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We numerically investigate the quantum phases and phase transition in a system made of two
species of fermionic atoms that interact with each other via s-wave Feshbach resonance, and are
subject to rotation or synthetic gauge field that puts the fermions at Landau level filling factor
νf = 2. We show that the system undergoes a continuous quantum phase transition from a νf = 2
fermionic integer quantum Hall state formed by atoms, to a νb = 1/2 bosonic fractional quantum
Hall state formed by bosonic diatomic molecules. In the disk geometry we use, these two different
topological phases are distinguished by their different gapless edge excitation spectra, and quantum
phase transition between them is signaled by the closing of energy gap in the bulk. Comparisons will
be made with field theoretical predictions, and the case of p-wave pairing.

I. INTRODUCTION

Topological phases of matter and the phase transitions
between them have been the focus of much recent theoreti-
cal and experimental interests. The integer and fractional
quantum Hall states, which are initially realized in a two-
dimensional electron gas placed in strong magnetic fields,
are prime examples of such topological phases. Trapped
ultracold atoms constitute a unique experimental setup to
study condensed matter Hamiltonians in a clean and well-
controlled environment1,2. One of the most interesting
phenomena in the cold atom system is the crossover from
weakly paired atomic fermionic superfluid to strongly
paired bosonic molecular superfluid as the pairing inter-
action is tuned through an s-wave Feshbach resonance3.
When the trap potential of the cold atoms is rotating,
the Coriolis force experienced by the atoms leads to an
effective perpendicular magnetic field and the quantum
Hall states are expected in the fast rotation limit1,2. Re-
cently ways of engineering synthetic magnetic fields to
realize quantum Hall states in cold atom systems have
been proposed, such as the strained optical lattice4, opti-
cal dressing5,6 of atoms in continuum, and laser-induced
tunneling in optical lattice7–9. Therefore, it is interest-
ing to investigate what happens to these quantum Hall
states in the presence of the pairing interaction between
fermions.

With the s-wave pairing, it was pointed out by Yang
and Zhai10 that in the quantum Hall regime, instead of a
crossover, the system should undergo quantum phase tran-
sition(s) from a quantum Hall state formed by fermionic
atoms at large positive detuning, to a topologically dis-
tinct quantum Hall state formed by bosonic molecules
at large negative detuning. They used field theoretical
methods to study the special case in which the fermionic
state is an integer quantum Hall state at Landau level
filling factor νf = 2, and showed that the system must un-
dergo a quantum phase transition to a bosonic fractional
quantum Hall state at νb = 1/2 as a function of detuning,
with the transition occurring near the Feshbach resonance
(FR). These two phases, as well as a continuous quantum

phase transition (QPT) between them, were indeed found
in a numerical study of a Hubbard-like lattice model that
only includes the fermionic atoms (or a single-channel
model)11, on a torus.

In the present work we perform numerical study of the
original two-channel model of Yang and Zhai10, on a disc
through exact diagonalization method. There are three
motivations to perform the present study. (i) This allows
for a more direct, and quantitative test of the predictions
made by Yang and Zhai10. (ii) The disc geometry is
complementary to the torus geometry used by Ref. 11, as
it allows for studies of the edge states, which are char-
acteristics to the topological order. More importantly,
it is directly relevant to experimental systems. (iii) In
our previous study of the closely related system with
p-wave pairing interaction between spinless fermions12,
we found a new phase that is intermediate between the
fermionic integer quantum Hall (FIQH) and bosonic frac-
tional quantum Hall (BFQH) phases. Such a phase was
missed by the effective field theory13. Therefore, in the
s-wave pairing case, it is interesting to explore whether
there is also a similar new phase.

The remainder of the paper is organized as what follows.
The microscopic model Hamiltonian we studied numer-
ically is introduced in Sec. II, and the low-lying energy
spectrum and ground state phase diagram are presented
in Sec. III. In Sec. IV, we compare our present results
with the p-wave pairing case, and discuss reason for the
absence of the Bose-Fermi mixture phase in the s-wave
case. Sec. V gives the summaries and discussions.

II. MODEL

To study this QPT, we consider two species of fermions
confined to a disk under rotation or synthetic gauge field
which gives the same effect of a strong magnetic field.
We assume the Landau level spacing is so large that all
particles stay in the lowest Landau level (LLL). We are
interested in the case with the Landau level filling factor
νf = 2 (composed of two integer quantum Hall states,
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νf↑ = νf↓ = 1). When the system is tuned through s-
wave FR, two fermions of different species can pair up to
form an s-wave bosonic molecule with twice the “charge”.
Between two fermions of the same kind, however, there
is no interaction. Note that when all fermions pair up
as bosons, the boson number is half of the total particle
number and the bosonic Landau level degeneracy which
is proportional to particle charge is doubled. As a result,
the bosonic filling factor νb will be 1

4 of νf , namely, νb = 1
2 .

In addition, the corresponding bosonic magnetic length
square (l2b) which is inversely proportional to particle
charge will be half of the fermionic magnetic length square
(l2f ), l2b = 1

2 l
2
f . With rotational symmetry, this system is

described by the following Hamiltonian

H = δ
∑
m

(b†mbm −
∑
σ=↑,↓

f†σmfσm)

+
∑

m1,m2,m3

(gm1,m2,m3
b†m1

f↑,m2
f↓,m3

+H.c.)

+
∑

m1,m2,m3,m4

v(0)
m1,m2,m3,m4

b†m1
b†m2

bm3
bm4

, (1)

where m is the angular momentum of the single-particle
orbital in the LLL with bm(b†m) and fσ,m(f†σ,m) the cor-
responding annihilation (creation) operators for bosons
and fermions.

The first (chemical potential) term controls whether
atoms should stay unbound or form molecules. δ
in this term is the detuning referring to the energy
difference between unbound and paired fermions.
The “detuning” we used here is from FR. The sec-
ond term describes the pairing interaction through
s-wave FR. The matrix element of this term can be
written as gm1,m2,m3 = gδm1,M δM,m2+m3 〈0,M |m2,m3〉,
where g represents the strength of the s-wave pairing,
|m2,m3〉 ≡ |m2〉↑⊗ |m3〉↓ is a two-body state having two
fermions of different species with angular momentum
m2 and m3 respectively, and |0,M〉 is a two-body
state with their relative angular momentum equal to
zero and the center-of-mass angular momentum M .
This term only allows two fermions of different species
with relative angular momentum ∆m = 0 to pair up
and the formed bosonic molecule will have angular
momentum m1 = M = m2 + m3 based on angular
momentum conservation; in other words, the boson
itself has no intrinsic angular momentum (s-wave). The
Clebsch-Goldan-like coefficient 〈0,M |m2,m3〉 can be
evaluated through

〈∆m,M |m1,m2〉 ≡
1√

(2π)42(∆m+M+m1+m2)∆m!M !m1!m2!l8∫
d2z1

∫
d2z2(

z∗1 − z∗2√
2l

)∆m(
z∗1 + z∗2√

2l
)M (

z1

l
)m1(

z2

l
)m2

× e−
|z1|2+|z2|2

2l2

=

√
∆m!M !

(2π)
4

2∆m+M m1!m2!∑
n

(−1)∆m−n Cnm1
C∆m−n
m2

δ∆m+M,m1+m2 ,

(2)
where za ≡ xa+ iya, is the complex coordinate of the a-th
particle on a disk in the LLL, d2za = dxadya, ∆m is the
relative angular momentum of a pair, and Cnm = m!

n!(m−n)!

is the binomial coefficient. The sum of n is over all inte-
gers bounded at max(0,∆m−m2) ≤ n ≤ min(∆m,m1).
The last term in Eq.(1) is the two-body repulsive inter-
action between bosons for stabilizing the BFQH state
with νb = 1

2 . Here we include only the zeroth Haldane

pseudopotential14, which makes the νb = 1/2 Laugh-
lin wave function the exact ground state when we have
bosonic molecules only. The matrix element is expressed

as v
(0)
m1,m2,m3,m4 = v(0)

∑
M 〈m1,m2|0,M〉〈0,M |m3,m4〉,

where v(0) denotes the strength of the zeroth order Hal-
dane pseudopotential. In our system, we are considering
the case at T (temperature) = 0 in which changing v(0)

has no other effect but changing the overall energy scale.
In reality, when T > 0, this statement is still valid as
long as v(0) is much larger than kBT . Thus, we choose
v(0) = 1 in our calculation.

In our model, both the total charge Ntot and the total
angular momentum Mtot are good quantum numbers.
Ntot is the sum of the numbers of two species of fermions
and twice the number of bosons:

Ntot = 2Nb +Nf↑ +Nf↓ =
∑
m

(2b†mbm +
∑
σ=↑,↓

f†σmfσm)

(3)
The prefactor 2 in bosonic part comes from the fact that
a boson consists of two fermions. The total angular
momentum Mtot is sum over all orbitals occupied by
bosons and fermions:

Mtot =
∑
m

m(b†mbm +
∑
σ

f†mσfmσ). (4)

In our numerical calculation on disk geometry, we use
Ntot and Mtot to label the sector where the calculations
are performed.

III. NUMERICAL RESULTS

The hamiltonian H in Eq.(1) has two limits. When
δ > 0 and |δ| � g, unpaired fermions have lower energy
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∆M 0 1 2 3

U (1) ε0 ε0 + ε1 ε0 + 2ε1
ε0 + ε2

ε0 + 3ε1
ε0 + ε2 + ε1
ε0 + ε3

U (1)× U (1) ε0 ε0 + εα1 ε0 + 2εα1
ε0 + εα2
ε0 + ε↑1 + ε↓1

ε0 + 3εα1
ε0 + εα2 + εα1
ε0 + εα3
ε0 + ε↑2 + ε↓1
ε0 + ε↑1 + ε↓2
ε0 + 2ε↑1 + ε↓1
ε0 + 2ε↓1 + ε↑1

TABLE I. Edge state counting. ∆M is the exceeded angular
momentum comparing to Mgs; ε0 is the root configuration
of the Laughlin state and εαi represents the change of the
configuration that one α-type particle changes its angular
momentum by i, where α =↑ or ↓ . In our model, the edge
counting for fermionic Hilber space corresponds to U (1)×U (1)
case and that for bosonic Hilbert space corresponds to U (1)
case. Note that some possibilities may be prohibited by the
number of extra orbitals.

than bosons, so the chemical potential term drives the
ground state of the system toward being a FIQH state at
νf = 2 (composed of two copies of FIQH state νfσ = 1),
which does not need to be stabilized by any interaction
between the fermions. On the other hand, for δ < 0
and |δ| � g, bosonic molecules have lower energy and
dominate in the ground state of the system. Owing to the
existence of the bosonic repulsive two-body interaction,
the ground state becomes a Laughlin-type BFQH state
with νb = 1

2 . In the following, we will inspect the low
energy spectra to distinguish between these two phases.

Fig. 1 shows the low energy spectra for a system with
Ntot = 12 given 9 up (down) fermionic orbitals and 18
bosonic orbitals at Mtot = 29 to 33. Instead of providing

the least orbital numbers
(

(Ntot/2−1)
νb(fσ)

+ 1
)

, we give 3

more orbitals for each species of fermions and 7 more
orbitals for bosons to allow the appearance of the edge
states15. Under FIQH limit, with the least orbitals the
system will have the lowest energy state only when it
forms a FIQH state in which there are no bosons and all
fermionic orbitals are occupied, namely at Mtot = Mgs

with

Mgs =
Ntot

2
(
Ntot

2
− 1). (5)

For this case with Ntot = 12, Mgs = 30. With extra
orbitals, edge states degenerate with the FIQH state are
expected to appear at Mtot > Mgs but not at Mtot < Mgs.
Since we have two species of fermions (↑ and ↓), the
Hilbert space of the fermionic part of the system is the
tensor product of the Hilbert space of each species of
fermions. As a result, the counting of the fermionic edge
states is U (1) × U (1). Some examples are shown in
Table I15. By counting and comparing the low-lying states
with the numbers of edge states at various Mtot, we can
demonstrate the system forms a FIQH state. In Fig. 1(a)

FIG. 1. The energy spectra for a system on a disk with
Ntot = 12 fermions, given 9 fermionic orbitals and 18 bosonic
orbitals. 20 lowest energy states are plotted for each Mtot. The
ground state at Mtot = Mgs = 30 is separated by a large gap
from all excited states for (a) g = 0.5 and δ = 5 and (b) g =
4 and δ = 5, which are under FIQH limit. The numbers right
above the low-lying states represent their (near) degeneracy.
At Mtot > Mgs, many low-lying states are found and their
numbers are consistent with the edge state counting. We find
a different set of low-lying states for Mtot ≥Mgs = 30 in (c)
g = 0.5 and δ = −10 and (d) g = 4 and δ = −10, which are
under BFQH limit. These correspond to the Laughlin-like
ground state at Mtot = Mgs = 30 and edge states for Mtot >
Mgs = 30. The numbers of these states indicated in the plots
match the expected numbers of edge states. 〈Nb〉s indicate
the expectation values of boson numbers in the corresponding
states pointed by small arrows. The Hilbert space dimensions
of the situation that Ntot/2 are bosons and Ntot/2 are fermions,

for fermions and bosons at Mtot = 30 are about
(

6!!
3! 3!

)2
= 400

and 14!
11! 3!

= 364, respectively.

and 1(b) with δ = 5 at g = 0.5 (weak coupling) and
g = 4 (strong coupling), the consistency of the numbers
of the low-lying states (the numbers right above the low-
lying states) and the edge states illustrates that it belongs
to the FIQH phase. Note that the low-lying states are
no longer exactly degenerate due to the existence of the
pairing interaction. Moreover, we also inspect the boson
numbers in the ground and the first excited state at Mgs.
The former is very close to zero, and the latter is about 1
as expected. The energy gap between the ground state
and the first excited state ∆E, mainly contributed by
the chemical potential term, which is about 3|δ| (losing
two fermions and gaining a boson), is also observed in
Fig. 1(a), as expected.

In the BFQH limit δ → −∞, the system contains
Nb = Ntot/2 bosonic molecules at ν = 1

2 , and has the
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FIG. 2. (Color online) Plot of the energy gap (∆ ≡ E1 − E0,
where E0 and E1 are the energies of the ground state and the
first excited state in Mgs sector) versus δ for systems with
Ntot = 10, 12, 14 and 16 at Mgs for (a) g = 0.5. There is
one gap closing point δc for each curve. Inset: blow-up of
the gap-closing region. (b) For g = 4. There is still one gap
closing point for each curve, despite the existence of another
local gap minimum on the left which fades away as system
size increases. Inset: values of gap minimums corresponding
to the phase boundary versus inverse of system size.

Laughlin wave function

ψν= 1
2

(z1, z2 · · · ) =

Nb∏
i<j

(zi − zj)2

 e− Nb∑
k=1

|zk|2

4 l2

(6)

as its exact ground state. The corresponding total angular
momentum is Mtot = 2×Nb (Nb − 1) /2 = Mgs, the same
as that in the FIQH limit. To identify the BFQH phase,
we compare the numbers of the low-lying states with the
numbers of edge states of Laughlin-type states which cor-
respond to U (1) counting in Table I. In Fig. 1(c) and 1(d),
we see that both countings are consistent meaning that
the system forms a Laughlin-type BFQH state with ν = 1

2 ,
at δ = −10. Besides, the low-lying states at Mgs in both
weak and strong coupling regimes have nearly 6 bosons,
the maximum number of bosons. In Fig. 1(b) and 1(d),
the bigger deviation of the particle numbers from the ex-
pected values in the strong coupling regime tells that the
pairing term provides fermions more chances (bigger ma-
trix elements) to jump back and forth between bound and
unbound states. One thing very different from the FIQH
limit is that the energy gap at Mgs in Fig 1(c) is much
smaller than 3|δ| because the low-energy excited states
are still made dominantly of bosons (almost no fermions)
with different angular momentum configurations. It turns
out the bosonic two-body interaction becomes the main
contributor to the energy gap rather than the chemical
potential term in this case.

In order to reach the appropriate ground states for con-
tinuously varying δ and to save calculation efforts, given a

specific Ntot, from now on we give the least ( (Ntot/2−1)
νb(fσ)

+1)

orbitals to each kind of particles and focus on the Mgs

sector, which is the same for any δ in our calculation.

FIG. 3. (Color online) The expectation values of boson num-
bers 〈Nb〉 in the ground state and the first excited state versus
δ for the system with Ntot = 16 at (a) g = 0.5 (b) g = 4. The
vertical black lines indicate the critical points.

To explore the phase diagram, we drive the system from
FIQH phase to BFQH phase by changing δ at various g.
Since topological quantum phase transitions between dis-
tinct gapped phases must be associated with gap-closing,
we investigate the behavior of the gap ∆ as varying δ in
Fig. 2(a) and 2(b) at g = 0.5 and g = 4 with ∆ defined as
the energy difference between the first excited state and
the ground state. Four system sizes with Ntot = 10, 12, 14
and 16 are considered. In Fig. 2(a) (weak coupling regime)
and 2(b) (strong coupling regime), the observation of one
gap-closing point signifies there exists only one phase
boundary, separating the FIQH and BFQH phases, in
the entire phase diagram. Although another local gap
minimum in the strong coupling regime in Fig. 2(b) is
observed at small sizes, it fades away as the system size
grows, and does not signal gap-closing or another phase
boundary. From Fig. 2 (see also the inset of 2(a)), the
non-zero gap (close to zero but not exactly zero) at δc is
due to finite-size effect, and it approaches to zero with
increasing system size, consistent with the feature of a
continuous phase transition. The inset of Fig. 2(b) shows
the values of the gap minimums corresponding to the
phase boundary decrease with system size although the
values oscillate with the parity (even or odd) of the par-
ticle number which is also due to finite-size effect. In
addition, we inspect the average boson numbers (〈Nb〉s)
of the ground state and the first excited state in Fig. 3(a)
and 3(b) and find 〈Nb〉s of the ground states in both pair-
ing regimes increase smoothly and monotonically when δ
changes from positive (FIQH phase) to negative (BFQH
phase). This is also a strong evidence of a continuous
phase transition.

Based on the locations of the gap closings, we obtain a
phase diagram in Fig. 4. This phase diagram possesses
a single phase boundary, which starts at zero de-tuning
(δ = 0) in the weak coupling (or narrow resonance) limit
(g = 0), and moves toward negative de-tuning (δ < 0)
with increasing g. These are in qualitative agreement
with the predictions of Yang and Zhai10.
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FIG. 4. (Color online) Phase diagram with system sizes Ntot =
10, 12, 14 and 16. The FIQH state is characterized by two
branches of edge modes and the BFQH state has only one
branch.

FIG. 5. (Color online) The average fermion fraction
<Nf>

Ntot

in the ground state at g = 1, δ = 0 and v(0) = 0 versus the
system size on the left axis and the ratio of the size of the
fermionic Hilbert space HS(f) to the sum of the sizes of the
fermionic and bosonic Hilbert spaces HS(f) + HS(b) in the
spin-1/2 case vs the system size on the right axis, regarding
HS(f) and HS(b) in spinless case as unit. Five system sizes
are explored with Ntot = 10, 12, 14, 16 and 18.

IV. COMPARISON WITH p-WAVE PAIRING

In the p-wave pairing case (spinless case) in our previous
work12, we found an intermediate phase termed coherent
Bose-Fermi mixture phase in the strong coupling region
between the FIQH phase at νf = 1 and the BFQH phase
at νb = 1/4. However, we do not find such a phase in our
present study (spin-1/2 case). The purpose of this section
is to analyze the origin of this difference. To get a hint,
in Fig. 5, with the g term dominates (g = 1, δ = 0 and
v(0) = 0), we find that the fermion fraction of the ground
state increases with the system size, different from the
observation of a constant fermion fraction (independent
of system size) in the spinless case. This suggests the
fermions prefer to stay unbound instead of forming bound
molecules, despite the fact the Hamiltonian is purely

off-diagonal between bound and unbound states, thus
favoring an equal-weight mixture between the two. The
increase in fermion number, therefore, must be due to
larger phase space available to fermions as compared
to bosons. This suggests as system size increases, the
phase space sizes grow with unequal rate for fermions and
bosons, in a way that favors the former.

To quantify this idea, we estimate the size of the
fermionic Hilbert space for each species of fermions which

is
Nforb!

Nf !(Nforb−Nf)!
(choosing Nf positions for fermions from

Nf
orb orbitals), where Nf is the fermion number and Nf

orb
is the fermionic orbital number. For the spinless case
which has Ntot fermionic orbitals and Ntot/2 fermions in
the special situation of equal mixture between bosons and
fermions, the size of the Hilbert space is Ntot!

(Ntot/2)!(Ntot/2)! ;

for the spin-1/2 case in which each species of fermions has
Ntot/2 fermionic orbitals and Ntot/4 particles, the size

is about
[

(Ntot/2)!
(Ntot/4)!(Ntot/4)!

]2
where the power 2 originates

from the two species. On the other hand, the size of the

bosonic Hilbert space can be evaluated as
(Nborb+Nb−1)!

(Nborb−1)!Nb!

with Nb the boson number and N b
orb the bosonic orbital

number, based on the nature of bosons that more than
two bosons can occupy the same orbitals. The spinless
case having twice bosonic orbitals has the Hilbert space

size (2Ntot+Ntot/4 − 1)!
(2Ntot−1)!(Ntot/4)! and the size in the spin-1/2 case is

(Ntot+Ntot/4 − 1)!
(Ntot−1)!(Ntot/4)! .

When the system size is small, both Hilbert spaces
of fermionic and bosonic parts in the spin-1/2 case are
slightly smaller than but comparable with their corre-
sponding Hilbert spaces in the spinless case. When the
system size increases (Ntot → ∞ limit), the fermionic
Hilbert space in both cases has the same expansion rate
with system size (∼ e0.301∗Ntot), but the bosonic Hilbert
space in the spin-1/2 case has a small expansion rate
(∼ e0.271∗Ntot) comparing to the rate (∼ e0.341∗Ntot) in
the spinless case due to the fact that given the same num-
ber of bosons Nb spinless case at νb = 1/4 will have 4Nb
bosonic orbitals, twice more than that in the spin-1/2
case at νb = 1/2 leading to significantly different Hilbert
space sizes in these two cases, especially with large num-
ber of bosons. Therefore, in the thermodynamic limit, the
Hilbert space of the fermionic and bosonic parts in the
spin-1/2 case are no longer compatible, resulting in the
dominance of the fermions, as shown in Fig. 5. In Fig. 5,
the ratio of the size of the fermionic Hilbert space HS(f)

to the sum of the sizes of the fermionic and bosonic Hilbert
spaces HS(f) +HS(b) in the spin-1/2 case, regarding the
corresponding sizes in the spinless case as unit, increases
as increasing system size. Its trend is consistent with that
of the fermion fraction, indicating the significance of the
small expansion rate in the bosonic Hilbert space (com-
paring to the spinless case) even though the difference is
only the coefficient on the exponent. This observation also
explains the appearance of two gap minima in Fig. 2(b).
For small system with Ntot = 10, the system is trying to



6

form a coherent Bose-Fermi mixture phase similar to that
in our previous work12, and two apparent phase bound-
aries that correspond to the two gap minima. As system
size increases this intermediate phase is disfavored, and
the second gap minima disappears accordingly.

Moreover, comparing the possible combinations of
fermions to form molecules, the spin-1/2 case has N2

tot/4
ways to pair between up- and down-spin fermions, about
a factor of two less than the spinless case which has
Ntot(Ntot − 1)/2 ways to pair. It means that spin-1/2
case has fewer channels for fermions to resonate between
bound and unbound states. This also disfavors the coher-
ent Bose-Fermi mixture phase in the present case.

V. SUMMARIES AND DISCUSSIONS

Using exact diagonalization of finite-size systems on
a disc, we investigate the topological phase transition
from a fermionic integer quantum Hall state composed of
two copies of integer quantum Hall state of two species
of fermions to a bosonic fractional quantum Hall state

made of bosonic molecules, driven by an s-wave Feshbach
resonance. We demonstrate the existence of a contin-
uous phase transition from fermionic integer quantum
Hall phase to bosonic fractional quantum Hall phase and
provide a phase diagram which contains a single phase
boundary. Our results agree with the earlier theoretical
predictions10, and a recent numerical work11 based on
a different model. Besides, we argue that the absence
of the coherent Bose-Fermi mixture phase found in a re-
lated work12 is due to the imbalance between bosonic and
fermionic Hilbert space sizes in the present case.

ACKNOWLEDGMENTS

S.-F. Liou and K. Yang are supported by National
Science Foundation Grants DMR-1157490 and DMR-
1442366. Z-X. Hu is supported by NSFC under Project
No. 11674041, 91630205 and Chongqing Research Pro-
gram of Basic Research and Frontier Technology Grant
No. cstc2017jcyjAX0084.

1 N. R. Cooper, Advances in Physics 57, 539 (2008),
0810.4398.

2 A. L. Fetter, Rev. Mod. Phys. 81, 647 (2009).
3 S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008).
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