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Nodal-loop semimetals are materials in which the conduction and valence bands cross on a one-
dimensional loop in the reciprocal space. For the nodal-loop character to manifest in physical
properties, it is desired that the loop is close to the Fermi level, relatively flat in energy, simple
in its shape, and not coexisting with other extraneous bands. Here, based on the first-principles
calculations, we show that the monoclinic CuTeO3 is a realistic nodal-loop semimetal that satisfies all
these requirements. The material features only a single nodal loop around the Fermi level, protected
by either of the two independent symmetries: the PT symmetry and the glide mirror symmetry.
The size of the loop can be effectively tuned by strain, and the loop can even be annihilated under
stain, making a topological phase transition to a trivial insulator phase. Including the spin-orbit
coupling opens a tiny gap at the loop, and the system becomes a Z2 topological semimetal with a
nontrivial bulk Z2 invariant but no global bandgap. The corresponding topological surface states
have been identified. We also construct a low-energy effective model to describe the nodal loop and
the effect of spin-orbit coupling.

I. INTRODUCTION

The study of topological states of matter have been at-
tracting significant interest in the current condensed mat-
ter physics research. Topological insulators which possess
insulating bulk states and robust metallic surface states
have been extensively studied1,2. Recently, topological
metals and semimetals have emerged as a new research
focus3–5. Their band structures exhibit nontrivial band
crossings near the Fermi energy, around which the low-
energy quasiparticles behave differently from the conven-
tional Schrödinger-type fermions. For instance, Weyl and
Dirac semimetals host isolated twofold and fourfold de-
generate linear band-crossing points, respectively, where
the electronic excitations are analogous to the relativis-
tic Weyl and Dirac fermions6–19, making it possible to
simulate interesting high-energy physics phenomena in
condensed matter systems20–22.

The conduction and valence bands may also cross
along a one-dimensional (1D) loop in the Brillouin zone
(BZ). Such nodal loops can be protected by symme-
tries and may lead to drumhead-like surface bands. Sev-
eral interesting properties have been predicted for nodal-
loop semimetals, such as the anisotropic electron trans-
port23, the unusual optical response and circular di-
chorism24–26, the possible surface magnetism and su-
perconductivity27–31, the anomalous Landau level spec-
trum32,33, and density fluctuation plasmons and Friedel
oscillations34. Quite a few realistic materials have been
proposed as nodal-loop semimetals23,29,35–49, and inter-
estingly, Dirac and Weyl loops have also been proposed in
cold-atom optical lattices50. However, to unambiguously
identify the predicted features due to the nodal loops in
these systems still remains challenging, partly because
the low-energy band structures of the realistic materi-
als suffer from various drawbacks. As a good nodal-loop
semimetal, the material should at least satisfy the follow-
ing requirements. First, the nodal loop should be close to

the Fermi level. Second, the energy variation along the
loop should be as small as possible. Third, the loop has a
relatively simple shape, and it is better that only a single
loop appears at low-energy. Fourth, it is crucial that no
other extraneous bands are nearby in energy, since other-
wise they may complicate the interpretation of measured
properties (like for the transport coefficients) 51. Hence,
to facilitate the experimental exploration of the nodal-
loop semimetals, an urgent task is to identify realistic
materials that satisfy these requirements.

In this work, based on first-principles calculations
and symmetry analysis, we predict that the monoclinic
CuTeO3 is a nodal-loop semimetal which satisfies all the
above-mentioned requirements. The material features
a single nodal loop close to the Fermi level in its low-
energy band structure. The loop is almost flat in energy
and there is no other extraneous band crossing the Fermi
level. The stability of the loop is protected by either of
the two independent symmetries in the absence of spin-
orbit coupling (SOC): the PT symmetry and the glide
mirror symmetry of the system. We show that lattice
strain can effectively tune the shape of the loop, and
even annihilate the loop to make a topological phase
transition into a trivial insulator phase. SOC opens a
gap at the nodal loop, and transforms the system into
a Z2 topological semimetal which has a nontrivial bulk
Z2 invariant but no global bandgap. The corresponding
nontrivial surface states are revealed. We also construct
a low-energy effective model to capture the nodal-loop as
well as the effect of SOC. Since the SOC is negligible for
this material, the nodal-loop features should clearly man-
ifest in experimental measurements. Our result suggests
an almost ideal platform for experimentally exploring the
intriguing properties of nodal-loop semimetals.
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FIG. 1. (a) Crystal structure of the monoclinic CuTeO3. The
figure shows the unit cell of the structure. (b) The bulk Bril-
louin zone and the projected surface Brillouin zone of the
(001) plane. The high-symmetry points are labeled.

II. CRYSTAL STRUCTURE

CuTeO3 belongs to the tellurium(IV)-oxygen com-
pounds. It may crystalize into two typical structures:
the orthorhombic structure and the monoclinic structure,
which are denoted as structure I and II52, respectively. In
this work, we focus on the monoclinic CuTeO3, which has
been successfully synthesized by a hydrothermal method
and shown to be stable at ambient condition52. The
chemical formula and the crystal structure have been de-
termined by a quantitative analysis of the X-ray diffrac-
tion data (the crystal structure data are a = 5.965 Å,
b = 5.214 Å, c = 9.108 Å, and γ = 95.06◦, where γ is the
angle between a and b axis) 52.

The monoclinic CuTeO3 has a structure with space
group No. 14 (P21/c) [see Fig. 1(a)], which can be gener-
ated by the following symmetry elements: the inversion P
[inversion center located at (a/2, b/2, c/2)] and the glide

mirror M̃z : (x, y, z)→ (x+ 1
2 , y+ 1

2 ,−z+ 1
2 ). Here the

tilde denotes a nonsymmorphic operation, which involves
a translation with fractional lattice parameters. In addi-
tion, the material has been found to show no magnetic
ordering52, so the time reversal symmetry T is also pre-
served. The crystal structure of monoclinic CuTeO3 and
the BZ are schematically shown in Fig. 1.

III. FIRST-PRINCIPLES METHODS

We performed first-principles calculations based on the
density functional theory (DFT) using the projector aug-
mented wave method as implemented in the Vienna ab
initio simulation package53–55. The exchange-correlation
functional was modeled within the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) realization56. The cutoff energy was set as 550
eV, and the BZ was sampled with a Γ-centered k mesh
of size 20×20×12. The experimental lattice parameters
(a = 5.965 Å, b = 5.214 Å, c = 9.108 Å)52 were adopted
in the calculation. The band structure result was fur-
ther checked by using the more accurate approach with

the modified Becke-Johnson (mBJ) potential57. We con-
firm that the essential features including the nodal loop
remain the same as in the GGA result (see Appendix
A). As Cu(3d) orbitals may have correlation effects, we
also tested our result by using the GGA+U method58,
and the results are discussed in Section V. In order to
study the topological surface states, localized Wannier
functions were constructed by projecting the Bloch states
onto atomic-like trial orbitals without an iterative proce-
dure47,59,60. Using the Wannier functions, the surface
spectra were calculated via the iterative Green’s func-
tion method61 as implemented in the WannierTools pack-
age62.

IV. RESULTS

A. Nodal-loop semimetal in CuTeO3

We first consider the electronic band structure of mon-
oclinic CuTeO3 (hereafter referred to as simply CuTeO3)
in the absence of SOC. The band structure from DFT
calculation is shown in Fig. 2(a), along with the pro-
jected density of states (PDOS). From PDOS, one clearly
observes that the system is a semimetal: it has zero
bandgap but the density of states at the Fermi level is
very small. The low-energy states near the Fermi level
are mainly from the Cu(3d) orbitals and the O(2p) or-
bitals.

In the band structure, there appear linear band-
crossing points along the Y-Γ and Γ-X paths very close to
the Fermi level [see Fig. 2(a)]. Actually, these points are
not isolated. Via a careful scan of the crossing points in
the BZ, we find that the two points belong to a nodal loop
centered around the Γ point in the kz = 0 plane, formed
by the crossing between the conduction and the valence
bands. This is more clearly shown in Fig. 2(b), where we
plot the dispersion of the two bands in the kz = 0 plane
around Γ. One directly observes that they cross along a
1D loop in this plane. The shape of the nodal loop ob-
tained from the scan is shown in Fig. 2(c). These results
demonstrate that the material is a nodal-loop semimetal
with a single nodal loop close to the Fermi level in the
band structure. The loop is quite flat in energy, with an
energy variation less than 0.04 eV. More importantly, the
band structure is clean in the sense that there is no other
extraneous band near the Fermi level. Thus, CuTeO3

satisfies the conditions we listed at the Introduction sec-
tion for a good nodal-loop semimetal.

Depending on the slope of the two crossing bands, a
nodal point can be classified as type-I or type-II63,64.
Recently, Li et al. proposed the concepts of type-II and
hybrid nodal loops45, based on the type of the nodal
points that make up the loop. A loop is type-I (type-
II) if all the points on the loop are type-I (type-II) in
the 2D transverse dimensions. If a loop contains both
type-I and type-II points, then it corresponds to a hyrbid
type. Several interesting physical properties have been
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predicted for each type of the loops65–68. Here, we also
determine the type of the nodal loop found in CuTeO3.
By scanning the dispersion around the loop, we find that
although most points on the loop are of type-I [Fig. 2(f)],
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FIG. 2. (a) Band structure for the monoclinic CuTeO3. The
right panel shows the projected density of states (PDOS). The
result here is in the absence of SOC. (b) Band dispersion in the
kz = 0 plane near the Γ point. The crossing between the two
low-energy bands forms a nodal loop. (c) Shape of the nodal
loop (white curve) obtained from the DFT calculation. The
color map indicates the local gap between the two crossing
bands. (d) Illustration of a few paths in the kz = 0 plane.
(e) and (f) are the zoom-in images for the low-energy bands
along two paths indicated in (d), showing that the points in
a small section on the nodal loop (e.g. along Γ-H) is type-II.
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FIG. 3. (a) Projected spectrum on the (001) surface, and (b)
the corresponding constant energy slice at −0.03 eV.

there are small sections of the loop where the points are
of type-II [Fig. 2(e)]. Thus, the loop contains both type-
I and type-II points, and according to the definition, it
belongs to the hybrid type.

Nodal loops usually display drumhead-like surface
states at the sample surface, on which the loop has a
nonzero projected area35,36. In Fig. 3, we show the spec-
trum for the (001) surface. One indeed observes a surface
band connecting the nodal points that correspond to the
loop in the bulk [see Fig. 3(a)]. And the surface states
lie within the surface projected nodal loop, as seen in
Fig. 3(b) for a constant energy slice at −0.03 eV. It is
worth noting that in Fig. 3(b), the surface states in the
constant energy slice appear as open arcs, which seems
peculiar as one typically expects a closed curve, as found
in most previous works. However, such result is not un-
reasonable, because the shape of the surface states in the
constant energy slice depends on the detailed dispersion
of the surface band. Consider a surface band having a
saddle-like shape in its dispersion, then on a constant en-
ergy slice, the surface states naturally appear as sections
of hyperbolic curves (open arcs).

B. Symmetry protection

The nodal loop in CuTeO3 is protected by either of
the two independent symmetries: the PT symmetry and

glide mirror symmetry M̃z, when SOC is absent.
In the absence of SOC, spin is a dummy degree of free-

dom, and the usual treatment is to simply drop the spin
labels and the trivial spin degeneracy. Hence, for the
current system, without SOC, the nodal loop can be re-
garded as formed by the crossing between two (spinless)
bands. Then the presence of PT symmetry requires that
the Berry phase for any closed 1D manifold to be quan-
tized into multiples of π69. Here, the Berry phase

γ` =
∑

n∈occ.

∮
`

〈un(k)|i∇kun(k)〉dk (1)

is defined for a locally gapped spectrum along a closed
path `, |un(k)〉 is the periodic part of the Bloch eigen-
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state, and the band index n is summed over the occupied
valence bands below the local gap. Hence, γ`/π mod 2
defines a 1D Z2 invariant. For a nodal loop, γ` for a
closed path ` encircling the loop is ±π, hence protecting
the loop against weak perturbations from opening a gap.
In DFT calculations, we have also numerically checked
that such Berry phase is nontrivial.

Another protection is from the glide mirror symme-

try M̃z. The loop lies in the kz = 0 plane, which is

invariant under M̃z. Hence, each state in this plane is

also an eigenstate of M̃z, with a well-defined eigenvalue
gz = ±e−ikx/2−iky/2. The nodal loop is protected if the
two crossing bands have opposite gz in the kz = 0 plane,
which is indeed the case as verified by our DFT calcula-
tions (the conduction band has positive eigenvalues, and
the valence band has negative eigenvalues). The presence

of M̃z symmetry further pins the nodal loop to be within
the kz = 0 plane.

The two symmetries are independent, so the loop is
protected as long as one of them is preserved. We have
checked this point by making lattice distortions that
break one while maintaining the other. This also offers
possibility to tune the nodal loop by strain engineering.
The location and the shape of the loop can be effectively
tuned by strain, if the applied strain preserves one of
the two symmetries. For example, let’s consider a lattice
deformation by varying the angle γ between the a and b
axis, corresponding to a type of shear strain. As shown in
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FIG. 6. (a) Band structure of the monoclinic CuTeO3 with
SOC included. (b) Zoom-in band structures around several
paths, showing that a small gap is opened at the original nodal
loop by SOC.

Fig. 4, one observes that the shape of the loop varies with
strain, and it becomes larger when the angle is increased.
Importantly, at decreased angle, the loop shrinks as the
band inversion at Γ is reduced. For γ = 85◦, the loop
is completely removed, and the system has made a topo-
logical phase transition into a trivial insulator phase.

In addition, since the system preserves inversion sym-
metry, we can also analyze the topology of the nodal loop
using the method discussed in Ref.38. In this method,
we calculate the product of parity eigenvalues ξi for the
occupied states at the eight time reversal invariant mo-
menta (TRIM) Γi, where i = 0, 1, · · · , 7. The results are
indicated in Fig. 5. Then we can obtain the Z2 invariant
ω(Cabcd) = ξaξbξcξd for the six invariant Sabcd planes.
Three of the six planes have nontrivial ω(C) = −1, as
marked by the shaded regions in Fig. 5(b). This is con-
sistent with the fact that the loop pierces through these
three planes. This analysis also gives the Z2 invariant
(ν0; ν1ν2ν3) for a topological insulator once SOC is in-
cluded, as we discuss in a while.

C. Effect of SOC

Next, we turn to the band structure with SOC. Be-
cause the low-energy states are mainly from the Cu and
O atomic orbitals, the SOC effect is expected to be small
since these are light elements. This is verified in the DFT
calculation. The band structure with SOC is plotted in
Fig. 6(a). One observes that it is quite similar to the
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result without SOC in Fig. 2(a). Here, each band is at
least doubly degenerate due to the PT symmetry. This
is because each k point is invariant under PT , and with
SOC, we have (PT )2 = −1, leading to a Kramers-like
degeneracy for each band at each k point. It should be
noted that even if the individual P and T are broken, as
along as the combined symmetry PT holds, the double
degeneracy will still be there (such as in some magnetic
materials). Zooming in the crossings corresponding to
the nodal loop [see Fig. 6(b)], one can see that there is a
very small gap (about 0.0075 eV) opened at the original
nodal loop.

After including the SOC, there is a local gap between
conduction and valence bands at every k point. Hence,
we can have a well-defined Z2 invariant for the valence
bands70,71, just like that for the 3D topological insula-
tors. Since band inversion occurs at the Γ point, one
naturally expects that this Z2 invariant is nontrivial. The
material here has inversion symmetry, so the Z2 invari-
ant can be conveniently evaluated by analyzing the parity
eigenvalues at the TRIM points72. This in fact has been
done in the previous section (see Fig. 5), and we find that
Z2 = (1; 000), which is indeed nontrivial. Note that there
is no global bandgap for the spectrum—the bandgap is
closed indirectly, so in a strict sense the system is a Z2

topological semimetal70,71. Like topological insulators,
such state also possesses spin-momentum-locked topolog-
ical surface states. In Fig. 7, we show the surface spec-
trum for the (001) surface. Compared with the result in
Fig. 3(a), one observes that the drumhead surface states
are split by the SOC and evolve into the spin-polarized
surface states for the Z2 topological semimetal.

Here, it should be mentioned that the SOC effect is
quite small for CuTeO3. At energy scales larger than the
SOC gap (∼ 0.0075 eV), the SOC effect has negligible
influence on measured physical properties, and the ma-
terial may be well described by a nodal-loop semimetal.
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FIG. 7. Topological surface states on the (001) surface when
SOC is included.

D. Low-energy effective model

To further characterize the nodal-loop semimetal phase
and to understand the effect of SOC, we construct a low-
energy effective (k · p) model based on the symmetry re-
quirements.

We first consider the case without SOC. The two low-
energy states at the Γ point belong to the Γ+

2 and Γ−2
representations of the C2h point group at Γ. Using them
as basis, we can obtain a two-band model that is con-
strained by symmetry. To capture the nodal loop, we
expand the model at Γ to leading order terms in each
wave-vector component ki, which gives

H0(k) = M(k)τ0 +A(k)τz +B(k)τy, (2)

where the Pauli matrices τi are in the space spanned
by the two basis states at Γ, M(k) = M0 + M1k

2
x +

M2k
2
y + M3kxky, A(k) = A0 + A1k

2
x + A2k

2
y + A3kxky,

and B(k) = Bkz. In the specified basis, the inversion
and time reversal operations take the following represen-
tations: P = τz, and T = τ0K with K the complex con-
jugation operation. One can easily verify that the model
H0 respects both symmetries. From this model, we find
that a nodal loop would appear in the kz = 0 plane under
the condition that A2

3 − 4A1A2 < 0. The parameters fit-
ted from the first-principles result are M0 = −0.0363 eV,
M1 = 0.3215 eVÅ2, M2 = 0.8593 eVÅ2, M3 = 0.7538
eVÅ2, A0 = −0.0355 eV, A1 = 1.5961 eVÅ2, A2 =
1.3446 eVÅ2, A3 = 1.7215 eVÅ2, and B = 1.0906 eVÅ,
which satisfy the condition above. The fitting result of
the band structure is shown in Fig. 8(a).

When SOC is included, there will be additional SOC
terms in the Hamiltonian. Treating SOC as perturba-
tions, we add to model H0 in Eq. (2) the leading order
symmetry-allowed SOC terms, given by

HSOC(k) = λ0kzτxσz + kxτx(λ1σx + λ2σy)

+ kyτx(λ3σx + λ4σy),
(3)

where the Pauli matrices σi stand for the real spin. Then
the full model is H = H0⊗σ0 +HSOC. One easily checks
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that the SOC terms open a gap at the original nodal loop.
For CuTeO3, the SOC strength is small, so the gap is
also negligible. The parameters obtained from fitting the
first-principles result are λ0 = 0.0007 eVÅ,λ1 = 0.0012
eVÅ,λ2 = −0.0084 eVÅ,λ3 = 0.0023 eVÅ, λ4 = 0.0117
eVÅ. The fitting result for the band structure with SOC
is shown in Fig. 8(b).

V. DISCUSSION AND CONCLUSION

Based on their formation mechanisms, nodal loops can
be divided into different classes. Certain nodal loops are
accidental in the sense that their presence requires band
inversion in certain regions of the BZ. And the loop can
be adiabatically annihilated without breaking the sys-
tem’s symmetry. There also exist nodal loops that do
not rely on the band inversion. In the absence of SOC,
it has been shown that a 2D Z2 invariant can protect a
nodal loop without band inversion73,74. Moreover, cer-
tain nonsymmorphic space group symmetries can guar-
antee the presence of nodal loops even in the presence of
SOC40,49,75,76. The nodal loop in CuTeO3 here belongs
to the first class, namely, it requires the band inversion
around the Γ point, and it can be annihilated when the
band inversion is removed [as in Fig. 4(a)] without chang-
ing the symmetry of the system.

In the band structure without SOC shown in Fig. 2(a),
one also notices that the bands are degenerate along the
paths U-Z and Z-T, which lie on the kz = π plane. This
behavior is not accidental. In fact, the bands on the
whole kz = π plane must be doubly degenerate, forming
a nodal surface in this plane. This is a Kramers-like de-

generacy due to the anti-unitary symmetry T S̃2z, where

S̃2z = M̃zP is a two-fold screw rotation along z. One
checks that

(T S̃2z)2 = e−ikz . (4)

On the kz = π plane, we have (T S̃2z)2 = −1, which
leads to the Kramers-like degeneracy and hence the nodal
surface. This argument also shows that the nodal surface
here has to be residing in the kz = π plane. Recently,
nodal surface semimetals have been proposed in a few
real materials77–79. More detailed analysis regarding the
nodal surface can be found in Ref.79.

When SOC is included, the nodal surface is split. (The
nodal surface cannot exist in the current case because of
the preserved inversion symmetry. See Ref.79.) However,
four-fold degenerate Dirac points are observed at point

Z (and also X), which are due to the presence of P, M̃z,
and T symmetries at the point, analogous to those found
in Refs.49,71.

We have assumed the paramagnetic phase for CuTeO3

in this study. Since d electrons in Cu may have correla-
tion effects, we have also performed the GGA+U calcula-
tions to investigate the possible magnetic phases. We find
that for large enough U value, a magnetic ground state

is preferred. We consider a ferromagnetic (FM) configu-
ration and two antiferromagnetic (AFM) configurations,
as illustrated in Fig. 9(a-c). For U = 4 eV, we find that
the AFM configuration in Fig. 9(b) has the lowest energy
among the three (each having ∼ 0.6µB moment per Cu
site). In the band structures, all these magnetic states
have a sizable bandgap larger than 1 eV. The FM state
still has a nodal loop in the minority spin channel but it is
above the Fermi level; whereas the loop is removed in the
AFM states. Nevertheless, we note that: (i) Because the
3d electrons are less confined, the Hubbard U correction
often overestimates the tendency towards magnetism; (ii)
No magnetism was observed in experiment at room tem-
perature52, and although there is no systematic exper-
imental study of this material at lowered temperature,
the Neel temperature for closely related compounds such
as Cu3TeO6

80 and Cu3−xZnxTeO6
81 are all below 70 K.

Thus, our result presented here should be valid for the
temperature range above the material’s Neel tempera-
ture, which is not expected to be high.

In conclusion, based on first-principles calculations
and symmetry analysis, we predict that the monoclinic
CuTeO3 is an almost ideal nodal-loop semimetal. There
is a single nodal loop in the band structure close to the
Fermi level. The loop is quite flat in energy, and there
is no other extraneous band nearby. The drumhead-
like surface states corresponding to the nodal surface
are identified. We show that the loop is protected by
two independent symmetries in the absence of SOC, and
the loop can be effectively tuned or even annihilated by
strain. When SOC is considered, the nodal loop opens
a tiny gap and the system (in a strict sense) becomes a
Z2 topological metal with spin-polarized surface states.
We have constructed a low-energy effective model to de-
scribe the nodal-loop phase and the effect of SOC. Since
the SOC strength is very small, the monoclinic CuTeO3 is
well described as a nodal-loop semimetal. The bulk nodal
loop and the surface states can be directly probed in the
angle-resolved photoemission (ARPES) experiment. Our
result offers a promising platform for exploring the in-
triguing physics associated with nodal-loop semimetals.
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Appendix A: Band structure result with modified
Becke-Johnson potential

The band structure features are verified by using
the more accurate approach with the modified Becke-
Johnson (mBJ) potential57. The result is plotted in
Fig. A1. The result indicates that the essential features
including the nodal loop remain the same as the GGA
result.
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