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It has been experimentally shown that negative exchange interactions can arise in a linear three-
dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot
containing on the order of one hundred electrons. The origin of this negative exchange can be traced
to the larger quantum dot exhibiting a spin triplet-like rather than singlet-like ground state. Here,
we show using a microscopic model based on the configuration interaction (CI) method that both
triplet-like and singlet-like ground states are realized depending on the number of electrons. In
the case of only four electrons, a full CI calculation reveals that triplet-like ground states occur for
sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si
and GaAs, showing that negative exchange interactions are robust in few-electron double quantum
dots and do not require large numbers of electrons.

I. INTRODUCTION

Spins in GaAs and Si lateral quantum dots are promis-
ing candidates for implementing a quantum computer
due to their scalability 1–3, long coherence times 4–7, and
rapid gate operations 8–10. A qubit can be encoded in
different ways using the spin states of one or more elec-
trons trapped in one or more quantum dots, among these
the single-spin 6,11–15, singlet-triplet 5,8,9,16–19, resonant
exchange 10,20–22, and hybrid spin 23–27 qubits have been
successfully implemented in the laboratory. In many
of these systems qubits are coupled to each other by
means of the tunneling-based effective exchange inter-
action, which has the advantage of producing fast gates
controlled electrically with gate voltages.5,8,28. Further-
more, it has been recently demonstrated that symmet-
ric exchange pulses substantially reduce the sensitivity
of qubit gates to charge noise 29–36.

Notwithstanding these advantages, the short-ranged
nature of the exchange coupling 37,38 is a potential hin-
drance towards scalability. However, this limitation can
be circumvented by using an intermediate quantum sys-
tem as a mediator 39–41, for example a multielectron
quantum dot 42–44. In this line, Refs. 45 and 46 study
the spin properties of a multielectron GaAs quantum dot
(with an estimated number of electrons between 50 and
100) exchange coupled to a single-electron quantum dot,
which in turn is coupled to another single-electron quan-
tum dot. This linear three-dot system is studied under
magnetic fields both parallel and perpendicular to the
two-dimensional electron gas (2DEG). In particular, the
aforementioned works show that, at the transition be-
tween odd and even occupation number, the multielec-
tron ground state is singlet-like for small hybridization
and becomes triplet-like once the central electron has to-
tally moved to the multielectron dot. As a result, the
usually positive exchange energy becomes negative, even
at zero magnetic field. This finding is not only important
for understanding the properties of multielectron quan-
tum dots, but also for performing dynamical decoupling
on exchange-coupled spins. If the exchange coupling is

restricted to be nonnegative, then special techniques are
needed to dynamically correct for noise errors during gate
operations 47–49, which generally leads to longer gate
times. Instead, if the exchange coupling can be tuned to
both positive and negative values, then standard decou-
pling techniques can be used 50, and this issue is avoided.

It has been demonstrated that negative exchange en-
ergy in a quantum dot with just two-electrons can be
induced by a non-zero out-of plane magnetic field 51–54.
Here, the out-of-plane magnetic field leads to a compres-
sion of the orbital wave functions and a larger electron-
electron repulsion, which makes triplets energetically fa-
vorable. However, an in-plane or zero magnetic field does
not create a wave-function compression, and thus it does
not induce a negative exchange energy in a doubly oc-
cupied quantum dot, i.e. the ground state is always the
singlet. In fact, there is a two-electron ground state the-
orem 55,56, which states that in the absence of spin or
velocity-dependent forces (the force exerted by the in-
plane magnetic field is negligible since it is along the
strong confinement perpendicular to the 2DEG) the state
of lowest energy must be non-degenerate. An extension
of the two-particle theorem to an arbitrary number of
particles is given in Ref. 55. This theorem correctly pre-
dicts the ground state of many electrons in a linear ar-
ray, as shown in Ref. 57. Nonetheless, the multielectron
ground state theorem does not apply to electrons inter-
acting with central forces 55 and, for the multielectron
quantum dot, the lower full orbitals do exert an effec-
tive central force onto higher orbitals. Therefore, there
is no fundamental theorem or principle that prevents a
triplet-like eigenstate from being the ground state of a
multielectron quantum dot, regardless of the magnitude
and direction of the magnetic field, as demonstrated in
recent 45,46 and earlier 58,59 experiments with multielec-
tron quantum dots.

In this work we demonstrate that a quantum dot does
not require tens of electrons to exhibit negative exchange
energy, instead, as few as 4 electrons are enough to have
a triplet-like ground state in a quantum dot with zero
magnetic field. We do this by performing a detailed nu-
merical analysis employing the configuration interaction
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method with up to 14 electrons in both GaAs and Si
quantum dots. Moreover, we use the full configuration
interaction to determine the ground state of an ellipti-
cally shaped four-electron quantum dot with different ec-
centricities and, in doing so, we identify a threshold, in
both GaAs and Si quantum dots, at which the exchange
energy flips sign.

The paper is divided in four sections. In Sec. II, we use
a simple Hubbard model to study and give a general pic-
ture of the system presented in Ref. 45. Then, in Sec. III,
we use a configuration interaction method to determine
the ground state of a multielectron quantum dot with
parabolic potential, where we consider different number
of electrons and dot sizes. Moreover, a full configuration
interaction calculation shows that for four electrons the
ground state is triplet-like for all the dot sizes we con-
sidered. Finally, in Sec. IV, we use the full configuration
interaction method to calculate the exact eigenenergies
of four electrons confined in an elliptically shaped quan-
tum dot, showing the effect of the dot asymmetry in the
occurrence of triplet-like ground states.

II. HUBBARD MODEL AND HUND’S RULE

We start our analysis with a simple Hubbard model
that describes the system studied in Ref. 45, i.e. a mul-
tielectron quantum dot (rightmost) with 2N+1 electrons
(N = 50) tunnel-coupled to a double quantum dot con-
taining two electrons, see Fig. 1. We keep as many or-
bitals (single-particle energy levels) as necessary in the
right dot and only one orbital in each of the other two
quantum dots (see Fig. 2(a)). The system’s Hamiltonian
is

H = H0 +Hz +HA +HU , (1)

where

H0 =
∑
σ

[
∑
l

εR,lnR,lσ + εMnM,σ + εLnL,σ

−
∑
l

tMR,l(c
†
R,lσcM,σ + c†M,σcR,lσ)

− tLM (c†M,σcL,σ + c†L,σcM,σ)], (2)

HZ =
EB
2

[
∑
l

(nR,l↑ − nR,l↓) + nM,↑ − nM,↓ + nL,↑ − nL,↓],

(3)

HA =AR
∑
l

(c†R,l↑cR,l↓ + c†R,l↓cR,l↑) +AL,M (c†M,↑cM,↓

+ c†M,↓cM,↑ + c†L,↑cL,↓ + c†L,↓cL,↑), (4)

HU =
∑
l

UR,lnR,l↑nR,l↓ +
∑

l1 6=l2,σ,σ′
UR,l1l2nR,l1σnR,l2σ′

+ UMnM,↑nM,↓ + ULnL,↑nL,↓

+
∑

l1 6=l2,σ,σ′
UR,l1l2l2l1c

†
R,l1σ

c†R,l2σ′cR,l1σ′cR,l2σ.

(5)

Here, nα,lσ = c†α,lσcα,lσ is the number operator for the

single-particle states in the left (L), middle (M), and
right (R) quantum dot (α = L,M,R; σ =↑, ↓; and l is
the right dot’s l-th single-particle state), εα,l denotes the
single-particle energies, tαβ is the tunneling amplitude
between dots (α, β = L,M,R), EB is the Zeeman en-
ergy, Aα is the hyperfine interaction (proportional to the
dot size) between electrons and the nuclear spin bath, Uα
is the “on-site” Coulomb interaction, and finally, UR,l1l2
and UR,l1l2l2l1 are the Coulomb interaction and exchange
term between orbitals l1 and l2 in the right dot, respec-
tively. The large number of electrons in the right dot
makes the numerical calculation of the eigenenergies too
difficult to carry out without any sort of approximation.
Accordingly, we make use of the so-called “frozen-core”
approximation (FCA), where we keep the right dot’s 2N
core electrons in the lowest non-interacting states and
only allow a valence electron to occupy higher energy
levels. It is worth mentioning that, due to the large num-
ber of core electrons, we are only considering the direct
Coulomb interaction between the core and the valence
electrons, which causes a general energy shift. In the
following sections we will consider cores with fewer elec-
trons, and thus the FCA will also take into account the
Coulomb exchange interaction between core and valence
electrons.

In atomic physics, it is well known that in certain con-
figurations a combination of electron-electron repulsion
and electron-nucleus attraction makes high-spin states
energetically more favorable than any other lower-spin
state arising from the same configuration 60; this is
commonly known as Hund’s multiplicity rule. Simi-
larly, for the multielectron quantum dot the exchange
term, UR,l1l2l2l1 , in Eq. (5) induces magnetic correlations
among the electron spins and, as a result, it lowers the
energy of the eigenstates with spin 1. This is more evi-
dent if we set JFR,l1l2 ≡ UR,l1l2l2l1 and, using Pauli matrix

identities, we rewrite the exchange energy in Eq. (5) as 61

∑
l1 6=l2,σ,σ′

UR,l1l2l2l1c
†
R,l1σ

c†R,l2σ′cR,l1σ′cR,l2σ

=− 2
∑
l1 6=l2

JFR,l1l2(SR,l1 · SR,l2 +
1

4
nRl1nRl2), (6)

where SR,li is the spin operator acting on the li-th single-
particle state.

Since we assume that the 2N core electrons in the
right dot are “frozen” (FCA), we are effectively deal-
ing with a three-electron system. The spin Hamilto-
nian for three electrons coupled by nearest-neighbor ex-
change interactions and subject to a magnetic field is
H ′ = JLM (SL · SM − 1/4) + JMR (SM · SR − 1/4) −
EB(Sz,L + Sz,M + Sz,R), where Jαβ acts as an effective
exchange interaction and EB is the Zeeman energy. The
eight spin eigenstates of this Hamiltonian form a quadru-
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FIG. 1. Illustration of the three dot system, where the L and
M dots form a two-electron double quantum dot and R is
the multielectron quantum dot. In the main text, we analyze
the effective exchange interaction, J , between the middle (M)
and right (R) quantum dots.

plet Q, ∣∣Q+3/2

〉
= |↑↑↑〉 , (7)∣∣Q+1/2

〉
=

1√
3

(|↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉), (8)∣∣Q−1/2〉 =
1√
3

(|↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉), (9)∣∣Q−3/2〉 = |↓↓↓〉 , (10)

and high- and low-energy doublets, which, in the absence
of tunneling between left and middle dots, have the fol-
lowing simple form∣∣D+1/2

〉
=

1√
6

(−2 |↓↑↑〉+ |↑↓↑〉+ |↑↑↓〉), (11)∣∣D−1/2〉 =
1√
6

(−2 |↑↓↓〉+ |↓↑↓〉+ |↓↓↑〉), (12)∣∣∣D′+1/2

〉
=

1√
2

(|↑↑↓〉 − |↑↓↑〉), (13)∣∣∣D′−1/2〉 =
1√
2

(|↓↓↑〉 − |↓↑↓〉). (14)

Here, the spin eigenstates
∣∣D+1/2

〉
(
∣∣D−1/2〉) and∣∣Q+1/2

〉
(
∣∣Q−1/2〉) are almost degenerate, with an en-

ergy ED±1/2
= ∓EB/2, whereas the low-energy doublets

have an energy ED′±1/2
= −JMR ∓EB/2. Therefore, the

effective exchange energy between the middle and right
dots is given by

JMR = ED+1/2
− ED′

+1/2
, (15)

where
∣∣D+1/2

〉
and

∣∣∣D′+1/2

〉
are the lowest spin triplet-

like and singlet-like eigenstates, respectively.
We use the Hubbard model, Eq. (1), to calculate the

energies of the aforementioned spin eigenstates. To that
end, we choose a set of parameters such that the resulting
energy spectrum resembles the one reported in Ref. 45.
Accordingly, we set the magnitude of the energy level

(b)
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FIG. 2. (a) Schematic of the energy levels and charge config-
uration for the three-dot system. Here, ∆Ei is the difference
between two orbitals on the multielectron quantum dot. The
schematic only shows the tunnel coupling between the middle
and right dot, where tMR,N+1 and tMR,N+2 are the tunnel-
ing amplitudes between the middle dot’s single-orbital and
the lowest two orbitals above the frozen core in the multielec-
tron quantum dot. (b) Eigenenergy spectrum, calculated as
a function of the detuning ε, for the three-dot system at the
transition between (1, 1, 2N+1) and (1, 0, 2N+2) charge con-
figurations. The eigenstates

∣∣D+1/2

〉
(
∣∣D−1/2

〉
) and

∣∣Q+1/2

〉
(
∣∣Q−1/2

〉
) are almost degenerate and the exchange energy J is

the difference between the triplet-like state
∣∣D±1/2

〉
and the

singlet-like state
∣∣D′±1/2

〉
.

splittings as ∆EN+1 = 0.4meV, ∆EN+2 = 0.05meV,
∆EN+3 = 0.4meV, where ∆El = εR,l − εR,l−1 and εR,l
is the right dot’s l-th single-particle energy level (see
Fig. 2(a)). The tunneling amplitudes are tMR,N+1 =
0.15meV, tMR,N+2 = 0.1meV, and tLM = 0.02meV.
The hyperfine interactions for the multielectron quan-
tum dot and double quantum dot are AR = 0.4neV
and ALM = 4neV, respectively. Finally, the ferro-
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magnetic exchange term in the right dot is set equal
to JFR,l1l2 = 0.1meV and the in-plane magnetic field is

B = 500mT. With these parameters we plot in Fig. 2(b)
the eigenenergies as a function of the detuning between
left and right dot, ε ≡ (εM − εR,N+1)/2. Notice that in
the (1, 1, 2N + 1) configuration, where (nL, nM , nR) rep-
resents the number of electrons in the left, middle, and

right dots, the singlet-like eigenstate
∣∣∣D′+1/2

〉
has lower

energy than
∣∣D+1/2

〉
(JMR > 0), but as soon as the mid-

dle dot’s electron tunnels into the right dot the exchange
energy becomes negative, i.e. ED+1/2

< ED′
+1/2

. The lat-

ter is caused by the right dot’s ferromagnetic exchange
term JFR,l1l2 , which lowers the energies of all two-electron
states in the right dot with total spin equal to 1. This is
analogous to Hund’s rule in atomic physics.

Thus far, we have shown that, by choosing the appro-
priate parameters, the simple Hubbard model qualita-
tively reproduces the experimental results presented in
Ref. 45. Moreover, the model shows that the negative
exchange energy is caused by the multielectron quantum
dot exhibiting a spin triplet-like rather than singlet-like
ground state. In this line, Ref. 46 presents comparable
results using a Hubbard model similar to ours, with the
difference that ours takes into account the hyperfine in-
teraction (between electrons and the nuclear spin bath)
and the Coulomb interaction between orbitals in the right
dot. Nonetheless, the Hubbard model does not provide
enough insight into the characteristics (minimum number
of electrons, dot shape, etc.) a system must have in order
to display a negative exchange energy under zero mag-
netic field. This is addressed below using a microscopic
description of the multielectron quantum dot.

III. CONFIGURATION INTERACTION FOR A
MULTIELECTRON QUANTUM DOT

A. Frozen-core approximation

Here we determine the ground state of a multielectron
quantum dot using a configuration interaction (CI) ap-
proach. The large number of electrons forces us to use,
once again, the “frozen-core” approximation, which now
also takes into account the Coulomb exchange interac-
tion between core and valence electrons.

The system can be described by the valence effective
Hamiltonian 62,63:

Hv =[Ev +

core∑
i

hii +

core∑
i<j

(ii|jj)− (ij|ji)]

+

val∑
r,s

h̃rsc
†
rcs +

1

2

val∑
p,q,r,s

(pq|rs)c†pc†rcscq, (16)

with

(kl|mn) =

∫
φ∗k(r1)φl(r1)

1

r12
φ∗m(r2)φn(r2)dr1dr2, (17)

where the single-particle orbitals are denoted by φα, and
the summations marked “core” and “val” are over or-
bitals occupied by core or valence electrons, respectively.
The terms inside the bracket in Eq. (16), which comprises
the total single-particle energy of the valence electrons
(Ev) and the core’s energy, add up to a constant, and
thus they only shift the energy scale. The energy term
h̃rs is defined as

h̃rs = trs +

core∑
i

[(rs|ii)− (ri|is)], (18)

where trs is the electron hopping between valence or-
bitals, and (rs|ii) and (ri|is) are the Coulomb interaction
and exchange coupling between the valence and core elec-
trons, respectively.

In our numerical analysis we consider 2N + 2 electrons
(2N core electrons and 2 valence electrons, 0 ≤ N ≤ 6)
living in 12 orbitals. We model the lateral gate confine-
ment of the multielectron quantum dot with a symmetric
parabolic potential. Thus, the appropriate single-particle
orbitals are the eigenstates of the Fock-Darwin Hamilto-
nian

H =
1

2m∗
(−i~∇+

e

c
A)2 +

1

2
m∗ω2r2, (19)

where m∗ is the effective electron mass, ~ω is the quan-

tum dot confinement energy, and r =
√
x2 + y2 is the

radius. Following a numerical method developed in a
previous work 64, and setting the external magnetic field
to zero, we determine the eigenenergies and ground eigen-
state of the valence effective Hamiltonian. We perform
this calculation for both GaAs and Si quantum dots (see
Table I); using for GaAs (Si) the effective electron mass
m∗ = 0.067me (m∗ = 0.19me), where me is the elec-
tron mass, and the dielectric constant of the host mate-
rial κ = 13.1ε0 (κ = 11.68ε0). In contrast to GaAs, Si
quantum dots present a two-fold degenerate ground state.
This valley degeneracy can be lifted and finely tuned by
an out-of-plane electric field 6,65. Here, we assume that
such techniques have been employed to achieve a suffi-
ciently large valley splitting, and thus we do not include
a valley coupling parameter in our calculations. A com-
prehensive analysis including valley effects would require
a detailed microscopic understanding of the intervalley
coupling, which is likely device specific and is beyond
the scope of this paper.

Before discussing our results, it is important to note
that the multielectron quantum dot has shells at η =
2, 6, 12, 20, . . . , (n2 + 3n + 2), where η is the total num-
ber of electrons in the dot and n = 0, 1, 2, 3, . . . is the
principal quantum number. This is a consequence of the
(n + 1)-fold degeneracy of the quantum dot’s eigenen-
ergies, which stems from the dot’s effective confinement
having a symmetry very close to circular 66. We are pri-
marily interested in situations where the multielectron
quantum dot can be used as a spin qubit, i.e., it initially
contains an odd number of electrons where all but one
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electron completely fill a number of shells and form a spin
singlet-like state, leaving a net spin 1/2 from the remain-
ing unpaired electron 64,67,68. To examine the sign of the
exchange interaction with a neighboring single-electron
quantum dot we consider that the neighboring electron
tunnels into the large quantum dot, giving now two va-
lence electrons in that dot. We therefore consider first
the simplest case involving just a pair of electrons, and
then for larger number of electrons we focus on electron
numbers η = 4, 8, 14, . . . , (n2max + 3nmax + 4), which cor-
respond to two valence electrons and where nmax is the
principal quantum number of the highest full shell in the
core.

Our results, presented in Table I, show that when the
multielectron quantum dot contains only two electrons,
only a singlet ground state can be realized; this is in
accordance with the two-electron ground state theorem
55,56. Incidentally, in the case of valley degeneracy or
near-degeneracy, a pair of electrons in a Si quantum dot
would not necessarily follow the aforementioned theorem
since electrons in different valleys could be treated as
different species 69, which would violate the theorem’s
assumption that the potential is symmetric under per-
mutations 55. In Table I we also see that, for more than
two electrons, triplet states are possible depending on
the size of the dot. This indicates that having a core of
electrons completely occupying lower energy orbitals is
important for creating a triplet ground state. The fact
that, at least for η > 4, whether the ground state is a
singlet or a triplet depends on the size of the dot sug-
gests that the orbital spacing plays an important role.
We know that the energy difference between shells is in-
versely proportional to the square radius of the quantum
dot, so that small dots present well defined energy gaps
between shells. Consequently, for a pair of valence elec-
trons above a full shell and for a sufficiently large energy
gap between shells (small dot), Coulomb interactions be-
tween valence and core electrons are likely reduced since
excitations from core to valence orbitals are suppressed.
This picture is consistent with what we observe in Ta-
ble I, where for sufficiently small dots (ω/ω0 ≥ 4 for
GaAs and ω/ω0 ≥ 16 for Si, where ~ω0 = 1.0meV) the
ground state is always triplet-like, while for bigger dots
(ω/ω0 ≤ 2 for GaAs and ω/ω0 ≤ 8 for Si) the com-
paratively larger Coulomb interactions between valence
and core electrons increases the likelihood of singlet-like
ground states.

B. Full Configuration interaction for a
four-electron dot

The “frozen-core” approximation (FCA) was instru-
mental in the calculation of the results presented in Ta-
ble I and, therefore, it is important to probe the accuracy
of this approximation. To that end, we use the full con-
figuration interaction (full CI) method to calculate the
exact eigenenergies of a four-electron dot with variable

TABLE I. Ground states (S=Singlet and T=Triplet) for dif-
ferent dot sizes and number of electrons. Here, ~ω0 = 1.0meV
for both GaAs and Si quantum dots.

# of electrons

ω/ω0 0.25 0.5 1 2 4 8 16

2 S S S S S S S
4 T T T T T T T
8 S T T T T T T
14 S S S S T T T

(a) Ground states table for GaAs.

# of electrons

ω/ω0 0.25 0.5 1 2 4 8 16

2 S S S S S S S
4 T T T T T T T
8 S S S T T T T
14 S S S S S S T

(b) Ground states table for Si.

size and zero magnetic field. In the numerical calculation
we consider 4 electrons living in the 10 lowest orbitals of
a parabolic potential. Our results show that the ground
state of this system is triplet-like regardless of the dot
size, in accordance with the results obtained through the
FCA. We also notice that the higher-orbital-content of
the ground state increases proportionally to the dot size.
This is due to the reduction in the energy gap between
orbitals when the size of the dot increases, which allows
the mixing with higher orbitals. In this regard, the FCA
only provides an estimation of the ground state’s orbital
content, and thus the FCA’s accuracy is expected to di-
minish for large-size dots. Nonetheless, the FCA remains
a good approximation within the dot size range consid-
ered in this work.

IV. FULL CONFIGURATION INTERACTION
WITH ELLIPTICAL POTENTIAL

Apart from the dot size and number of electrons con-
fined in a quantum dot, here we show that the shape
of the dot also determines the occurrence of a triplet-
like ground state. To that end we use, once again, the
full CI method to calculate the exact eigenenergies of a
four-electron quantum dot with elliptical potential and,
in doing so, we show the effect of asymmetry on the ex-
change energy’s magnitude and sign. In our calculation
we consider 4 electrons residing in 10 orbitals, with a
single-particle Hamiltonian given by

H =
1

2m∗
(−i~∇+

e

c
A)2 +

1

2
m∗(ω2

1x
2 + ω2

2y
2), (20)

where ω1 and ω2 are the frequencies of the harmonic os-
cillators for the x and y directions, respectively. In the
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FIG. 3. Exchange energy vs. frequency difference of the el-
liptical potential.

absence of an external magnetic field, B = 0, the single-
particle energies are the eigenvalues of the anisotropic
two-dimensional harmonic oscillator:

εnx,ny =
1

2
(~ω1 + ~ω2) + nx~ω1 + ny~ω2, (21)

where we define ñ = nx +ny. Here, it is evident that the
splitting between single-particle energies can be tuned by
the frequency difference

δω = ω2 − ω1, (22)

which effectively changes the eccentricity of the dot’s el-
liptical potential. Accordingly, we calculate the eigenen-
ergies of the four electrons (in both GaAs and Si quan-
tum dots with zero magnetic field) using different magni-

tudes for δω, where, for convenience, we set ~(ω2+ω1)
2 =

8~ω0 = 8meV and ω2 ≥ ω1. Our results are summarized
in Fig. 3, which shows the exchange energy J (given by
the difference in energy between the lowest triplet-like
and singlet-like eigenstates) as a function of the frequency
difference δω. Notice that when δω = 0, i.e. the poten-
tial is parabolic, ñ becomes the principal quantum num-
ber and the principal energy levels (electron shells) cor-
responding to ñ > 0 are degenerate. Here, the electron
distribution is such that the lowest shell is full and the
next degenerate shell contains two electrons. In this con-
figuration, as shown in the previous section, the ground
state is triplet-like. However, for non-zero δω the de-
generacy is lifted and, in our particular case, when δω
is greater than a certain threshold δω̃ (δω̃ ≈ 1.65ω0 for
GaAs and δω̃ ≈ 2.8ω0 for Si) the split between the for-
merly degenerate orbitals with ñ = 1 is large enough to
favor a singlet-like ground state and, therefore, a positive
exchange energy. A similar effect is observed with larger

numbers of electrons and/or larger dot sizes (see Table
I).

V. CONCLUSIONS

In this work we have studied the conditions under
which negative exchange interactions can occur in cou-
pled few-electron quantum dots. The negative exchange
interaction between a multielectron quantum dot (with
odd occupation number) and a single-electron quantum
dot (which in turn is coupled to a second single-electron
quantum dot) has its roots in the larger quantum dot
exhibiting a spin triplet-like ground state, which occurs
once the smaller dot’s electron has tunneled into the
larger dot. This was demonstrated using a Hubbard
model for a linear three-dot system 70 that reproduces
the experimental results presented in Ref. 45, where neg-
ative exchange was observed. The larger quantum dot
with an even number of electrons and zero magnetic field
was further studied using a microscopic model based on
the configuration interaction (CI) method with which we
determined the ground state of the multielectron quan-
tum dot. In this CI calculation we considered differ-
ent combinations of total number of electrons and dot
sizes (parabolic potential), showing that the occurrence
of both triplet-like and singlet-like ground states depend
on those parameters and that 4 electrons is the minimum
needed to have a triplet-like ground state in both Si and
GaAs quantum dots. Moreover, the effect of dot asym-
metry on the exchange energy is also addressed via a full
CI calculation of the energy spectrum for a four-electron
quantum dot with elliptical potential. The full CI cal-
culation is repeated for different eccentricities, revealing
a threshold, in both GaAs and Si dots, at which the ex-
change energy flips signs. Future work will explore the
equally interesting three-dot system where a multielec-
tron quantum dot acts as a quantum mediator between
two single-electron quantum dots. For now, the results
presented in this work show that negative exchange inter-
actions are robust in few-electron double quantum dots,
and that all the potential advantages a tunable exchange
interaction can provide are accessible with as few as 4
electrons in a double quantum dot. This is fundamental
for scalability purposes since it avoids the need of large
quantum dots, it prevents unwanted capacitive coupling
between remote dots, and it enables simpler and faster
dynamically corrected gate operations.
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