes the free Hamiltonian of the phonon bath. Also, Hcol

corresponds to the collision Hamiltonian. All interaction
Hamiltonian can be written in the following general form

Hint =
∑
kq,l′lMint(q)(k + ql′|kl)c†k+ql′ckl ⊗ Bq,v, where

c and c† are the electron annihilation and creation oper-
ators, respectively. Mint(q) is the interaction strength.
Bq,v operates on the phonon bath and (k + ql′|kl) is the
overlap integrals. The details of the interaction Hamilto-
nian and also, the self-consistent field calculation are pro-
vided in [51]. The polarization in the second-quantization
representation reads

P
(s,ps)
` (q, ω) = − e

L

∑
k,l′,l

〈c†klck+psql′〉(s,ps)

VSCF
ps+ s−ps

2 V ∗SCF

s−ps
2

× (kl|k + psql
′),

(A4)

where 〈c†klck+psql′〉 = tre{c†klck+psql′ρe}, is the expecta-
tion value of the coherences. Now, we calculate the time
dependence of the expected value of the coherences via
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a quantum master equation. Within the Born approxi-
mation and Markov approximation [51, 52, 55, 56], the
equation of motion of the electron-density matrix is

dρe(t)

dt
=− i

~
[He, ρe(t)]−

i

~
[VSCF(t), ρe(t)]

− 1

~2

∫ ∞
0

dτ trph

{
[Hcol, [H̃col(−τ), ρe(t)⊗ ρph]]

}
.

(A5)

The tilde symbol denotes the operators in the inter-

action picture, i.e. Õ(t) = U†0(t)O(t)U0(t). U0 is

the unitary time-evolution operator corresponding to
He + VSCF(t) + Hph. Now, We use a perturbative ap-
proach to solve Eq. (A5) for the density operator. The
perturbation expansion of the electron-density matrix is

ρe(t) =
∑
s ρ

(s)
e (t) =

∑
s,ps

ρ
(s,ps)
e e−ipsωt+h.c. By substi-

tuting the perturbation expansion of the density matrix
into Eq. (A5), solving it for the time harmonic solutions,
knowing that VSCF(t) has no diagonal elemnts, and keep-
ing only the sth-order and pths -harmonic terms, we get

−iωρ(s,ps)
e =− i

~
[He, ρ

(s,ps)
e ]− i

~
[VSCF, ρ

(s−1,ps±1)
e ]

− 1

~2

∫ ∞
0

dτ trph

{
[Hcol, [e

− i
~ (He+Hph)τHcole

i
~ (He+Hph)τ , ρ(s,ps)

e ⊗ ρph]]
}
.

(A6)

Now, by following the same procedure as in Ref. [52], we
use the above equation to obtain the equation of motion

for 〈c†klck+psql′〉(s,ps):

~psω〈c†klck+psql′〉
(s,ps) = (εk+psql′ − εkl)〈c

†
klck+psql′〉

(s,ps)

+ VSCF

∑
k′mm′

tre
{[
c†k′+qm′ck′m, ρ

(s−1,ps−1)
e

]
c†klck+psql′

}
(k′ + qm′|k′m)

+ V ∗SCF

∑
k′mm′

tre
{[
c†k′−qm′ck′m, ρ

(s−1,ps+1)
e

]
c†klck+psql′

}
(k′ − qm′|k′m)

+ iπ
∑

k′mm′g

[
δ(εk′m − εkl ± ~ωg)

(
W±k′−k,g ±∆Wk′−k,gfkl

)
× (k + psql

′|k′ + psqm
′)(k′m|kl)〈c†k′mck′+psqm′〉

(s,ps)
]

+ iπ
∑

k′mm′g

[
δ(εk′+psqm′ − εk+psql′ ± ~ωg)

(
W±k′−k,g ±∆Wk′−k,gfk+psql′

)
× (k′m|kl)(k + psql

′|k′ + psqm
′)〈c†k′mck′+psqm′〉

(s,ps)
]

− iπ
∑

k′mm′g

[
δ(εk′m′ − εkm ± ~ωg)

(
W∓k′−k,g ∓∆Wk′−k,gfk′m′

)
× (k′m′|kl)(km|k′m′)〈c†kmck+psql′〉

(s,ps)
]

− iπ
∑

k′mm′g

[
δ(εk′+psqm − εk+psqm′ ± ~ωg)

(
W∓k′−k,g ∓∆Wk′−k,gfk′+psqm

)
× (k + psql

′|k′ + psqm)(k′ + psqm|k + psqm
′)〈c†klck+psqm′〉

(s,ps)
]
.

(A7)

W±k′−k,v is the scattering weight. The expression for
the scattering weights of the acoustic-phonon scattering,
longitudinal-optical scattering, ionized-impurity scatter-
ing, line-edge-roughness scattering, and the surface-
optical-phonon (SO-phonon) scattering is provided in
Ref. [51].

Phonon–phonon scattering results in a finite phonon
lifetime [57, 58]. This, of course, holds for SO phonons

in polar materials, such as SiO2 or hBN, as well. The
finite lifetime of SO phonons is equivalent to their broad-
ened energy (~∆ωSO), which can be seen in their trans-
mittance spectra obtained via spectrometry. We extract
the broadening of the SO-phonon energies in SiO2 and
hBN from their complex dielectric function [52]. We con-
sider the full width at half maximum (FWHM) of the
imaginary part of the dielectric function at a SO-phonon
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resonance as its energy broadening. The broadening en-
ergy of SO-phonons in SiO2 and hBN is approximately
4-6 meV, which is not negligible and its effect on the
electron-SO-phonon scattering needs to be taken into ac-
count. To do so, we substitute a SO-phonon mode at ωSO

with the corresponding scattering weight ofW with three
SO-phonon modes at ωSO− ∆ωSO

2 , ωSO, and ωSO + ∆ωSO

2

with the corresponding scattering weights of 1
4W, 1

2W,

and 1
4W, respectively.

Depending on the nature of optical transitions in differ-
ent regimes of interest, Eq. (A7) can be simplified, con-
siderably. In the intraband regime, we could assume that

for l 6= l′, 〈c†klck+psql〉(s,ps) = 0. In the interband and the

long-wavelength regime, the optical transitions between
the corresponding valence and conduction subbands are
dominant. As a result, Eq. (A7) can be decoupled into
pairs of lth-conduction and lth-valence subbands. In or-
der to solve Eq. (A7) numerically, we discretize the Bril-
louin zone and rewrite Eq. (A7) in the matrix form:

E(s,ps)X (s,ps) =F (s,ps)

+ i(R(s,ps) −R′(s,ps) −R′′(s,ps))X (s,ps),

(A8)

where

E(s,ps)
{kl′l}{k′m′m} =δ{kl′l}{k′m′m}(εkl − εk+psql′ + ~ω), (A9aa)

X (s,ps)
{kl′l} =

〈c†klck+psql′〉(s,ps)

VSCF
ps+ s−ps

2 V ∗SCF

s−ps
2

, (A9ab)

R(s,ps)
{kl′l}{k′m′m} =

L

~
∑
g

εk′+psqm′=εk+psql′∓~ωg

[
W±k′−k,g ±∆Wk′−k,gfk+psql′

]
∣∣∣∂εk′+psqm

∂k′

∣∣∣ (k′m|kl)(k + psql
′|k′ + psqm

′)

+
L

~
∑
g

εk′m=εkl∓~ωg

[
W±k′−k,g ±∆Wk′−k,gfkl

]
∣∣∣∂εk′m∂k′

∣∣∣ (k + psql
′|k′ + psqm

′)(k′m|kl),

(A9ac)

R′(s,ps)
{kl′l}{kl′m} =

L

~
∑
m′g

εk′m′=εkm∓~ωg

[
W∓k′−k,g ∓∆Wk′−k,gfk′m′

]
∣∣∣∂εk′m∂k′

∣∣∣ (k′m′|kl)(km|k′m′), (A9ad)

R′′(s,ps)
{kl′l}{km′l} =

L

~
∑
mg

εk′+psqm=εk+psqm′∓~ωg

[
W∓k′−k,g ∓∆Wk′−k,gfk′+psqm

]
∣∣∣∂εk′+psqm

∂k′

∣∣∣
× (k + psql

′|k′ + psqm)(k′ + psqm|k + psqm
′) .

(A9ae)

And for s > 1,

F (s,ps)
{kl′l} =

∑
k′m

〈c†klck+(ps−1)qm〉(s−1,ps−1)

VSCF
ps+ s−ps

2 −1V ∗SCF

s−ps
2

(k + psql
′|k + (ps − 1)qm)

−
∑
k′m

〈c†k+qmck+psql′〉(s−1,ps−1)

VSCF
ps+ s−ps

2 −1V ∗SCF

s−ps
2

(k + qm|kl)

+
∑
k′m

〈c†klck+(ps+1)qm〉(s−1,ps+1)

VSCF
ps+ s−ps

2 V ∗SCF

s−ps
2 −1

(k + psql
′|k + (ps + 1)qm)

−
∑
k′m

〈c†k−qmck+psql′〉(s−1,ps+1)

VSCF
ps+ s−ps

2 V ∗SCF

s−ps
2 −1

(k − qm|kl).

(A9b)

It should be noted that 〈c†klck−psql′〉(s,−ps) =
[
〈c†k−psql′ckl〉

(s,ps)
]∗

. For s = 1, F (1,1)
{kl′l} =
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(fkl − fk+ql′)(k + ql′|kl). By solving Eq. (A8) for X (s,ps), we use equation Eq. (A4) to calculate the po-
larization, and consequently, the nonlinear conductivity
and the nonlinear susceptibility.
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