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We propose an experimentally-feasible platform to realize parafermions (high order non-Abelian
excitations) based on spin transitions in the fractional quantum Hall effect regime. As a proof-of-
concept we demonstrate a local control of the spin transition at a filling factor 2/3 and formation
of a conducting fractional helical domain wall (fhDW) along a gate boundary. Coupled to an s-
wave superconductor these fhDWs are expected to support parafermionic excitations. We present
exact diagonalization numerical studies of fhDWs and show that they indeed possess electronic and
magnetic structures needed for the formation of parafermions. Reconfigurable network of fhDWs
will allow manipulation and braiding of parafermionic excitations in multi-gate devices.

Topological quantum computation can be performed
with Majorana fermions (MF)1, but MF-based qubits
are not computationally universal2. Parafermions (PFs),
higher order non-Abelian excitations, are predicted to
have denser rotation group and their braiding enables
two-qubit entangling gates3,4. A two-dimensional array
of parafermions can serve as a building block for a system
which supports Fibonacci anyons with universal braid-
ing statistics5, a holy grail of topological quantum com-
puting. In an important conceptual paper Clark et al.
proposed that PF excitations can emerge in the frac-
tional quantum Hall effect (FQHE) regime if two counter-
propagating fractional chiral edge states with opposite
polarization are brought into close proximity in the pres-
ence of superconducting coupling6. Here we propose that
domain walls formed at spin phase transitions in the
FQHE regime have the prerequisite helical structure to
support PF excitations when coupled to an s-wave su-
perconductor. We demonstrate experimentally that in a
triangular quantum well a 2D system can be tuned across
a spin transition at a filling factor ν = 2/3 using electro-
static gating. We also demonstrate formation of con-
ducting channels at boundaries between incompressible
polarized and unpolarized ν = 2/3 states. These chan-
nels are formed from two counter-propagating ν = 1/3
states with opposite spin orientation, we will refer to
them below as fractional helical domain walls (fhDW) in
analogy to helical channels formed along the edges in the
quantum spin Hall effect. Local control of polarization
allows formation of a reconfigurable network of fhDWs
with fractionalized charge excitations and, potentially,
parafermion manipulation and braiding. We present ex-
act diagonalization numerical studies of fhDWs.

Helical channels are commonly associated with the
quantum spin Hall effect7, topological insulators8

or nanowires with spin-orbit interactions9,10, where
Coulomb interactions are not strong enough to fraction-

Fig1 

FIG. 1. (a) Energy spectrum of Λ-levels for CFs, Eq. 1. For
ν = 2/3 (two filled Λ-levels) the spin polarization of the top
level changes at B∗, when Λ1,↓ and Λ2,↑ cross. Solid and dot-
ted lines are calculated for two different values of the wave-
function extent z0. (b) The calculated wavefunction in a tri-
angular quantum well formed at a GaAs/AlGaAs heterojunc-
tion interface. Solid and dotted lines correspond to the two
different gate voltages and show the change of z0. Note the
break in the horizontal axis.

alize charges. A natural system to look for PFs is a
2D electron gas (2DEG) in the FQHE regime, where
edge states support fractionally charged excitations. In
the conventional QHE setting, though, edge modes are
chiral. Helical channels can potentially emerge as do-
main walls during a quantum Hall ferromagnetic transi-
tion. It has been predicted that domain walls formed
in the integer QHE regime at a filling factor ν = 1
have helical magnetic order11. Experimentally, local elec-
trostatic control of domain walls in the integer QHE
regime at ν = 2 was recently demonstrated in mag-
netic semiconductors12, and their electronic and mag-
netic structure has been calculated13.

In the FQHE regime spin transitions have been ob-
served at a filling factor ν = 2/3 and other fractions14,15.
At the transition, the 2DEG spontaneously phase sep-
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arates into regions of different spin polarizations, and
conducting domain walls are formed along the domain
boundaries16,17. An experimental challenge is to devise a
system where spin transitions in the FQHE regime can be
controlled locally, allowing formation and manipulation
of DWs. Theoretically, neither magnetic nor electronic
structure of these domain walls is known.

It has been realized that hard ν = 2/3 edge states at
the 2D gas boundaries are complex objects with chiral
downstream propagation of charge excitations and neu-
tral energy-carrying modes propagating both up- and
downstream18–20. Recent experiments show that two
co-propagating ν = 1/3 charge modes at the edge of
a sample are weakly interacting and can be spatially
separated21. Thus, a domain wall formed between two
spin polarized domains at ν = 2/3 ferromagnetic tran-
sition can be formally constructed from two counter-
propagating ν = 1/3 chiral charge modes with opposite
spin polarization, similar to the domain walls formation
in the integer quantum Hall ferromagnetic transition13.

Spin transitions in the FQHE regime can be readily un-
derstood within the framework of the theory of compos-
ite fermions (CF)22, where FQHE states at filling factors
ν = ν∗/(2ν∗−1) for 1/2 < ν < 1 are mapped onto integer
QHE states with a filling factor ν∗ for CFs. The energy
spectrum of CF Λ-levels with an index p = 1, 2, 3... can
be written as

E↑↓p = ~ωcfc (p− 1

2
)± gµBB. (1)

The CF cyclotron energy ~ωcfc is proportional to the

charging energy Ec = e2/
√
l2m + z20 , where lm ∝

√
B⊥

is the magnetic length, B⊥ = B cos θ is the out-of-plane
component of the magnetic field B, and z0 is the extent
of the wavefunction in the out-of-plane direction. The
second term is the Zeeman energy. Due to the difference
in B-dependences of the two terms, levels Λp,↓ and Λp+1,↑
cross at some B∗ > 0, see Fig. 1. Thus, for ν∗ = 2 (two
Λ-levels are filled) the top energy level undergoes a spin
transition at B∗. The ν = 2/3 state is unpolarized for
B < B∗ and fully polarized for B > B∗.

Conventionally, FQHE spin transitions are studied in
tilted magnetic fields, where global control of the field an-
gle θ changes the ratio of Zeeman and cyclotron energies.
For a triangular confinement, though, z0 is gate depen-
dent, z0 = z0(Vg) (see Fig. 1b), and local control of Ec
and B∗ at a fixed B becomes possible. Within the Fang-
Howard approximation of the wavefunction in a triangu-
lar well, z0 = 3/b, where b ∝ n1/3 is a function of electron
density. For GaAs parameters and B∗ ≈ Bν=2/3 ≈ 4− 6
T, the field B∗ becomes density and gate dependent:
δB∗/B∗ ≈ 0.3δn/n, δn/n = δVg/Vg. The field position
of the ν = 2/3 state is also density and gate dependent,
δBν=2/3/Bν=2/3 = δn/n. Thus, for a well-developed
wide ν = 2/3 state and a sharp spin transition there
should be a range of magnetic fields where spin polariza-
tion of the top level can be tuned locally by electrostatic
gating.
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FIG. 2. Resistance in the vicinity of ν = 2/3 state is measured
as a function of (a) magnetic field B at a constant gate voltage
Vg or (b) as a function of Vg at a constant B. Yellow and cyan
colors mark unpolarized (u) and fully polarized (p) ν = 2/3
sates. B∗ and V ∗g mark the spin transition.

In order to demonstrate electrostatic control of po-
larization we have grown a number of wafers where
high mobility 2D electron gas is confined at a sin-
gle GaAs/AlGaAs interface. Inverted GaAs/AlGaAs
heterojunctions are grown by molecular beam epitaxy,
the top layer is 130-230 nm thick GaAs, Si δ-doping
placed 70-300 nm beneath the heterojunction inter-
face. The top 25 nm of GaAs are lightly doped to re-
duce the surface pinning potential. In the main text
we present data on devices fabricated from wafers A
(Fig. 2) and D (Fig. 3), wafers parameters can be found
in23. Inverted heterostructures allow electrostatic gat-
ing of a shallow 2D gas with no hysteresis, also in simi-
lar wafers proximity-induced superconductivity has been
reported24. Ohmic contacts are formed by annealing
Ni/AuGe/Ni/Au 6nm/120nm/20nm/20nm in a H2/N2

atmosphere. 10 nm - thick Ti gates are separated from
GaAs and from each other by 50 nm Al2O3 grown by
an atomic layer deposition (ALD). The gates are semi-
transparent and a 2D electron gas is created by shining
red LED at ∼ 4 K. Measurements were performed in a
dilution refrigerator with the base temperature T ≈ 30
mK using a standard lock-in technique with excitation
current Iac = 0.1− 10 nA.

Magnetoresistance in the vicinity of a ν = 2/3 plateau
is shown in Fig. 2a. At the base temperature a 0.35 T -
wide incompressible state is interrupted by a small peak
at B∗ = 4.94 T. This peak has all the characteristics
of a spin phase transition studied in the past, including
strong current dependence and hysteresis with respect
to the field sweep direction, which appears at high bias
currents15. We identify this peak with the spin transi-
tion, unpolarized (u) and polarized (p) ν = 2/3 states are
highlighted with yellow and cyan on the plot. The most
important data is shown in Fig. 2b, where resistance is
plotted as a function of a gate voltage Vg measured at
a fixed magnetic field. Similarly to the field scan, a 18
mV - wide ν = 2/3 plateau is interrupted by a small
peak at V ∗g = −151 mV, which we identify with the spin
transition. The transition peak is narrow, ≈ 6 mV with
well-defined ν = 2/3 states with different polarization on
the two sides of the peak. Thus, it is possible to control
spin polarization locally by electrostatic gating.
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FIG. 3. (a) Sample layout. (b) Resistance R1 and R2 under gates G1 and G2 is measured as a function of gate voltages Vg1

and Vg2. Letters u and p mark unpolarized and polarized states. In (c) R1 and R2 are plotted on top of each other. The
region where ν = 2/3 under both gates is outlined with a white dotted line, s1s2 indicates polarization under G1 and G2. In
(d) resistance R across the gate boundary is plotted for two fields directions. Nonzero R in (up) and (pu) quadrants indicates
formation of a conducting domain wall between polarized and unpolarized ν = 2/3 states. Lithographical length of the gate
boundary is 7 µm. Resistance in (b,c) is measured with Iac = 1.3 nA, in (d) with Iac = 0.13 nA.

Formation of a conducting domain wall at a bound-
ary between unpolarized and polarized ν = 2/3 regions
is shown in Fig. 3. A 2D gas is separated into two re-
gions where density is independently controlled by gates
G1 and G2. The length of the gate boundary is 7 µm
for the shown device. Resistances R1 and R2 for the
2D gases under the two gates are combined into a single
plot in (c) in order to visualize regions in the (Vg1−Vg2)
plane where FQHE states on both sites of the bound-
ary overlap (a small coupling between the gates results
in slightly non-orthogonal evolution of the features). A
small bump in the middle of the ν = 2/3 state is the
spin transition (the data is taken with high Iac = 1.3
nA in order for the transition to be visible above the
noise level), and separates the 2/3 region into four quad-
rants with different polarizations across the gate bound-
ary. In (d) resistance measured across the gate boundary
is plotted as a function of both gate voltages. In the re-
gion outlined red incompressible 3/5 states are formed
on both sites of the gate boundary and R = 0. A chiral
channel is formed between 2/3 and 3/5 states (two re-
gions outlined black). In this case resistance is gradient-
and field direction-dependent: R = 0 or R = 1/6Rq,
where Rq = h/e2. Within the 2/3 state R = 0 in the

(pp) and (uu) quadrants, indicating formation of a well
defined incompressible state under the gate boundary.
When polarization of the 2/3 state changes across the
gate boundary R becomes non-zero indicating formation
of a conducting channel. Resistance R ∼ 3 − 5 kΩ does
not depend significantly on the direction of the density
and polarization gradient (up or pu) nor on the mag-
netic field direction, consistent with the formation of a
helical domain wall. In the current geometry resistance
of the fhDW is not measured directly, within Landauer-
Büttiker formalism we extract (10 − 20)Rq channel re-
sistance for 2-7 µm – long fhDWs with no clear scaling
with the length. The lack of scaling may indicate that
scattering predominantly occurs in hot spots formed at
tri-junctions where fhDW merges with edge states.

In order to investigate the structure of domain walls
formed between spin-unpolarized and spin-polarized re-
gions we performed exact diagonalization studies of a sys-
tem with small number of particles. To simulate edge
states we use the disk geometry25,26 shown schemati-
cally in Fig. 4. Long-range Coulomb interactions between
electrons are introduced using Haldane pseudopotentials.
A neutralizing background and a confinement potential
are used to hold electrons inside the disk. As is evi-
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dent from experiments, spin transition can be controlled
by modulation of either Coulomb or Zeeman energies in-
terchangeably, see e.g. Fig. 2. In our modeling we use
spatially-dependent Zeeman effect to control spin polar-
ization of the 2DEG. The central region of the disk of
radius R1 = 2.9lm is characterized by a high Zeeman en-
ergy term EmaxZ , while the outer region with the outer
diameter R2 = 4.8lm is set to EminZ = 0. The Zeeman
term varies smoothly within R1 < r < R1 + ∆R, where
∆R = 0.4lm, resulting in a smooth variation of wave-
functions across the disk and avoiding spurious effects
originating from abrupt changes. Note that due to a
strong penetration of electron wavefunctions from the
R1 < r < R2 region into the r < R1 region, the vari-
ation of the average spin splitting

∫
ψ(r)∗EZ(r)ψ(r)d2r

for the two close modes on two sides of the domain wall is
< 6%, similar to the experimental conditions. Therefore
our model studies soft edges characterizing the experi-
ment.

We include up to 12 electrons in the exact diagonal-
ization calculation for a fully spin-polarized states and
8 electrons for unpolarized states or coexisting polarized
and unpolarized states at ν = 2/3. Energies and wave-
functions for the ground state and edge states, their den-
sity and spin density distributions for the disk geometry
have been calculated, see23 for details. The ground state
for 8 particles has the total angular momentum projec-
tion Lz = 46, in agreement with the composite fermion
theory22. The ground state is spin polarized in the in-
terior part of the disk and spin-unpolarized in the ex-
terior area, as expected. The total spin projection of
the ground state is Sz = +2. The lowest excited states
with the same spin projection, which correspond to the
addition or subtraction of a single flux, have angular mo-
menta Lz = 45 and 47. These states are the current
carrying states defining the domain wall. The difference
in spin polarizations between these two states in shown
in Fig. 4b, it smoothly changes sign across the domain
wall. There is ≈ 0.5lm outward shift of the position of
the midpoint of the domain wall in the actual spin den-
sity profile relative to the profile of the defining Zeeman
term. This shift is due to smaller wavefunction weights
in the outward region.

The two edge states with different Lz on the disk
have different angular velocities. When mapped onto a
plane, these two states will have different linear veloc-
ities, i.e. their velocities will have counter-propagating
components. Combined with the different spin po-
larization these states will have a finite overlap with
Cooper pair wavefunctions in a proximity s-wave super-
conductor, as has been shown for domain walls in inte-
ger quantum Hall ferromagnets13. A proximity-induced
topologically non-trivial superconductor, defined by the

counter-propagating CFs modes with different polariza-
tion, is expected to emerge in the domain wall region.
Due to higher degeneracy of the composite fermion Λ-
levels compared to the degeneracy of the Landau levels,
parafermion states will emerge at the boundary of topo-
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FIG. 4. (a) Disk geometry for the simulation domain. (b)
The blue curve is the difference between spin densities Sz(r)
for the modes with angular momentum Lz = 45 and 47, the
current-caring exciting states on the two sides of the domain
wall formed around R1. Profile of the spatially-dependent
Zeeman interaction used to form the domain wall is shown in
red.

logical and trivial s-wave superconductors, as predicted
in the Ref. [6].

In summary, we propose that domain walls formed
during ferromagnetic spin transitions in the fractional
quantum Hall effect regime can be used as building
blocks to form topological superconductors that support
parafermion excitations. Exact diagonalization study
of spin transitions in a disk geometry confirm that do-
main walls, formed between spin-up and spin-down do-
mains at ν = 2/3, indeed possess electronic (two counter-
propagating modes) and magnetic (opposite spin orien-
tation for the two modes) structure needed to couple to
an s-wave superconductor. We demonstrate that in tri-
angular quantum wells spin transitions can be controlled
locally by electrostatic gating and conducting helical do-
main walls can be formed in multi-gate devices. Such
local control allows formation of reconfigurable networks
of domain walls. In the presence of proximity-induced
superconducting coupling the system becomes a recon-
figurable network of one-dimensional topological super-
conductors with parafermion excitations.
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