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Robust electronic edge or surface modes play key roles in the fascinating quantized responses
exhibited by topological materials. Even in trivial materials, topological bands and edge states
can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs)
inherently exist out of equilibrium; the extent to which they can host quantized transport, which
depends on the steady state population of their dynamically-induced edge states, remains a crucial
question. In this work we obtain the steady states of two dimensional FTIs in the presence of the
natural dissipation mechanisms present in solid state systems. We give conditions under which the
steady state distribution resembles that of a topological insulator in the Floquet basis. In this state,
the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the
bulk hosts a small density of excitations. We determine the regimes where topological edge-state
transport persists and can be observed in FTIs.

I. INTRODUCTION

Periodic driving has recently attracted interest as a
promising tool for exploring new phases of quantum mat-
ter [1–23]. Beyond accessing phases resembling those ac-
cessible in equilibrium, “Floquet engineering” also gives
access to anomalous, intrinsically non-equilibrium dy-
namical phases [18–29]. Topological bands of periodically
driven systems have been demonstrated in experiments
in solid state [30, 31], cold atoms [32–36], and optical
systems [37, 38].

One of the most exciting prospects of Floquet engineer-
ing is the possibility to induce robust quantized responses
in topologically trivial materials. In equilibrium, the
combination of non-trivial band topology and thermo-
dynamics gives rise to quantized transport with metro-
logical precision at low temperatures. When non-trivial
band topology is induced dynamically, the system is out
of equilibrium [39–44]; thus we must find new mecha-
nisms for stabilizing quantized transport. The limits on
quantization in the non-equilibrium setting are set by the
dynamics of the system coupled to its environment, and
the resulting steady states that are formed. In particu-
lar, when the system is longer than the inelastic mean
free path (MFP), transport depends crucially on the in-
terplay between the coupling to the system’s leads and
to its intrinsic baths. Our goal is to determine how to
control the fidelity of quantized transport in this setting.

In this work we consider a two-dimensional (2D) Flo-
quet topological insulator which features chiral Floquet
edge modes in a finite geometry (see Fig. 1). In such
a driven electronic system, the natural intrinsic baths
to consider are the phonons of the crystal lattice and
the photons of the ambient electromagnetic environment.
The role of acoustic phonons is mainly to relax momen-
tum and (quasi)energy, while photon emission associated
with particle-hole recombination acts as a primary heat-
ing source in the Floquet band picture (similar consider-
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FIG. 1. (Color online) Quasienergy spectrum of a 2D Flo-
quet topological insulator in a cylindrical geometry. Wavy
arrows illustrate processes due to electron-boson interactions,
captured phenomenologically in Eq. (5). Excitations from the
lower to the upper bulk Floquet band are mediated by radia-
tive recombination (with rate Γrec). Relaxation to the lower
Floquet band is mediated by phonons (Λinter). Phonons also
mediate transitions between the bulk and the edge (γb→e and
Λe→b) and within the edge (γe→e). These processes yield an
insulatorlike steady state filling of the Floquet bands, with
additional electron and hole excitations (filled and empty cir-
cles, respectively). The system is coupled to an energy-filtered
Fermi reservoir with a narrow effective bandwidth (left). In-
set: The non-driven bulk spectrum of the system. The yellow
loops depict the resonance condition of the periodic drive.

ations were applied to one-dimensional systems in [43]).
Due to the edges of the system, the steady state is inho-
mogeneous, and therefore we analyze the system using a
Floquet-Boltzmann approach [45]. To deduce the trans-
port properties of the system, we also consider the effects
of a coupling to an external Fermi reservoir (i.e., a lead).
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Below we show that the steady-state, characterized
by the populations of Floquet-Bloch states, resembles
that of a topological insulator, with an additional non-
equilibrium Fermi sea of electrons and holes in the bulk.
The chiral Floquet edge states are populated according
to a smooth distribution with a well defined Fermi level.
In the presence of coupling to an energy-filtered Fermi
reservoir, whose chemical potential lies in the Floquet
band gap [43], we find that: (1) the bulk excitation den-
sity is insensitive to variations of the reservoir chemical
potential; (2) the Fermi level of the edge states is pinned
to the chemical potential of the reservoir. Using these
results, we show that the fidelity of quantized transport
improves systematically with the ratio of recombination
to electron-phonon scattering rates.

II. MODEL OF THE FTI

We now introduce the model for the driven system. We
consider a two-band 2D model, described in the absence
of driving by the Hamiltonian

Ĥ0 =
∑
k

ĉ†kν (d(k) · σ)νν′ ĉkν′ , (1)

where σ = (σx, σy, σz) is the vector of Pauli ma-

trices, and ĉ†kν creates an electron with quasimo-
mentum k and pseudospin ν = {↑, ↓}. We take
d(k) = (A sin(akx), A sin(aky),M − 4B + 2B cos(akx) +
2B cos(aky)), such that Eq. (1) describes half the degrees
of freedom in the BHZ model for time-reversal invariant
semiconductor quantum wells [46–48]. Here A,B and M
are material-dependent parameters, and a is the lattice
constant of the crystal. We assume a trivial semiconduc-
tor (with non-inverted band structure), with M > 0 and
B < 0.

The semiconductor is periodically driven by an exter-
nal field with an above-gap frequency Ω. For simplic-
ity we consider a uniform driving field of amplitude V0

that couples to electrons through σz [49], modeled by the
time-dependent Hamiltonian

ĤV (t) =
1

2
V0 cos(Ωt)

∑
k

ĉ†kνσ
z
νν′ ĉkν′ . (2)

The qualitative results we present in the paper do not
depend on the details of the driving field, but only on the
topological features of the band structure (see discussion
below).

Below we work in the basis of Floquet-Bloch eigen-
states of the time-periodic single particle Hamilto-

nian Ĥ0 + ĤV (t) =
∑

k ĉ
†
kν [H(t)]k,νν′ ĉkν′ . The Flo-

quet eigenstates satisfy
(
i~ ∂
∂t −H(t)

)
|ψ(t)〉 = 0, with

|ψ(t)〉 = e−iεt/~|φ(t)〉. Here |φ(t)〉 = |φ(t+ T )〉 is peri-
odic with period T = 2π/Ω, and ε is the quasienergy.
Throughout, we use the convention −~Ω/2 ≤ ε < ~Ω/2.

The driving field yields resonant transitions between
the valence and conduction bands along a closed curve in

momentum space, see Fig. 1 (inset). A gap of magnitude
∆1 ∝ |V0| opens at quasienergy ε = 0 (corresponding to
energy ~Ω/2 of the static system), yielding two separate
quasienergy bands. The driving field leads to an effective
band inversion of the Floquet bands with respect to the
original non-driven band structure. An important conse-
quence of this band inversion is the appearance of chiral
edge states in the gap at ε = 0 for a system in a finite
geometry with edges [7]. We restrict ~Ω > |M − 8B|,
such that there is only a single-photon resonance [50].

We label the bulk Floquet states by the quasimo-
mentum k and a Floquet band index α = ± (dis-
tinct from the band index of the non-driven system):
|ψkα(t)〉 = e−iεα(k)t/~∑

m e
imΩt|φmkα〉 [51, 52]. We refer

to the Floquet bands with quasienergies 0 < ε < ~Ω/2
and −~Ω/2 < ε < 0 as the upper (+) and lower (−)
Floquet bands, respectively, see Fig. 1.

In the following, we will consider a system with pe-
riodic boundary conditions in the x direction, and open
boundary conditions in the y direction. As seen in Fig. 1,
in this geometry the edge states exist for quasimomen-
tum kx in the interval −kR . kx . kR, where kR is the
maximal value of kx for which the driving field is reso-
nant. We denote the Floquet edge states as |χkxβ(t)〉,
where the label β corresponds to the left (L) and right
(R) edges (at y = 0 and y = Ly), for which ∂ε/∂kx is
negative and positive, respectively, see Fig. 2a.

III. COUPLING TO A BOSONIC HEAT BATH

The open, driven system evolves to a steady state, gov-
erned by its coupling to one or more heat baths (taken
to be at zero temperature). We first focus on the bosonic
bath, and consider the roles of acoustic phonons and pho-
tons (associated with radiative recombination). Using
the label λ = `, s to denote the photon (light) and acous-
tic phonon (sound) modes, we describe the dynamics of
each mode by the Hamiltonian

Ĥλ =
∑
q

~vλ |q|
(
b̂†λ,q b̂λ,q +

1

2

)
. (3)

Here b̂†λ,q are creation operators of λ-bosons. The ve-
locity vλ is taken to be constant and isotropic for each
mode. While the electronic degrees of freedom are con-
fined to a 2D plane, we take the bosonic bath modes
to live in three dimensions; for simplicity we consider a
single polarization mode for each boson type. For the (fi-
nite bandwidth) acoustic phonon bath, we take a linear
dispersion up to a Debye frequency, ωD [53].

Inspired by the physics of semiconductor quantum
wells, we assume that emission of a photon is accom-
panied by a pseudo-spin flip (corresponding to a change
of one unit of electronic angular momentum). Further-
more, we take the interaction with acoustic phonons to
conserve the pseudospin index, as acoustic phonons have
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suppressed matrix elements between different atomic or-
bitals. The Hamiltonian describing local interactions be-
tween electrons and λ-bosons thus reads:

Ĥe−λ =
∑
r

ĉ†rν

[
η†λ,νν′ b̂

†
λ,r + ηλ,νν′ b̂λ,r

]
ĉrν′ , (4)

where ηs = gs1 for electron-phonon coupling, and η` =
g`σ

+ for electron-photon coupling. The quantities g` and
gs denote the associated coupling strengths. In Eq. (4),
the coordinate r is confined to the 2D plane.

In closing this section defining the model, we note that
the full Hamiltonian possesses particle-hole and inversion
symmetry at all t. The system’s Floquet spectrum and
the kinetic equations derived below exhibit corresponding
symmetries. However, our qualitative conclusions do not
depend on these symmetries.

IV. PHENOMENOLOGICAL MODEL FOR THE
STEADY STATE

Before diving into the full kinetic equation, we first
characterize the steady states using a simplified phe-
nomenological model, which takes into account the most
significant contributions to the population kinetics in the
system (see Fig. 1). In the following discussion, we re-
strict our attention to a half-filled system.

Generically, the population kinetics in a driven system
differs from that of a system in thermal equilibrium, due
to scattering processes in which the total quasienergies of
the incoming and outgoing modes differ by integer multi-
ples of ~Ω. As a starting point, we first consider a system
in which the sums of quasienergies of the incoming modes
and outgoing modes are strictly equal in all scattering
processes (which requires the system-bath coupling to
obey special conditions [54–58]). In this situation, the
steady state of the driven system is simply given by a
Fermi-Dirac distribution in terms of the Floquet bands,
with the ordering of quasienergies (i.e., choice of Floquet-
Brillouin zone) as used in Fig. 1. The temperature of
the distribution is that of the phonon bath. For a half-
filled system, we obtain an ideal FTI: when the bath is
at zero temperature, the lower (upper) Floquet band is
filled (empty), and the edge state is filled up to the Fermi
level at ε = 0 (corresponding to kx = 0).

Our goal is to obtain the steady state of the system in
the presence of all scattering processes, including those
where the total quasienergy changes by a multiple of ~Ω.
These “Floquet-Umklapp” processes, which occur even
when the bath is at zero temperature, create excitations
from the lower to the upper Floquet band. Thereby, they
act as a source of “quantum heating” in the Floquet
basis [59, 60]. We characterize the steady state in the
bulk by the density of excited electrons in the “upper”

(+) bulk Floquet band, nb =
∫

d2k
(2π)2 〈ψ̂

†
k+(t)ψ̂k+(t)〉. At

each edge the steady state is characterized by the den-
sity of excited particles above the Fermi level of the ideal
FTI (ε = 0). For the right edge, this density is given

by ne =
∫ kR

0
dkx
2π 〈χ̂

†
kxR

(t)χ̂kxR(t)〉. The operators ψ̂†kα(t)

and χ̂†kxβ(t) create electrons in the bulk and edge Floquet

states |ψkα(t)〉 and |χkxβ(t)〉, respectively [61]. The dis-
tributions of electrons in states with ε > 0 and of holes in
states with ε < 0 are related by particle hole symmetry
(see below). Additionally, the distributions in the right
and left edge states are related by inversion symmetry.

For a semiconductor with a sufficiently large band gap,
such that M � ~ωD, Floquet-Umklapp processes result-
ing from phonon scattering are suppressed as [V0/(~Ω)]4

[43]. For simplicity, in our analysis we will assume that
all Floquet-Umklapp process are due to radiative recom-
bination. Since this process involves emission of a pho-
ton, it predominately contributes when the characters of
the initial and final states correspond to the conduction
and valence bands of the undriven system, respectively
(recall that the electron-photon coupling is off-diagonal
in pseudospin). Close to the ideal FTI steady state,
k-modes in the lower Floquet band with momenta in-
side the resonance curve are filled, and have a conduc-
tion band character, while those of the upper band are
empty and have valence band character. Radiative re-
combination between these states leads to a source term
for particles in the upper Floquet band, ṅb = Γrec (see
Fig. 1), with rate Γrec approximately independent of the
excitation density for small deviations from the ideal FTI
state.

Once excited to the upper Floquet band, electrons
quickly relax to the band minima due to scattering by
phonons. Near the Floquet band minima (around the
resonance curve), the Floquet states are hybridized su-
perpositions of valence and conduction band states. This
hybridization allows phonons to scatter electrons from
these minima to empty states near the maxima of the
lower Floquet band. Consider the rate of such phonon-
assisted “recombination” of Floquet-band carriers. Dur-
ing such a process, an electron in the upper band must
find a hole in the lower band. The resulting rate is thus
proportional to the density of electrons times that of the
holes (which are equal at half filling): ṅb ≈ −Λintern2

b.
Next, we account for processes which scatter particles

between bulk and edge states. Such bulk-edge scattering
processes are predominantly phonon-assisted (the rates
for photon-assisted bulk-edge scattering are suppressed
by a small density of states). Assuming a small pop-
ulation of excited electrons (with ε > 0) on the edge,
ne � 1/a, bulk-to-edge processes predominantly take ex-
cited electrons in the upper Floquet band to the nearly
empty k-space region of the edge states (with kx > 0,
for the right edge). In contrast, edge-to-bulk processes
require that the scattered edge electron finds an empty
bulk state (i.e., a hole) in the lower Floquet band (see
Fig. 1). The corresponding rate is thus proportional to
both the densities of excitations on the edge and in the
bulk. We therefore estimate the contribution of bulk-
edge processes to ṅe as ṅe = γb→enb − Λe→bnbne. The
parameters γb→e and Λe→b encode the rates of bulk-to-
edge and edge-to-bulk scattering processes, respectively.
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Last, we account for phonon-assisted scattering of par-
ticles within the edge. At low phonon temperatures, such
processes predominately decrease the quasienergy of the
electrons, and thus tend to decrease the density of excited
particles on the edge. The requirement that an excited
edge-electron finds an edge-hole gives ṅe = γe→en2

e .
Summing up the processes above, we arrive at the rate

equations for the bulk and edge excitation densities:

ṅb = Γrec − Λintern2
b −

2

Ly

(
γb→enb − Λe→bnbne

)
(5a)

ṅe = γb→enb − Λe→bnbne − γe→en2
e . (5b)

The steady state solution for the above equations is ob-
tained for ṅb = ṅe = 0.

In the thermodynamic limit, the rate parameters in
Eq. (5) become independent of system size (see Ap-
pendix A). Note that in Eq. (5a), the source term for
the 2D density nb due to coupling to the 1D edge is mul-
tiplied by a factor of 1/Ly. Thus for Ly → ∞, Eq. (5a)
yields a bulk excitation density nb which is independent
of ne, and scales as

nb ≈ κ
1
2 , κ = Γrec/Λinter. (6)

As expected, the bulk excitation density is unaffected
by the presence of the edge. The dimensionless pa-
rameter κa4 captures the competition between “heating”
(Floquet-Umklapp) and “cooling” processes in the bulk.

The rates controlling the excitation density on the edge
in Eq. (5b) are predominantly due to phonon-assisted
scattering. Therefore their ratios do not scale with κ.

For sufficiently small κ, we reach γe→eγb→e

(Λe→b)2
� nb. In this

limit, the second term in Eq. (5b) can be omitted and we
find for the steady state:

ne ≈
(
γb→e/γe→e

) 1
2 κ

1
4 , (7)

where the ratio γb→e/γe→e is independent of κ.
The bulk excitation density nb estimated in Eq. (6)

represents a spatial average over the full system. In a
more detailed picture, we expect the excitation density
to be inhomogeneous, deviating from the bulk value es-
timated in Eq. (6) near the edges. We investigate the
spatial dependence of nb below.

V. MICROSCOPIC ANALYSIS OF THE
STEADY STATE

We now turn to a more microscopic treatment, and
characterize the steady state using a Floquet-Boltzmann
equation approach. We focus on the regime where the
MFP is larger than the characteristic wavelength of elec-
trons. We characterize the steady state in the bulk in
terms of a phase space distribution function fb

kα(r; t).
Due to the translational invariance of the cylinder, we

(b)(a)

L R

J
J

FIG. 2. (Color online) (a) Schematic drawing of the system
coupled to leads in the cylinder geometry. Dark blue rings
indicate the right (R) and left (L) edge states. The energy
filtered leads are set to have equal chemical potentials, µres,
coupling strength to the system J , and density of states. (b)
Two-terminal transport geometry. Contacts (yellow) are con-
nected to a periodically driven semiconductor (white) through
an energy filter (blue).

assume that the phase space distribution is independent
of x. Therefore we define:

fb
kα(y; t) =

Ly
π

∫
dk′ye

2ik′yy〈ψ̂†k+k′yŷα
(t)ψ̂k−k′yŷα(t)〉. (8)

Note that
∫
d2k

(2π)2 f
b
kα(y; t) gives the density of electrons in

band α at position y (for any x), at time t. A dependence
on y is expected due to the edges at y = 0, Ly [62]. The
distributions within the one-dimensional edge states are

defined as f e
kxβ

(t) = 〈χ̂†kxβ(t)χ̂kxβ(t)〉.
Next, we study the steady-state behaviour of fb

kα(y).
The physics on length scales larger than the MFP is de-
scribed by the Floquet-Boltzmann equation [45],

∂tf
b
kα + vy,α(k)∂yf

b
kα = Ibb

kα + IbR
kα + IbL

kα. (9)

Here vy,α(k) = ~−1∂kyεα(k) is the Floquet band group
velocity in the y direction, and the collision integrals
Ibb
kα, IbR

kα , and IbL
kα describe bulk-bulk, bulk-right-edge

and bulk-left-edge scattering processes, respectively. For
brevity, in Eq. (9) we used fb

kα ≡ fb
kα(y; t); likewise, we

suppressed the dependence of the collision integrals on
y and t. The Boltzmann equation for the edges has a
similar structure, namely, ∂tf

e
kxβ

= Iee
kxβ

+ Ieb
kxβ

.
In explicit form, the collision integral for bulk-to-bulk

scattering processes is given by

Ibb
kα=

∑
k′α′

[
Wkα

k′α′f
b
k′α′(1− fb

kα)−Wk′α′

kα fb
kα(1− fb

k′α′)
]
,

(10)
where Wkα

k′α′ is the total scattering rate from (k, α) to

(k′, α′). The rates Wkα
k′α′ in Eq. (10) are y-independent,

and therefore any y dependence of Ibb
kα arises through

the distributions fb
kα(y; t). In contrast, for the bulk-edge

collision integrals IbR
kα and IbL

kα the corresponding rates
themselves are only significant for values of y near the
edges, due to the spatial profile of the edge states. The
full expressions for all the collision integrals can be found
in Appendix A.

The rate Wk′α′

kα in Eq. (10) can be written as a sum
of phonon (s) and photon (`) assisted scattering rates,
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Wk′α′

kα = Wk′α′

`,kα +Wk′α′

s,kα , given by

Wk′α′

λ,kα =
2π

~
∑
n

∣∣∣∣∣∑
m

〈φmkα|ηλ|φm−nk′α′ 〉

∣∣∣∣∣
2

×

×ρλ
(
εα(k)− εα′(k′) + n~Ω,k − k′

)
.

(11)

The DOS of λ-bosons is given by ρλ(ε, q) =
a2

LxLy

aεΘ(ε−~vλ|q|)
π~vλ
√
ε2−~2v2λ|q|

2
, where (as above) λ = {s, `}. For

relatively low energy emission processes [e.g., relaxation
across the Floquet gap, contributing to Λinter in Eq. (5b)],
the photon DOS is suppressed relative to the phonon
DOS by vs/v` and phonon-emission dominates. For high
energy transfers, the DOS of phonons vanishes when ε is
above the Debye energy, ~ωD. In this work we fix ωD
within the range ∆1 < ~ωD < ∆2, ensuring Floquet-
Umklapp processes induced by phonon scattering are
fully suppressed. Here ∆1 and ∆2 are the gaps centered
at ε = 0 and ε = ~Ω/2, respectively, see Fig. 1.

Within this formalism, we can estimate the phe-
nomenological rates in the effective model, Eq. (5), using
microscopic parameters (for full details see Appendix A).

We denote by Wrec
k =

(
LxLy

4π
Ω2

v2`

)
Wk+
`,k− the recombi-

nation rate for particles initially in the lower Floquet
band. This rate is significant within the resonance curve,
where the Floquet bands are inverted and the charac-
ters of the initial and the final states correspond to the
conduction and valence bands of the non-driven system,
respectively. Thus the source term for the bulk excita-

tion density is Γrec ≈
∫

d2k
(2π)2W

rec
k ≡ AR

(2π)2W
rec

, where

AR is the momentum-space area inside the resonance
curve. We estimate the parameter Λinter characteriz-
ing phonon-assisted relaxation between Floquet bands

as Λinter ≈ LxLyW
inter

, where W inter
= WkR−

s,kR+ is an
average relaxation rate of a particle in the active region
around the minimum of the upper Floquet band. With
these definitions, we obtain an approximate expression

for κ in Eq. (6): κ ≈ ARΩ2vsg
2
`

8π3v3`g
2
s

. The parameters γb→e,

Λe→b, and γe→e can be estimated using the bulk-to-edge
and edge-to-edge scattering rates in the same manner.

VI. NUMERICAL SIMULATIONS

We now numerically solve Eq. (9) in the steady state,

taking ḟkα = 0. We consider the system at half-filling.
Figure 3a shows the spatial dependence of the bulk exci-
tation density, nb(y) =

∫
d2kfk+(y), for three values of

κ. Away from the edges, the density reaches a position-
independent “bulk” value, n0

b. The dependence of n0
b on

κa4 is shown in the inset of Fig 3a, and agrees well with
our estimate in Eq. (6).

The spatial dependence of nb(y) can be accounted for
by generalizing Eq. (5a) to a reaction-diffusion equation
[43] (see Appendix B). From this picture we extract the

“healing length” ξ over which the excitation density re-
laxes to the bulk value n0

b: ξ ≈
√
Dn0

b/(2Γrec), where D
is the diffusion constant. Taking D ≈ v̄2τ , where v̄ is a
typical velocity of the excited carriers in the steady state
and τ is the scattering time (due to phonons), we find
good agreement with the length scales exhibited in our
numerical results (see Appendix C).

Figure 3b shows steady state distributions of the bulk
far away from the edges, for three different values of
κa4. The steady state distribution of the upper band
is well described by a Floquet-Fermi-Dirac distribution
(a Fermi-Dirac distribution in terms of the quasienergy
spectrum), with an effective temperature and chemical
potential obtained as fitting parameters. The distribu-
tion of the lower band is related by particle-hole symme-
try, fb

k,− = 1− fb
−k,+. The chemical potential describing

the distribution in the upper band does not lie in the mid-
dle of the gap. Therefore, to describe the distribution of
the system, we must use two separate Fermi-Dirac distri-
butions, with distinct chemical potentials, for the upper
and lower Floquet bands (for a full analysis of the fit to
the Floquet-Fermi-Dirac distribution, see Appendix D).
Analogous distributions were found for a 1D system in
Ref. [43]. In the absence of photon-assisted recombina-
tion (i.e., when κa4 → 0), the steady state converges to
a global zero-temperature Gibbs state over the Floquet
spectrum [54–56].

The steady state distribution of the particles along the
right edge is shown in Fig. 3c. The distribution of the
left edge is related by inversion symmetry, f e

kxL = f e
−kxR.

We observe that the excitations in the edge states pre-
dominantly accumulate near kx ∼ 0. The shape of the
distribution is approximated to a good accuracy by a
“quasi Fermi-Dirac distribution,” defined as fQFD(ε) =
(1 − δ)fFD(ε, Te) + 1

2δ. Here fFD(ε, Te) is the conven-
tional Fermi function, which we scale by a contrast fac-
tor (0 < δ < 1) to create fQFD. The form of the func-
tion fQFD dictates that the effective temperature Te is
approximately proportional to the excitation density on
the edge, ne. The δ-parameter describes a small density
of particles (holes), uniformly spread along the kx > 0
(kx < 0) part of the edge mode. The electron and hole
“pockets” at the extrema of the bulk Floquet bands pro-
vide the source for this excess density. Thus, we expect
δ to exhibit a similar scaling with κ as the density of
bulk electrons nb. The dependence of nea, and of the
fitted parameters Te and δ on κa4 are shown in Fig. 3a
(inset) and Fig 3c. The results of our simulations are in
a good agreement with Eqs. (6) and (7) and the scaling
arguments above.

VII. COUPLING TO A FERMI RESERVOIR

How are the topological properties of FTIs manifested
in transport measurements? To study this question, we
couple the system to Fermi reservoirs at the two edges,
y = 0 and y = Ly, see Fig. 2a. The Hamiltonian describ-
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FIG. 3. (Color online) Steady state of electrons in a half-filled
system. The simulation was performed using a discretization
with a 50× 50 grid in momentum space, and 11 strips in the
y direction (of width comparable to the healing length ξ, see
text, and Appendix C). (a) Change in spatial dependence of
the excitation density in the bulk bands, normalized by the ex-
citation density deep in the bulk, ∆ñb(y) =

(
nb(y)− n0

b

)
/n0

b,

with n0
b = nb(Ly/2), for three values of κ. The color code in-

dicating the values of κ appears to the right. Inset: Scaling of
the bulk (n0

ba
2) and edge (nea) excitation densities with κa4,

and the fits nea ∼ (κa4)0.26, n0
ba

4 ∼ (κa4)0.5 (black lines).
(b) Distribution of particles in the upper Floquet band (fb

k+)
far away from the edges, for different values of κ. (c) Car-
rier distribution of the right edge (fe

kxR) for the same values
of κ as in (a) and (b), and the non-linear least-squares fit
to the quasi Fermi-Dirac distribution (dashed lines). Inset:
Effective temperature of the edge, T̄e = kBTe/~Ω, and the δ-
parameter of the quasi Fermi-Dirac function, vs. κa4. Dashed
lines represent the fits T̄e ∼ (κa4)0.19, and δ ∼ (κa4)0.45.

ing the right reservoir and its coupling to the system
reads

ĤR
res =

∑
lp

(
Jlpd̂

†
l ĉp + h.c.

)
+
∑
l

(El − µres)d̂
†
l d̂l. (12)

Here we have introduced a super-index p labeling sys-
tem operators, Fourier transformed with respect to x:

p = {kx, y, ν}. Furthermore, d̂†l is the creation operator
for an electron in mode |l〉 of the right reservoir. For
simplicity, we choose a system-lead coupling that does
not introduce a preferred direction in pseudo-spin space.
This is accomplished by taking two degenerate sets of
modes, labeled by l = {kx, El, ν}, where El is the mode’s
energy (which is independent of ν = {↑, ↓}). The left
reservoir and its coupling to the system are described in
an analogous manner. We first consider the left and right
reservoirs to have a common chemical potential, µres.

In general, the values of the couplings Jlp depend on
the precise forms of the reservoir states |l〉, and the de-
tails of the lead-system coupling. We take the couplings
to be uniform in the x̂ direction; for the right lead, we

specify Jlp = JδyLyδν(p)ν(l)δkx(p)kx(l). For the left lead
we replace δyLy with δy0. (We do not expect our re-
sults to change qualitatively for other generic forms of
the reservoirs and the couplings.)

In the following we will consider the effect of the leads
when µres is placed within the Floquet gap. Note that a
Floquet state of the system with quasienergy ε is coupled
to reservoir states in a wide range of energies El = ε+n~Ω
via the harmonics |χnkxβ〉 (or |φnkα〉). As a result, if the
reservoir’s density of states has a wide bandwidth, elec-
trons occupying lead states below the Fermi level can
tunnel into the upper Floquet band of the system. These
processes (and similar processes for holes) increase the
number of excited particles (holes) in the upper (lower)
Floquet band, leading to deviations from the ideal Flo-
quet insulator state. To avoid this deleterious effect, we
couple the Fermi reservoir through a narrow band of “fil-
ter” states [43, 63–65], which effectively limits the den-
sity of states of the Fermi reservoir. In our simulation, we
take the reservoirs to have a box-shaped DOS of width
w, aligned symmetrically around the center of a single
Floquet zone, see Fig. 1.

The introduction of the system-lead coupling, ĤR(L)
res ,

adds additional collision integrals to the Boltzmann equa-
tions for the bulk and edge distributions. The collision
integral describing scattering between the right reservoir
and the right edge state is given by

Ie,res
kxR =

∑
n

J nkxR

[
fFD (εnR(kx)− µres)− f e

kxR

]
. (13)

Here J nkxR = 2π
~ |J |

2
∑
l,ν

∣∣∣〈kx, Ly, ν|χnkx;R〉
∣∣∣2 δ(εnR(kx) −

El), where |kx, Ly, ν〉 is the state created by c†kx,y=Ly,ν

and εnR(kx) = εR(kx) +n~Ω; εR(kx) is the quasienergy of
the right edge state, with quasimomentum kx. The values
of El are limited to the range within the filter window.
An identical expression holds for the left edge state, with
R→ L. In addition, Eq. (9) contains a collision integral

Ib,res
kα describing scattering directly between the leads and

the bulk states. The rates appearing in this collision
integral are significant only for y values sufficiently close
to the leads (see Appendix A).

The coupling strength between the reservoir and the

edge states is characterized by J β = 1
2kR

∫ kR
−kR dkxJ

0
kx;β .

When J β � Λe→bnb (such that tunneling between the
reservoir and the edge states dominates over scattering
from the edge states to the bulk), we expect the dis-
tribution of the edge states to be described by the quasi
Fermi-Dirac distribution fQFD, with an effective chemical
potential µe which is pinned to µres [66]. In contrast, we
expect the total density of bulk excitations n̄b = n+ +n−
to remain constant when µres is changed, as long as µres

remains within the Floquet gap. (The densities n+ and
n− correspond to the densities of electrons and holes in
the upper and lower Floquet bands, respectively.) In
Fig. 4a we plot µe, as well as n̄b(µres)/n̄b(µres = 0), as a
function of µres. The numerical results plotted in Fig. 4a
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FIG. 4. (Color online) (a) The effective chemical potential of
the right edge, µe (triangles), and the total normalized exci-
tation density in the bulk, n̄b(µres)/n̄b(µres = 0) (circles), for
a system coupled to filtered Fermi reservoirs near the left and
the right edges as a function of the common chemical potential
of the two leads, µres. The system-lead couplings are taken
to be J R,J L ≈ 2.4Λe→bnb, and for their filter bandwidths
we take w = ~Ω. The chemical potential µe is computed
by fitting the edge distribution to a quasi Fermi-Dirac dis-
tribution fQFD. (b) The edge contribution to two-terminal
conductance as a function of κa4, for sample size Ly = 5 µm,
and Fermi velocity, ve ≈ 105 m

sec
. The conductance approaches

the quantum limit, e2/h, as κa4 → 0. Inset: The lifetime of
the edge states due to edge-to-bulk scattering processes (τe).
The lifetime scales with κ as τe ∼ (κa4)−0.51.

indeed show the “incompressible” behavior of the bulk
excitation density, and the pinning of µe on the edge to
the chemical potential of the reservoir.

VIII. EDGE STATE TRANSPORT

We consider a two-terminal transport measurement us-
ing a bar geometry, when a voltage bias ∆µ = µR

res−µL
res

is applied between the leads (see Fig. 2b). The current
through an FTI should in general have both bulk and
edge contributions, characterized by a total conductance
of the form G = Ge + (Lx/Ly)σb

yy [67]. To estimate Ge,
we consider an excess charge density on the right-moving
edge due to occupation of edge modes with ε > 0. We de-
note this quantity by ∆ne. The continuity equation for
∆ne is given by ∂t∆ne = −ve∂y∆ne − (∆ne − ne) /τe,
where ve is the edge velocity, τe is lifetime of the edge ex-
citations, and ne is the density of excitations on the right-
moving edge, far away from the leads, see Eq. (7). We de-
fine ∆ne for the left movers accordingly. The lifetime τe
is determined predominantly by edge-to-bulk scattering
processes, such that τe ≈ (Λe→bnb)−1 ∼ κ− 1

2 . Assuming
that the leads set the boundary conditions for ∆ne at
y = 0 and y = Ly, for the right and left movers, cor-
respondingly, we estimate the edge contribution to the
two-terminal conductance: Ge = (e2/h)(1 − δ)e−Ly/τeve
(see Appendix E). Fig. 4b displays the numerically ob-
tained values of τe, and the corresponding estimate for Ge

as a function of κ. As κ→ 0, τe increases and δ decreases;
thus the conductance Ge approaches the quantum limit
e2/h.

IX. DISCUSSION

To estimate physically accessible values of κ, we asso-
ciate the phonon and photon mediated transitions with
the typically observed hot electron lifetime, τhe ∼ 0.1 ps
[68], and the radiative recombination lifetime, τrr ∼
0.1 ns, respectively. For ARa

2 ∼ 10−2, we then esti-

mate κ∗a
4 ≈ ARa

2

(2π)2
τhe
τrr
∼ 10−6. As seen in Fig. 4b, for

this value of κ and a sample of the size Ly = 1 µm, Ge

is within a few percent of the quantized value.
The bulk contribution to the conductivity, σb

yy, will
naturally depend on the material used to implement
the FTI. Prominent candidates are CdTe/HgTe and
InAs/GaSb heterostructures [7], and honeycomb lattice
materials such as transition-metal dichalcogenides [69],
and graphene [32]. The low-temperature mobilities of
these materials vary over a range of a few orders of magni-
tude [70]. Lower mobility samples, in which the bulk con-
ductance is suppressed, may be advantageous for mea-
surements of Ge. We evaluate the bulk conductivity as
σb
yy ≈ 2eµnb ≈ (e2/h)(µ/µ∗)(κ/κ∗)

1
2 , where µ is the mo-

bility and µ∗ = e

2hκ
1/2
∗
∼ 400 cm2

V·sec [71]. The bulk may

also exhibit an anomalous Hall effect due to the non-zero
Berry curvature of the Floquet bands. The Hall conduc-
tivity for low κ is of the order of e2/h and may be further
renormalized by disorder [72].

Our results demonstrate that the topological proper-
ties of the band structures of FTIs, and in particular
the existence of edge states, can be manifested in an ex-
perimentally accessible transport measurement. To fully
explore the possibilities offered by FTIs, other methods
for detecting the edge states need to be developed. These
may include position dependent spectroscopic and mag-
netic probes [73–76], as well as interference measurements
between edge modes [77]. Investigating the role of inter-
particle collisions in the driven system [45, 78–80] is also
an important direction for future study.
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Appendix A: Derivation of the Boltzmann kinetic equation

In this section we derive the Boltzmann equation for the system described in Eqs. (1)-(4). We define the phase
space distribution in the bulk, fb

kα(r; t), (see Eq. (8)) through the Keldysh component of the Green function, GKα =
(1 − 2fb

α)(GRα − GAα ). As in the main text, α = +,− denotes the upper and lower Floquet bands, respectively. The
Green’s function Gα satisfies the Dyson equation [81, 82],(

G−1
α − Σα

)
◦ Gα = 1. (A1)

We write Eq. (A1) for Wigner-transformed functions, Gα(k, r;ω, t), Gα(k, r;ω, t), and Σα(k, r;ω, t). In this repre-

sentation, ◦ ≡ exp
{
i
2

(←−
∂ r
−→
∂ k −

←−
∂ k
−→
∂ r

)
− i

2

(←−
∂ t
−→
∂ ω −

←−
∂ ω
−→
∂ t

)}
denotes the Moyal operator (the arrows denote

whether the derivative acts to the left or the right). The two-point functions over the Keldysh time contour, Gα, Gα,

and Σα are arranged in a matrix form, for instance Gα =

(
GRα GKα
0 GAα

)
[83], and similarly for Gα and Σα. Here Gα is

the free propagator whose inverse is given by [G−1
α ]R/A = ω−εα(k)/~± i0+, [G−1

α ]K ≈ 0 (note that Gα is independent
of r and t). The full form of the self energy Σα appearing in Eq. (A1) will be given below.

The distribution of electrons in the edge states, f e
kxβ

(t) (see below Eq. (8)), is defined through the Keldysh compo-

nent of the edge Green function G̃Kβ = (1− 2f e
β)(G̃Rβ − G̃Aβ ). As in the main text, β = R,L denotes the right and left

edge states. The edge Green’s function G̃β satisfies the Dyson equation [81, 82],(
G̃−1
β − Σ̃β

)
� G̃β = 1. (A2)

where due to translation invariance in the x direction, � ≡ exp
[
− i

2

(←−
∂ t
−→
∂ ω −

←−
∂ ω
−→
∂ t

)]
. The functions G̃β(kx;ω, t),

G̃β(kx;ω, t), and Σ̃β(kx;ω, t) are arranged in a matrix form in a similar manner to the bulk Green’s functions. The

free propagator for the edge states is given by [G̃−1
β ]R/A = ω − εβ(kx)/~± i0+ and [G̃−1

β ]K ≈ 0.

The bulk self energy Σα in Eq. (A1) has contributions from both bulk-bulk and bulk-edge scattering, Σα = Σbb
α +Σbe

α .
We expand the self energy to the second order in the electron-boson coupling. At this order, the diagrams that lead to
the self-energy appear in Fig. 5a. In the following derivation we will use the notation |φnkα〉 and |χnkxβ(y)〉 for the bulk

and edge states appearing in the Fourier decomposition of Floquet states, see the discussion below Eq. (2). Notice
that |φnkα〉 and |χnkxβ(y)〉 are spinors in the pseudospin basis. For bulk-bulk scattering, the Wigner transform of the

self energy Σbb
α is given by

Σbb
α,λ(k, y;ω, t) =

2πi

~
a3

∫
dω′d3q

(2π)4

1

LxLy

∑
n,α′k′

∣∣∣∣∣∑
m

〈φmkα|ηλ|φm−nk′α′ 〉

∣∣∣∣∣
2

(2π)2δ(2)(k − k′ − q)×

×
∑

v,v′∈{q,cl}

γvGα′(k′, y;ω − ω′ − nΩ, t)γv
′
[Dvv′(q, ω

′) +D∗v′v(−q,−ω′)] .
(A3)

Here ηs = gs1, η` = g`σ
+ (see Eq. (4)), γq = 1

21, γcl = 1
2σ

x are the vertex fermionic matrices [82]; the functions

Dvv′ are given by Dcl,q = 1
ω−vλ|q|±i0+ , Dq,cl = D∗cl,q, and Dcl,cl = coth

(
~ω

2kBT

)
(Dcl,q −Dq,cl), is the free bosonic

propagator; δ(2)(k−k′−q) enforces momentum conservation in the two dimensional plane of the system. Expanding

the self energy to leading order, we approximate on the right hand side of Eq. (A3) GR/Aα ≈ GR/Aα .
For bulk-edge scattering, the Wigner transform of the self energy Σbe

α is given by

Σbe
α,λ(k, y;ω, t) =

2πi

~
a3

∫
dω′d3q

(2π)4

1

Lx

∑
n,β′k′x

ζ
k′xβ
′

n,kα(qy, y)(2π)δ(1)(kx − k′x − qx)×

×
∑

v,v′∈{q,cl}

γvG̃β′(k′x;ω − ω′ − nΩ, t)γv
′
[Dvv′(q, ω

′) +D∗v′v(−q,−ω′)] .
(A4)
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where we have defined

ζ
k′xβ
′

n,kα(qy, y) =

∫
dk̄y
aπ

e2ik̄yy

∫
dȳe−i(ky+k̄y−qy)ȳ

∑
m

〈φmk+k̄yŷα
|ηλ|χm−nk′xβ

′ (ȳ)〉
∫
dȳ′ei(ky−k̄y−qy)ȳ′

∑
m

〈χm−nk′xβ
′ (ȳ′)|η†λ|φ

m
k−k̄yŷα〉.

(A5)

Since the the edge states are localized in y, ζ
k′xβ
′

n,kα(y) has a compact support near the position of the edges.

The edge self energy Σ̃β in Eq. (A2) has contributions from both edge-bulk and edge-edge scattering, Σ̃β = Σeb
β +Σee

β .
The Wigner transforms of these self energies read

Σeb
β,λ(kx;ω, t) =

2πi

~
a3

∫
dω′d3q

(2π)4

a

Ly

∑
n,α′k′y

ζ̃k
′α′

n,kxβ(qy, y)(2π)δ(1)(kx − k′x − qx)×

×
∑

v,v′∈{q,cl}

γvGα′(k′, y;ω − ω′ − nΩ, t)γv
′
[Dvv′(q, ω

′) +D∗v′v(−q,−ω′)]
(A6)

Σee
β,λ(kx;ω, t) =

2πi

~
a3

∫
dω′d3q

(2π)4

1

Lx

∑
n,β′k′x

∣∣∣∣∣∑
m

〈χmkxβ |ηλ|χ
m−n
k′xβ
′ 〉

∣∣∣∣∣
2

(2π)δ(1)(kx − k′x − qx)×

×
∑

v,v′∈{q,cl}

γvG̃β′(k′x;ω − ω′ − nΩ, t)γv
′
[Dvv′(q, ω

′) +D∗v′v(−q,−ω′)] .
(A7)

where

ζ̃k
′α′

n,kxβ(qy, y) =

∫
dk̄y
aπ

e2ik̄yy

∫
dȳei(ky+k̄y+qy)ȳ

∑
m

〈χmk′xβ′(ȳ)|ηλ|φm−nk+k̄yŷα
〉
∫
dȳ′e−i(ky−k̄y+qy)ȳ′

∑
m

〈φm−n
k−k̄yŷα

|η†λ|χ
m
k′xβ
′(ȳ′)〉.

(A8)

Eqs. (A1) and (A2) are the kinetic equations for the Floquet bulk and edge states, written in the matrix form.
Writing the explicit expressions for the Keldysh matrices Gα,Gα, and Σα in terms of their components, we arrive at
three independent equations, that for the bulk Green’s functions read(

[G−1
α ]R − ΣRα

)
◦ GRα = 1, (A9a)(

[G−1
α ]A − ΣAα

)
◦ GAα = 1, (A9b)(

[G−1
α ]R − ΣRα

)
◦ GKα +

(
[G−1

α ]K − ΣKα
)
◦ GAα = 0. (A9c)

Using equations (A9a)-(A9c) and neglecting derivatives of Σ, assuming no spatial variations on the lattice lengthscale,
we arrive at

[G−1
α ]R ◦ fb

α − fb
α ◦ [G−1

α ]A ≈ 1

2

[
ΣKα −

(
ΣRα − ΣAα

)
(1− 2fb

α)
]
. (A10)

This equation can be further simplified to the form of the Boltzmann equation (Eq. (9)) by evaluating the left hand
side of Eq. (A10) which gives [G−1

α ]R ◦ fb
α− fb

α ◦ [G−1
α ]A ≈ i∂tfb

α + (i/~)∂kεα(k)∂rf
b
α, where we neglected higher order

derivatives of f . The equation for the edge has a similar form, [G̃−1
β ]R � f e

β − f e
β � [G̃−1

β ]A ≈ i∂tf
e
β . The right hand

side of Eq. (A10) gives the collision integral appearing in the Boltzman equation, Eq. (A10),

I = − i
2

[
ΣK −

(
ΣR − ΣA

)
(1− 2f)

] ∣∣∣
~ω=εα(k)

. (A11)

A.1. Explicit expressions for the edge and the bulk collision integrals

We now present explicit expressions for the Boltzmann equation for the bulk and the edge states, for zero d.c.
electric field,

∂tf
b
kα + vy,α(k)∂yf

b
kα = Ibb

kα(y) + IbR
kα (y) + IbL

kα(y) (A12a)

∂tf
e
kxβ = Iee

kxβ + Ieb
kxβ , (A12b)
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FIG. 5. Diagrams that lead to the self energy, (a) due to electron-boson collision processes; (b) due to system-lead tunneling.
Bold and thin full lines correspond to bulk and edge propagators, respectively; wiggly and dashed lines denote the propagators
of bosons and particles in the lead.

where vy,α(k) = ~−1∂kyεα(k), and the collision integrals are

Ibb
kα(y) =

∑
n,k′α′

[
W bb,k′α′

n,kα F bb,k′α′

n,kα (y)−W bb,kα
n,k′α′F

bb,kα
n,k′α′(y)

]
(A13a)

Ibβ
kα(y) =

∑
n,k′x

[
W

be,k′xβ
n,kα (y)F

be,k′xβ
n,kα (y)−W eb,kα

n,k′xβ
(y)F eb,kα

n,k′xβ
(y)
]

(A13b)

Iee
kxβ =

∑
n,k′xβ

′

[
W

ee,k′xβ
′

n,kxβ
F

ee,k′xβ
′

n,kxβ
−W ee,kxβ

n,k′xβ
′F

ee,kxβ
n,k′xβ

′

]
(A13c)

Ieb
kxβ =

a

Ly

∑
n,k′α′,y

[
W eb,k′α′

n,kxβ
(y)F eb,k′α′

n,kxβ
(y)−W be,kxβ

n,k′α′ (y)F be,kxβ
n,k′α′ (y)

]
. (A13d)

Where we defined, for brevity,

F %%′,k′α′

n,kα = [1− f%kα]f%
′

k′α′N
k′α′

n,kα − f
%
kα[1− f%

′

k′α′ ](1 +Nk′α′

n,kα), (A14)

Nk′α′

n,kα =
[
exp

(
εα(k)−εα′ (k

′)+n~Ω
kBT

)
− 1
]−1

, and each rate, W %%′,k′α′

n,kα , is a sum of phonons and photons, W %%′,k′α′

n,kα =

W %%′,k′α′

`,n,kα +W %%′,k′α′

s,n,kα for % and %′ = {b, e} denoting the bulk and edge, respectively. Notice, that we have introduced
additional indices for W relative to the definition in the main text, where we showed the expression for bulk-to-bulk
collisions only (i.e., % = %′ = b). Explicit expressions for these rates can be derived from Eqs. (A3),(A4),(A6),(A7),
yielding

W bb,k′α′

λ,n,kα =
2π

~
1

LxLy

∫
a3d3q

∣∣∣∣∣∑
m

〈φmkα|ηλ|φm−nk′α′ 〉

∣∣∣∣∣
2

δ
(
εα(k)− εα′(k′)− ~vλ |q|+ n~Ω

)
δ(2)(k − k′ + q) (A15a)

W
be,k′xβ

′

λ,n,kα (y) =
2π

~
1

Lx

∫
a3d3q

2π
ζ
k′xβ
′

n,kα(qy, y)δ (εα(k)− εβ′(k′x)− ~vλ |q|+ n~Ω) δ(1)(kx − k′x + q) (A15b)

W
ee,k′xβ

′

λ,n,kxβ
=

2π

~
1

Lx

∫
a3d3q

2π

∣∣∣∣∣∑
m

〈χmkxβ |ηλ|χ
m−n
k′xβ
′ 〉

∣∣∣∣∣
2

δ (εβ(kx)− εβ′(k′x)− ~vλ |q|+ n~Ω) δ(1)(kx − k′x + q)(A15c)

W eb,k′α′

λ,n,kxβ
(y) =

2π

~
1

Lx

∫
a3d3q

2π
ζ̃k
′α′

n,kxβ(qy, y)δ
(
εβ(kx)− εα′(k′)− ~vλ |q|+ n~Ω

)
δ(1)(kx − k′x + q), (A15d)

To obtain useful expressions for the simulation, we need to make assumptions on the profile of the edge wavefunc-
tions, |χnkx,β〉 as function of y. This will set closed expressions for ζ-functions. Since our discretization of the real space
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is larger then the localization length of the edge, we can simplify Eq. (A15b) and (A15d) by assuming edge states ex-
ponentially localized on the length of the order of the lattice spacing. For simplicity we take, |χnkx,β(y)〉 = δy,0|χ̄nkx,β〉.
This approximation does not effect our numerical results, since in our simulation we discretize the y direction on a
length scale of the healing length which is much larger then the lattice scale (see Section C). In this limit, we obtain

ζ
k′xβ
′

n,kα(qy, y) = δy,0

∣∣∣∣∣∑
m

〈φmkα|ηλ|χ̄m−nk′xβ
′ 〉

∣∣∣∣∣
2

(A16)

independent of qy. Then the expressions for the rates can be written in the form

W bb,k′α′

λ,n,kα =
2π

~

∣∣∣∣∣∑
m

〈φmkα|ηλ|φm−nk′α′ 〉

∣∣∣∣∣
2

× ρb
λ

(
εα(k)− εα′(k′) + n~Ω,k − k′

)
(A17a)

W
be,k′xβ

′

λ,n,kα =
2π

~
δy,0

∣∣∣∣∣∑
m

〈φmkα|ηλ|χ̄m−nk′xβ
′ 〉

∣∣∣∣∣
2

× ρe
λ (εα(k)− εβ′(k′x) + n~Ω, kx − k′x) (A17b)

W
ee,k′xβ

′

λ,n,kxβ
=

2π

~

∣∣∣∣∣∑
m

〈χmkxβ |ηλ|χ
m−n
k′xβ
′ 〉

∣∣∣∣∣
2

× ρe
λ (εβ(kx)− εβ′(k′x) + n~Ω, kx − k′x) (A17c)

W eb,k′α′

λ,n,kxβ
=

2π

~
δy,0

∣∣∣∣∣∑
m

〈χ̄mkxβ |ηλ|φ
m−n
k′α′ 〉

∣∣∣∣∣
2

× ρe
λ (εα(k)− εβ′(k′x) + n~Ω, kx − k′x) , (A17d)

where

ρb
λ(ε, q) =

a2

LxLy

aεΘ(ε− ~vλ |q|)

π~vλ
√
ε2 − ~2v2

λ |q|
2

(A18)

and

ρe
λ(ε, qx) =

a

Lx

a2ε

2π~2v2
λ

Θ(ε− ~vλ |qx|) (A19)

are density of states for bulk and edge scattering (in which two and one momenta conserved, respectively); here Θ(ε)
is the Heaviside step function.

A.2. Point coupling to a lead

We now derive the collision integral for the system-lead coupling (see Eq. (13)). We assume a filtered lead with
states, |l〉, and energies El, characterized by a composite index, l = {kx, El, ν}, were ν = {↑, ↓}, and kx ∈ [−π/a, π/a).
We take the modes to provide a uniform density of states, independent of kx and ν, throughout the filter window.
We place the filter window centered around the energy ~Ω/2 in the original conduction band, with the width of ~Ω,
i.e. 0 ≤ El < ~Ω. The right lead-system Hamiltonian reads

ĤR
res =

∑
lp

(
JR
lpd̂
†
l ĉp + h.c.

)
+
∑
l

(El − µres) d̂
†
l d̂l, (A20)

where the lead system coupling is assumed to have the form JR
lp = JδyLyδν(p)ν(l)δkx(p)kx(l). Here p is a compact

notation to label system states, p = (kx, y, ν). The self energy due to system-lead tunneling is a sum of two terms,
which are shown diagrammatically in Fig. 5b. The Wigner transform of the self energy due to tunneling of a particle
from a bulk state to the right lead reads

Σb
res,R,α(k, y;ω) =

2π

~
∑
n,l

|J |2 ζn,ν(l),kα
res,R (y)δkx,kx(l)gl(ω + nΩ), (A21)

where

ζn,ν,kαres,R (y) =
a

π

∫
dk′ye

2ik′y(y−Ly)〈φnk+k′yŷα
|ν〉〈ν|φnk−k′yŷα〉. (A22)
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Assuming that the Floquet bulk states {|φnkα〉} only weakly depend on ky, we approximate ζn,ν,kαres,R (y) ≈

δy,Ly |〈φnkα|ν〉|
2
. Here gl(ω) =

(
gRl (ω) gKl (ω)

0 gAl (ω)

)
is the lead’s two point Keldysh function, where g

R(A)
l (ω) =

1
ω−El/~±i0+ , and gKl (ω) = tanh

(
~ω−µres

2kBT

) (
gRl (ω)− gAl (ω)

)
. Note that we neglected any off-diagonal terms in the

α and α′ indices. Those terms vanish in the limit 1/(∆ετscat)→ 0, where ∆ε is of the order of the Floquet gap and
τscat is the average scattering time due to phonon scattering [43]. The self energy of the right edge-lead self energy
has a similar form,

Σe
res,R(kx;ω) =

2π

~
∑
n,l

|J |2
∣∣〈χnkxR(Ly)|ν(l)〉

∣∣2 δkx,kx(l)gl(ω + nΩ). (A23)

We employ Eq. (A11) to write the collision integral due to tunneling between the right reservoir and the system,

Ib,res
kα =

∑
n

J nkα
[
fFD (εnα(k)− µres)− fb

kα

]
(A24a)

Ie,res
kxR =

∑
n

J nkxR

[
fFD (εnR(kx)− µres)− f e

kxR

]
, (A24b)

where

J nkα =
2π

~
|J |2

∑
ν

ζ
n,ν(l),kα
res,R (y)N (εα(k) + n~Ω) (A25a)

J nkxR =
2π

~
|J |2

∑
ν

∣∣〈ν, Ly|χnkxR〉
∣∣2N (εR(kx) + n~Ω), (A25b)

and N (ε) is a rectangular function around a single Floquet zone, describing the energy filtering window: N (ε) = 1 if
0 < ε < ~Ω, N (ε) = 0 otherwise.

A.3. Estimation of the effective parameters in the rate equation

Here we estimate the effective rates in Eq. (5) and analyze how they scale with the system size. We evaluate the
effective rates from the rates in the microscopic model [Eqs. (A17)], employing the steady state distributions, fb

kα,
f e
kxβ

. We begin with the interband relaxation rate in the bulk, Λinter. We define the average relaxation rate for

particles around minima of the Floquet band as W inter
=
∫
dkdk′Wbb,k′−

s,k+ fb
k′+f

b
k+

(
∫
dkfb

k+)
2 . Then the parameter Λinter appearing

in Eq. (5a), which describes the rate to scatter to any of the hole states in the lower Floquet band, per density of the

holes, is given by Λinter = LxLyW
inter

. At low excitation densities, a2nb � 1, the population is significant near the

Floquet band minima, at k = kR. We can then approximate W inter ≈ W bb,kR−
s,kR+ . Assuming the matrix elements of

the electron-phonon coupling in the active region are of the order gs, and using the explicit expression for the phonon

density of states, at q = 0 [see Eq. (A18)], we obtain W inter ≈ g2
s

2a3

~2vsLxLy
.

Next we estimate Γrec in Eq. (5a). This parameter is associated with the recombination rate for a particle in the
upper band. To determine Γrec, we first compute the rate for a particle with momentum k in the upper band to
transition to the lower Floquet by emitting a photon, which we denote by Wrec

k . We observe that the momentum
transfer in photon-mediated processes with typical energy ~Ω, is of the order of |q| ∼ Ω/v`, which is small momentum
compared to the scale over which the transition rates change. It follows that a state with momentum k can be scattered
by a photon to state k′, satisfying

∣∣k′ − k∣∣ ≤ |q| with approximately the same rate. Since there are approximately

∼ π |q|2 /
(

4π2

LxLy

)
≈ LxLy

4π
Ω2

v2`
such states, we can approximate Wrec

k ≈ LxLy
4π

Ω2

v2`
W bb,k+
`,k− . The parameter, Γrec is then

defined as Γrec = AR
(2π)2W

rec
, where Wrec

is the average value of Wrec
k within the resonance curve, and AR is the

momentum-space area inside this curve (see the inset in Fig. 1). Assuming that the matrix elements of the electron-
photon coupling in the active region are of the order g`, and using the explicit expression for the photon density of

states, we obtain Wrec ≈ g2
`
a3Ω2

2π~2v3`
. With these approximate expressions for Γrec and Λinter at hand, we are at the

position to write the approximate expression for κ = Γrec

Λinter , that reads κ ≈ ARΩ2vsg
2
s

8π3v3`g
2
s

.

Next we deal with the rate equation for the excited particles on the edge, Eq. (5b). As in the main text, we define
ne as the occupation of state with kx > 0. To estimate the bulk-to-edge and edge-to-bulk processes let us define the
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average rate to scatter from the minima of the upper band to an edge state labeled by kx (we denote this average

rate byWb→e

kx ). Likewise, we define the average rate to scatter from the edge to a maximum of the lower band (which

we denote by We→b
). The second process occurs essentially near kx = 0, where most of the excitations accumulate.

We define these rates as Wb→e

kx =
∫
dkWbe,kxR

s,k+ fb
k+∫

dkfb
k+

, and We→b
=
∫
dk
∫ kR
0 dkxW

eb,k+
s,kxR f

b
k+f

e
kxR∫

dk
∫ kR
0 dkxfb

k+f
e
kxR

respectively. The parameter

γb→e in Eq. (5b), describes the scattering rate from the bulk to the edge per bulk density, per unit length. This process

occurs essentially uniformly along edge states with ε > 0, and can be approximated as γb→e ≈ LxLy
∫ kR

0
dkx
2π W

b→e

kx .

Similarly, the edge-to-bulk rate per bulk density is given by Λe→b ≈ LxLyW
e→b

. Finally, the parameter γe→e can be

estimated as γe→e ≈ LxW
e→e

, where We→e
=

∫ kR
0 dkxdk

′
xW

ee,−k′xR

s,kxR fe
kxRf

e
k′xR(∫ kR

0 dkxfe
kxR

)2 .

Appendix B: Spatial structure of the steady state

Here we analyze the spatial structure of the bulk density in the steady state (see Fig. 3a) using a reaction-diffusion
equation. We begin with the reaction-diffusion equation for the density of the bulk excitations in the steady state
[43],

D∂2
ynb(y) = Γrec − Λintern2

b(y). (B1)

Here D is the diffusion constant, given by D ≈ v̄2τ , where v̄ is a typical velocity of the excited carriers and τ
is the scattering time (dominated by phonon scattering). We solve this equation with boundary conditions at the
edges of the system, such that the bulk current normal to the edges equals the rate of scattering into the edge
states. For example, at the right edge of the system (y = Ly), the bulk current is given by D∂ynb(Ly) and we
set D∂ynb(Ly) = −γb→enb(Ly) + Λe→bnb(Ly)ne. Assuming that the density of the bulk excitations is not strongly
affected by the presence of the edge, we linearize Eq. (B1) around the bulk value, writing ∆nb(y) = nb(y)−n0

b, where

n0
b = nb(Ly/2). The diffusion equation then reads, ∂2

y∆nb(y) = ∆nb(y)/ξ2 where ξ =
√
Dn0

b/(2Γrec). Additionally,
we neglect the second term in the equation determining the boundary condition for the current, which is proportional
to Λe→b, since at low excitation density, the first term in this equation dominates (see the discussion above Eq. (7)).

Solving Eq. (B1) with the above boundary conditions we arrive at the expression for ∆ñb(y) = ∆nb(y)
n0
b

,

∆ñb(y) = − cosh((y − Ly/2)/ξ)

cosh(Ly/2ξ) + 2Γrecξ
γb→en0

b
sinh(Ly/2ξ)

. (B2)

Taking the limit Ly � ξ � a we obtain

∆ñb(0) = −γ
b→en0

b

2Γrecξ
. (B3)

For our parameters (see Table I) the estimate (B3) yields ∆ñb(0) ∼ 10−3, which is in a good agreement with our
results (see Fig. 3a).

The estimate in Eq. (B3) can be also obtained from Eq. (5a). We first write nb = n0
b +δnb, where n0

b is the solution
absent the bulk-edge scattering, and expand Eq. (5a) to first order in δnb. We then assume that the excess number
of particles excited due to edge-to-bulk scattering, δNb = δnbLxLy, accumulate only on a strip of width ξ near each
edge. The excess density in this strip is then given by Eq. (B3).

Appendix C: Details of the numerical simulations

Here we summarize the details of the numerical simulations. We discretize the phase space using a grid of Nkx ×
Nky = 50× 50 sites in momentum space, and Ny = 11 sites in real space along the y-direction. For a physical system
size of Ly, we define θ to be the sampling ratio of k-points, whereby Ly = aθNky (e.g. θ = 2 means that we take
every second k-point). Furthermore, the discretization step in the y-direction is given by ∆y = Ly/Ny = aθNky/Ny.

The discrete version of the steady state Boltzmann equation (see Eq. (9)) reads,

vy,α(k)
fb
kα(j + 1)− fb

kα(j)

aθNky/Ny
= Itot

kα (j), (C1)
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where j is a discrete index indicating the position in the y direction, i.e. y = j∆y. Here we denote by Itot
kα (j) the

total contribution from the bulk and the edge collision integrals. We now multiply Eq. (C1) by θ and Ω−1 to arrive
at the dimensionless expression

vy,α(k)

Ωa

fb
kα(j + 1)− fb

kα(j)

Nky/Ny
=
θItot

kα (j)

Ω
. (C2)

We fix
√
θgs on the value that ensures that the step size ∆y = Ly/Ny is on the order of the healing length ξ, evaluated

below (see also Fig. 3a).
Due to the discretization of real space in the y direction, in the bulk-edge collision terms Ibe

kα(j) we replace δα,0
by a

∆y δj,0 and δα,Ly with a
∆y δj,11, see Eqs. (A13b), (A17b), and (A17d). The prefactor, a/∆y, makes sure that the

integrals of the new and the old δ-functions are the same. Notice that Eq. (C2) is not invariant under the rescaling,

θ → λθ, gs → gs/
√
λ , g` → gs/

√
λ due to the a/∆y prefactor in the bulk-to-edge collision integral. Therefore, both

Ly = aθNky as well as gs and κ = g`/gs have to specified when specifying the parameters of the simulation. We
find the steady state solution to the Boltzmann equation (Eq. (9)) employing the Newton-Raphson method, for the
parameters in Table I.

To find the physical length and scattering rates in the system, we fix Ω = 100 THz, and a = 5.6 Å. This gives

τhe ≈ 0.1 ps in agreement with literature [68], and L = 56 µm. Here we employed the relation gs ≈ ~
√

vs
2aτhe

.

Simulation parameters Physical parameters

A M B V0

√
θgs θ Ny Ω a

0.2~Ω 0.2~Ω −0.09~Ω 0.2~Ω 1~Ω 2000 11 100 THz 5.6 Å

vs v` ωD kBT J Nkx Nky τhe Ly

0.0092aΩ 1aΩ 0.15Ω 0 0.2~Ω 50 50 0.1 ps 56 µm

TABLE I. A list of the parameters used in the numerical simulations, and physical quantities corresponding to these simulation
parameters.

Appendix D: Fits of the steady states to Fermi Dirac and Quasi Fermi Dirac distributions

In this section we discuss the fit of the bulk distribution to a distribution described by separate Fermi functions for
electrons and holes, and the fit of the edge to a quasi Fermi-Dirac distribution (for a system not coupled to leads).

D.1. Distribution of the bulk

The steady state of the bulk is described by two separate Fermi-Dirac distributions, one for electrons in the upper
Floquet band (+), and one for electrons in the lower Floquet band (−). The chemical potentials of these distributions,
µ+ and µ−, are related by particle hole symmetry, fb

k+ = 1 − fb
k−, which implies µ+ = −µ− ≡ µb. Note that for

any κ > 0, the chemical potentials are shifted away from ε = 0. Particle hole symmetry further implies that the
effective temperatures, Tb, of the distributions in the both bands must be equal. Fig. 6a displays the least mean
square fit of fb

k+ to the Fermi-Dirac distribution. The effective temperature increases as κ increases (hence, the
temperature increases with the excitation density). We also measured the goodness of the fits of the bulk distribution
to Fermi-Dirac function and the edge to Quasi Fermi-Dirac distribution (effective parameters Te and δ of the Quasi
Fermi-Dirac distribution appear in the inset to Fig. 3c). We define the parameters Qb and Qe, for the bulk and the
edge distributions, as

Qb ≡ 1− a2

LxLy

∑
k

|fb
k+ − fFD(Tb, µb)|
max

{
fb
k+

}
Qe ≡ 1− a

Lx

∑
kx

|f e
kxR − fQFD(Te, δ)|.

(D1)

The goodness of fit parameters are shown in Fig. 6b. It shows an improvement of the fit as κ decreases. A similar
effect was found in Ref [43].
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FIG. 6. (a) Effective parameters of the Fermi-Dirac distribution that fit the upper Floquet band steady state. (b) The
parameters determining the goodness of the fits to Fermi-Dirac distribution in the bulk and Quasi Fermi-Dirac distribution
of the edge, see the definitions in Eq. (D1). Effective parameters Te and δ of the Quasi Fermi-Dirac distribution that fit the
distribution of the edge appear in the inset to Fig. 3c.

D.2. Distribution of the edge

In this section we estimate how the parameters δ and Te of the quasi Fermi-Dirac distribution, fQFD, scale with
κ using a rate equation approach. First, we observe that the majority of the excitations of the edge states are
concentrated near kx = 0 point. A small fraction of the excitations are distributed approximately uniformly along the
edge. We choose an arbitrary point kS, such that the majority of the excitations are within 0 < kx < kS. At small κ,

the density nδ ≡
∫ kR
kS

dkx
2π f

e
kxR is significantly smaller than nT ≡ ne − nδ ≈ ne, hence

nT ∼ κ
1
4 . (D2)

The parameters δ and Te can be expressed in terms of nδ and nT . Using fQFD(Te, δ) for f e
kxR in the definitions of nδ

and nT , and assuming a constant edge velocity, ve, we obtain for δ � 1,

nT ≈
kBTe ln(2)

πa∆1
, nδ ≈

kR − kS

4π
δ. (D3)

Now we are at the position to write the rate equation for nδ. The difference between this equation and Eq. (5b) is
in an additional rate to scatter from the interval kS < kx < kR to the interval of 0 < kx < kS. Since for small κ the
interval 0 < kx < kS (as the entire upper half of the edge) is almost empty (anT � 1), the term responsible for this
scattering process in the rate equation is proportional to ∼ Re→enδ(1− anT ) ≈ Re→enδ. Other scattering processes
of nδ are similar to scattering processes of ne (see Eq. (5b)), albeit with different effective rate parameters. The rate
equation for nδ then reads

ṅδ = γ̃b→enb − Λ̃e→bnbnδ − γ̃e→en2
δ −Re→enδ. (D4)

Note that the term Re→e did not appear in Eq. (5b), which was a rate equation for the full edge state excitation
density ne; in comparison, Eq. (D4) is rate equation for excitations in the interval kS < kx < kR only. In the limit of

small κ, the terms proportional to Λ̃e→b and γ̃e→e can be neglected, yielding nδ = γ̃b→e

Re→enb. Hence nδ scales as

nδ ∼ κ
1
2 . (D5)

Finally, we combine the relations between Te and δ and nT and nδ (see Eq. (D3)), with the scalings of nT and nδ
with κ (see Eqs. (D2) and (D4)) to obtain

Te ∼ κ
1
4 , δ ∼ κ 1

2 . (D6)

Our numerical results confirm the prediction in the Eq. (D6) (see inset in Fig. 3c).
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Appendix E: Conductance in a two-probe setup

In this section we derive the conductance in the two-terminal setup (see Fig. 2b). The left and the right leads with
chemical potentials µL

res = eV and µR
res = 0 are connected at y = 0 and y = Ly respectively. The total current in this

geometry has two contributions from the bulk and the edge currents. The bulk contribution is computed from Ohm’s
law, with a conductivity tensor which we compute in Sec. E E.1. The conductivity tensor has both diagonal and
off-diagonal components arising from the Berry curvature of the Floquet-Bloch bands. The edge current is derived in
Sec. E E.2 from the continuity equation, taking into account scattering processes discussed in the main text.

E.1. Bulk contribution to the conductance

We first derive the conductivity tensor for the bulk of a FTI. The conductivity tensor has both longitudinal, σb
yy,

and transversal, σb
xy, contributions. To find them in the clean limit, we write the Boltzmann equation for the bulk

[see Eq. (9)] in the relaxation time approximation. To find the response to external field, we include the coupling of
the electric field to momentum gradients, ∂tfk ∼ (e/~)E · ∂kfk. In the steady state, the Boltzmann equation for the
electrons and the holes in the relaxation time approximation with a relaxation rate τk±, reads,

v+(k) · ∂rfb
k+(r)− (e/~)E · ∂kfb

k+(r) = −δfb
k+(r)/τk+ (E1a)

v−(k) · ∂r f̄b
k−(r)− (e/~)E · ∂kf̄b

k−(r) = −δf̄b
k−(r)/τk−. (E1b)

Here δfb
k+(r) = fb

k+(r) − fb,0
k+ (r) is the deviation from the “local steady-state” distribution, fb,0

kα , satisfying

Ibb
kα

{
fb,0
kα

}
= 0. The velocity vector contains both the band velocity and the anomalous velocity components,

namely vα(k) = ~−1 [∂kεα(k) + eE ×Fαk], where Fαk is the Berry curvature averaged over one period, given by
Fαk =

∑
n∇×An

αk, where An
αk = 〈φnkα|i∇|φnkα〉. The solution to Eqs. (E1) to leading order in δfb and derivatives

of fb reads

fb
k+(r) = fb,0

k+ (r)− τk+v+(k) · ∂rfb
k+(r) + τk+(e/~)E · ∂kfb

k+(r) (E2a)

f̄b
k−(r) = f̄b,0

k− (r)− τk−v−(k) · ∂r f̄b
k−(r) + τk−(e/~)E · ∂kf̄b

k−(r). (E2b)

With this form for the electron and hole distributions, we can find the current density, given as

J =
∑
α=±

∫
d2k

(2π)2
evα(k)fb,0

kα . (E3)

The conductivity tensor is defined by σb
ij = ∂Ji

∂Ej
. Assuming an isotropic system, it is enough to find only two

components, σb
yy and σb

xy. In a realistic system, the relaxation rates have contribution both from phonons and
disorder scattering. The total longitudinal conductivity from both contributions is found from Matthiessen’s rule,
1/σb

yy = 1/σb
ph,yy+1/σb

imp,yy. Note that although the phonon bath is at zero temperature, the contribution of phonons
to the scattering rate does not vanish in the steady state of the system. The expression for phonon contribution to
longitudinal component of the conductivity is given by

σb
ph,yy = 2

e2

h

∫
d2k

(
h−1∂kyε+(k) · ∂kyf

b,0
k+

)
τph
k+
. (E4)

where the phonon relaxation time is approximated by 1/τph
kα ≈

δIbbkα

δfb
kα

∣∣∣
fb,0
kα

with Ibb
kα given by Eq. (A13a). Here we

assumed particle hole symmetry; the label “ph” denotes the contribution from phonon scattering. The transversal
component reads

σb
xy =

e2

h

1

2π

∑
α=±

∫
d2k(ẑ ·Fkα)fb,0

kα . (E5)

We approximate the impurity contribution to longitudinal conductivity by σb
imp,yy = 2enbµimp, where µimp is the

typical mobility due to impurity scattering. Fig. 7 shows the longitudinal and the transverse conductivities vs. κa4

for µimp = 1000 cm2

V·sec , where the phonon contribution [see Eqs. (E4) and (E5)] was computed in the steady state of
the system.
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FIG. 7. The longitudinal (σb
yy) and the transversal (σb

xy) components of the bulk conductivity tensor vs κa4. The longitudinal

component contains both the phonon contribution and the impurity contribution, for the typical value µimp = 1000 cm2

V·sec . The
transversal component (inset) includes only the intrinsic contribution.

In principle, the scattering from impurities may affect the transverse component as well due to skew scattering and
side jump processes [72]. Here we do not consider these effects, focusing on the intrinsic contribution alone. A full
analysis of skew scattering and side jumps in the Floquet system is an interesting subject for future work.

Now, we are ready to estimate the current in the two-probe geometry. The current in the bulk can be computed
from the electric potential, V (x, y), by Ohm’s law, Ji = σb

ij∂iV . To find V (x, y), one needs to solve the Laplace

equation, ∇2V = 0, with appropriate boundary conditions. Along the open edges (edges along the y direction in
Fig. 2b) we require the currents to be zero in the normal to the edges direction, n̂, i.e. n̂iσ

b
ij∂iV = 0. Near the

leads we apply Dirichlet boundary conditions, i.e., V (x, 0) = V , and V (x, Ly) = 0. The current distribution in such a
geometry is found in Ref [84], which showed that the Hall contribution to the total current vanishes, leaving us with
the expression for the conductance, Gb = (Lx/Ly)σb

yy.

E.2. Edge contribution to the conductance

To find the contribution to the conductance from the edges along the y direction in Fig. 2b, we write two continuity
equations for the edges going to the left and the right. These continuity equations are similar to Eq. (5b), albeit
with two changes: (i) The excitation density on the edge may depend on the distance from the lead, due to different
chemical potentials of the right and the left leads. (ii) A shift of the chemical potential from ε = 0 breaks the
particle hole symmetry, leading to a different density of electrons (∆ne) and holes (∆he) on the edge. The densities
of electrons and holes are evaluated as integrals over the edge distribution shifted by the chemical potential, µe, i.e.

∆ne =
∫ kR

0
dky
2π f

e
ky

(µe), and ∆he =
∫ 0

−kR
dky
2π (1 − f e

ky
(µe)), where we replace f e

ky
(µe) by the “quasi Fermi Dirac”

distribution, f e
ky

(µe) ≈ fQFD(~veky − µe) = (1− δ)fFD(~veky − µe) + 1
2δ. Then to leading order in µe we obtain

∆ne ≈ ne +
µe

4π~ve
, ∆he ≈ ne −

µe

4π~ve
, (E6)

where ne is the steady state solution far away from the leads, as in Eq. (7). To capture the spatial dependence of the
densities, we include a new gradient term. The continuity equation for the right edge in the steady state then reads

∆ṅe + ve∂y∆ne = γb→enb − Λe→bnb∆ne − γe→e∆ne∆he, (E7)

where we have approximated the edge velocity by a constant, ve. As in Eq. (5b), the terms on the right hand side of
Eq. (E7) correspond to edge-to-edge and edge-to-bulk relaxation and recombination terms. We then expand Eq. (E7)
to leading order in µe, employing Eq. (E6), and take the steady state limit ∆ṅe = 0, to obtain

ve∂yµe = −µe/τe +O(µ2
e), (E8)
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where

τe = (Λe→bnb)−1. (E9)

Notice that the leading contribution of a term proportional to γe→e in Eq. (E7) is second order in µe. We solve
Eq. (E8) with the boundary condition near the left lead (y = 0), µe = eV , to obtain µe(y) = eV e−y/veτe . The edge

contribution to the conductance is then found from Ge = ∂I
∂V

∣∣∣
y=Ly

= ∂
∂V

∫ kR
−kR

dky
2π evefQFD [~veky − µe(Ly)], yielding

Ge = (e2/h)(1− δ)e−Ly/veτe .
To check that τe is indeed given by Eq. (E9) in the limit of small µe, we derive an expression for τe from the

Boltzmann equation, in the steady state. We then use this expression to compute numerically the lifetime of electrons
on the edge in our model (see inset in Fig. 4b). To obtain τe, we linearize Eq. (A12b) around the steady state at

half filling (i.e, taking linear order in µe), in the absence of leads, f e
kxR = f e,0

kxR + δf e
kxR, where δf e

kxR =
∂fe
kxR

∂µe

∣∣∣
µe=0

µe.

Then

δḟ e
kxR =

∑
k′α′

[
W be,kxR

k′α′ fb,0
k′α′ f̄

e
kxR −W

eb,k′α′

kxR f e
kxRf̄

b,0
k′α′

]
+

∑
−kR<k′x<kR

[
W ee,kxR
k′xR f e

k′xRf̄
e
kxR −W

ee,k′xR
kxR f e

kxRf̄
e
k′xR

]
, (E10)

where f̄ = 1− f . Keeping only linear terms in δf , we obtain

δḟ e
kxR =−

∑
k′α′

[
W be,kxR

k′α′ fb,0
k′α′ +W eb,k′α′

kxR f̄b,0
k′α′

]
δf e
kxR −

∑
−kR<k′x<kR

[
W ee,kxR
k′xR f e,0

k′xR +W
ee,k′xR
kxR f̄ e,0

k′xR

]
δf e
kxR+

+
∑

−kR<k′x<kR

[
W ee,kxR
k′xR f̄ e,0

kxR +W
ee,k′xR
kxR f e,0

kxR

]
δf e
k′xR +O(δf2).

(E11)

We define the lifetime, τe, via the relation
∑
kx>0 δḟ

e
kx,R

= − 1
τe

∑
kx>0 δf

e
kxR. To extract the lifetime of the edge

from Eq. (E11), we sum both sides of the equation over the momentum kx > 0. The edge-to-edge scattering terms
corresponding to the positive momenta, k′ > 0 and k > 0 trivially cancel out. The edge-to-edge scattering terms
that correspond to k > 0 and k′ < 0, cancel out in the limit of small shift of the lead chemical potential, µe → 0,

δfkxR = δf−kxR. Here we used the particle-hole symmetry, W
ee,k′xR
kxR = W ee,−kxR

−k′xR , and f e,0
kxR = f̄ e,0

−kxR. The expression

for τe then contains only bulk-to-edge scattering terms, in agreement with Eq. (E9). The expression for τe reads

τe =

∑
kx>0 δf

e
kxR∑

kx>0

∑
k′α′

[
W be,kxR

k′α′ fb,0
k′α′ +W eb,k′α′

kxR f̄b,0
k′α′

]
δf e
kxR

. (E12)

The values of τe obtained from numerically evaluating Eq. (E12) are plotted in the inset of Fig. 4b. Our numerical
results verify the prediction of the rate equations given in Eq. (E9).

E.3. Dependence of the chemical potential on the lead-system coupling

In this section we study how the strength of the coupling to the lead (J in Eq. (12)) affects the position of the
chemical potential of the edge, µe. Here we consider the part of the edge that is uniformly coupled to a lead (referring
to Fig. 2b, we discuss the edges along the x direction), hence the gradient term vanishes. We denote the shift of the
lead chemical potential by µres, and below assume µres > 0. The continuity equations describing the electron and hole
excitations at the right edge (∆ne and ∆he, respectively), at y = Ly, are then

∆ṅe = γb→enb − Λe→bnb∆ne − γe→e∆ne∆he − J̄R(∆ne − nres) (E13a)

∆ḣe = γb→enb − Λe→bnb∆he − γe→e∆ne∆he − J̄R∆he. (E13b)

Here J̄R is an average rate of edge-to-lead tunneling processes estimated as J̄R = 1
2kR

∫ kR
−kR dkxJ

0
kxR, and nres = µres

2π~ve
is the density of edge states integrated over the energy interval 0 < ε < µres, see Fig. 8. When µres is slightly shifted
from ε = 0, the densities of electrons and holes are shifted by δne = ∆ne − ne and δhe = ∆he − ne, respectively. To
simplify the expressions for δne and δhe we make the approximation that δne = δhe = 0 for µres = 0. The steady
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0

𝜇e

FIG. 8. Tunneling processes between the lead and the edge, when the chemical potential of the lead is shifted form the center
of the band, at ε = 0. nres is the density of edge states integrated over the energy interval 0 < ε < µres.

state solution to Eqs. (E13a) and (E13b) (setting ∆ṅe = ∆ḣe = 0), to leading order in δne and δhe, then reads,

δne =
J̄R

(
γe→ene + Λe→bnb + J̄R

)(
γe→ene + Λe→bnb + J̄R

)2 − (γe→ene)
2
nres (E14a)

δhe = − J̄Rγ
e→ene(

γe→ene + Λe→bnb + J̄R

)2 − (γe→ene)
2
nres. (E14b)

We estimate the position of the effective chemical potential of the edge by µe ≈ 2π~ve(δne − δhe), then

µe = µres
J̄R

Λe→bnb + J̄R
. (E15)

When J̄R � Λe→bnb the chemical potential of the edge and the reservoir are equal, see Fig. 4a.
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