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We analyze 2 + 1d and 3 + 1d Bosonic Symmetry Protected Topological (SPT) phases of matter
protected by onsite symmetry group G by using dual bulk and boundary approaches. In the bulk
we study an effective field theory which upon coupling to a background flat G gauge field furnishes
a purely topological response theory. The response action evaluated on certain manifolds, with
appropriate choice of background gauge field, defines a set of SPT topological invariants. Further,
SPTs can be gauged by summing over all isomorphism classes of flat G gauge fields to obtain
Dijkgraaf-Witten topological G gauge theories. These topological gauge theories can be ungauged
by first introducing and then proliferating defects that spoil the gauge symmetry. This mechanism
is related to anyon condensation in 2 4+ 1d and condensing bosonic gauge charges in 3 4+ 1d. In
the dual boundary approach, we study 1 + 1d and 2 + 1d quantum field theories that have G ’t-
Hooft anomalies that can be precisely cancelled by (the response theory of) the corresponding bulk
SPT. We show how to construct/compute topological invariants for the bulk SPTs directly from the
boundary theories. Further we sum over boundary partition functions with different background
gauge fields to construct G-characters that generate topological data for the bulk topological gauge
theory. Finally, we study a 2 4+ 1d quantum field theory with a mixed ZQT/ Bxvu (1) anomaly where

Z2T/ R is time-reversal /reflection symmetry, and the U(1) could be a O-form or 1-form symmetry
depending on the choice of time reversal/reflection action. We briefly discuss the bulk effective
action and topological response for a theory in 3 + 1d that cancels this anomaly. This signals the

existence of SPTs in 3 4 1d protected by 0,1-form U(1) x Z3"*.
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classes of Bosonic SPTs have been classified using group
cohomology” and the equivariant cobordism group®?°.
Non-interacting fermionic phases of matter have been
classified using tools in homotopy theory'%:'!. Interact-
ing fermionic phases have been studied using super group
cohomology'? and spin cobordism!3** (see also'®1?) re-
spectively.

a. Bulk response theories, etc. For this work we
limit ourselves to bosonic SPT phases. Except for Sec. V,
we only consider the simplest case of phases protected by
discrete abelian global symmetry G. In d+1 dimensions,
such phases of matter are classified by group cohomology.
Each distinct phase can be labelled by a group cocycle”

w € Hy by (GLU(D)). (1)
It is expected that the low-energy and long-wavelength
physics of each phase may be captured by an invertible
topological quantum field theory (TQFT)®!* whose Eu-
clidean partition function we will denote by Z¢[N| where
q is representative of w and N is a compact and oriented
d + 1-dimensional manifold. A device one uses in these
classification approaches is to probe the phase of matter
by coupling it to a background flat G gauge field. In the
presence of background G field A, the partition function
takes the form

ZI|N, A] = " IVAL (2)

When G is a discrete group as the case will be for much of
this work, and we are working with a triangulated man-
ifold, a background G field is described by a 1-cocycle
on N valued in G i.e a coloring of 1-simplices of a given
triangulation of IV that satisfies a cocycle condition im-
posing that the group elements compose to the identity
along any contractible 1-cycle. When G = Z,, this may
be equivalently modeled as a flat U(1) gauge field whose
holonomies along non-contractible cycles are restricted to
be valued in 27Z/n.

When the correlation length of the system is much
shorter than the system size, I?[N, A] is expected to be
almost insensitive to smooth deformations of the back-
ground configuration A and manifold N. In fact in the
zero correlation length limit we expect I[N, A] to be
a topological term. Dijkgraaf and Witten in their sem-
inal paper?’ classified topological actions built for dis-
crete gauge fields and showed that distinct topological
actions are labelled by group cocycles . More recently
it was shown in the context of SPTs® that the response
theory I9[N, A] only depends on the cobordism class of
[N, A] € Q59/(BG), where Q59,(BG) is the oriented
cobordism group. More precisely, (N1, A1) and (Na, A2)
are said to be cobordant if there exists an oriented d + 2
manifold X with a G-bundle that can interpolate between
(N1, Ay) and (Na, As). This provides an equivalence re-
lation on the set of tuples {(N, A)}, equivalence classes of
which can be given the structure of an abelian group. The
group operation is simply disjoint union. If we restrict

to N being an oriented d+ 1-manifold and A a principle-
G-bundle, then this group is Q5% (BG). For purposes of
classification, one is interested in only the torsion sub-
group of fol (BG). This is finitely generated. Let the
generators be labelled [N;, A;] where ¢ € Z, a finite index
set. Since SPT phases are short-range entangled they
have a unique ground state. Consequently, the modulus
of the partition function is unity i.e Z[N,A] € U(1).
The topological invariants for SPTs are provided by the

set {ZN,, A}, 072

In addition to probing an SPT phase with a background
G gauge field, one could further sum over all flat G-fields
which is known as ‘orbifolding’ or gauging -G**?°. Upon
gauging, different SPTs map to distinct topological gauge
theories known as Dijkgraaf-Witten theories?® or their
spin analogues'®!?. The partition function can be com-
puted as

ein[N,A]. (3)

Z]%W[N] X Z

AE€H(N,G)

Clearly, different d+1-cocycles furnish distinct Dijkgraaf-
Witten theories. These can be distinguished by the par-
tition functions they furnish on topologically non-trivial
manifolds. For example the manifolds generating the
cobordism group described above could be used as theo-
retical devices to distinguish different theories. Alterna-
tively, it is useful to consider Dijkgraaf-Witten theory in
the presence of background defects/sources such as
ZI%W[Nv Jqp] o Z e IN AL [y JapUA (4)

A€HI(N,G)

where the quasiparticle current Jg, is a d-cochain valued

in G ~ hom(G,R/27Z). Further we may also introduce
quasivortices ‘Jg,’ that introduce non-contractible cycles
in N and impose constraints on the holonomy of A along
those cycles. Distinct Dijkgraaf~-Witten theories assign
different topological invariants to linked configurations
of multiple quasi-vortices. Hence after gauging, these
topological invariants may also be used to distinguish
the parent SPT phases.26730

The G-symmetry can be ‘ungauged’ within Dijkgraaf-
Witten theory by gauging a dual symmetry G which
is generated by the quasiparticle configurations. Physi-
cally this implies proliferating worldlines of quasiparticles
and destroying the gauge symmetry. Practically ungaug-
ing involves summing over different configurations of Jg,
with an appropriate weight. As the name suggests, un-
gauging G gets us back to what we had before gauging
G which was a G-SPT labelled by ‘q’:'73133

ZZ](_‘I)W[N7 Jqp]e_i fN JqpUA x eilq[N,A]. (5)
Jqp



b.  Anomalous boundary theories Besides being dis-
tinguished by bulk response to flat G-bundles, SPTs have
interesting boundary (surface) theories. It is known that
d-dimensional surfaces of d 4+ 1-dimensional SPTs pro-
tected by G symmetry support a quantum field theory
with a G-’t-Hooft anomaly,®3* 39 ie., a quantum field
theory with a global G symmetry that cannot be pro-
moted to a gauge symmetry at the quantum level*® on
an intrinsically d-dimensional manifold. More precisely,
let M be a d-manifold and A a flat G-bundle, then the
partition function of a theory with a possible ’t-Hooft
anomaly is non gauge-invariant

ZM, A] £ ZM, A + AA). (6)

Here, AA is a gauge transformation of A. Usually the
strategy when confronted with such ambiguities in quan-
tum field theory is to look for local counter terms that
make the partition function unambiguous, i.e., to look
for a functional £, (A) built from local G-bundle data
such that

deg[Mv A] = Zq[M, A]eifM £, (A) (7)

is gauge invariant. For theories with ’t-Hooft anomalies,
no such local counter-term can be constructed. In fact
one needs a d + l-manifold N (ON = M) which houses
the SPT to construct a well-defined partition function
which takes the form

Z9[N, A] = Z9[M, A]e" VAl (8)

Somewhat imprecisely, we use ‘A’ both for the lifted G-
bundle on N as well as its restriction to 9N = M.

An alternate diagnostic of the 't-Hooft anomaly and the
one we will consider in this paper is an obstruction to
gauging or orbifolding G. We will show that it is impossi-
ble to find any local gauge-invariant counterterm L. ; [A]
such that

Zon[M] := > Zyog[M, A] = > Z[M, Al Jas £et-(4)
(4] [4]

is invariant under the group of diffeomorphisms of M. In
particular we will be interested in the large diffeomor-
phisms of M 343641

c. Bulk-boundary correspondence We note that an
't-Hooft anomaly is a strong non-perturbative constraint
in the sense that ’t-Hooft anomalies are conserved along
the renormalization group flows. Although this is a
strong constraint, it by no means uniquely specifies
the surface theory on M. Broadly speaking there are
three distinct possibilities that can saturate the t-Hooft
anomaly. The anomaly may be saturated by a quantum
field theory that (i) spontaneously breaks G symmetry;
(ii) is gapless with a non-local action of Gj (iii) is gapped
and supports non-trivial (fractionalized) excitations that

cannot be realized on an intrinsically d dimensional man-
ifold with G symmetry.*2-46

Using the anomaly matching criteria, once we establish
that a certain quantum field theory with partition func-
tion Z1[ON = M] is a suitable candidate for the sur-
face/edge theory for an SPT Z?[N], we proceed to ex-
plore the bulk-boundary correspondence. We do so in two
related but distinct ways. (i) We construct SPT topolog-
ical invariants directly from a surface/edge computation
using the recently studied?? cut and glue approach, and
(ii) We construct topological data corresponding to the
Dijkgraaf-Witten topological gauge theory directly from
the surface/edge theories. The latter is done by first con-
structing twisted partition functions Z9[M, A] and then
summing them up into G-invariant characters also known
as orbifold characters that are representative of bulk ex-
citations. These methods have been well known for 24 1d
topological phases and their 1 4 1d boundaries*”®* and
were recently generalized to 3+ 1d topological phases and
their 2 4+ 1d surfaces?-*>. Here we provide a procedure
to construct such G- orbifold chacters or G-characters for
short by directly implementing cohomological twists in-
stead of explicitly computing twisted partition functions.
G-characters are defined in such a way that they trans-
form projectively under large diffeomorphisms (modular
transformations) of M, and the projective phases encode
the relevant topological data.

Finally we switch directions and consider a bosonic quan-
tum field theory in 2 + 1-dimensions with Z2"% x U),
symmetry. Here ZQT’R refers to time reversal or Zs-
reflection symmetry and by U(1), we mean a p-form U (1)
symmetry that may be gauged by coupling to p + 1-form
flat U(1) gauge field. We specifically consider the cases
p = 0,1 and show that for certain action of Z% " x U(1),,
there is an ’t-Hooft anomaly that can be cancelled by a
3+ 1d invertible topological field theory. This signals the
existence of bosonic SPTs in 3 + 1-dimensions protected
by Z;F’R x U(1),. We propose bulk candidate effective
field theories for these phases of matter.

A. Plan for the paper

Before getting into the details, let us briefly describe the
plan for the rest of the paper.

In Sec. IT and 111, we study bosonic topological phases of
matter with global discrete abelian symmetry G in 2+ 1
and 3+ 1-dimensions respectively. We study these phases
and their gauged versions by analyzing the bulk directly
and from a complimentary viewpoint, by analyzing their
gapless boundary theories. In Sec. IV, we briefly com-
ment on how this generalizes to d + 1-dimensions.

Bulk analysis



We begin with an invertible TQFT that can describe
bosonic G-SPT phases with topologically distinct real-
izations of G symmetry labelled by ‘q’. We carry out the
following steps:

e Couple to a background G gauge field A on a closed,
oriented d+ 1-dimensional manifold to compute dis-
tinct topological response theories

ZI[N, A] = e"IVA] (9)

o In general I9[N,A] € R/27Z and the set
{e“q[N'i’A'i]}ieI of U(1) phases for all [N;, A;] that
generate the torsion subgroup of Q4y1(BG) form
the set of SPT topological invariants, i.e., they
differentiate different SPT phases. For a discrete
abelian group G which is always isomorphic to
Hle L, the topological invariants turn out to be
a combination of partition functions on lens spaces
and three-torus with appropriate flat G bundles in
2 + 1-dimensions and (lens space X a one-sphere)
and the four-torus with appropriate G-bundles in
3 + 1-dimensions. We compute these topological
invariants.

e Gauge G by summing over flat G bundles to obtain
the partition function for a G-topological gauge
theory, i.e., Dijkgraaf-Witten theory.

e Introduce quasi-particle sources within Dijkgraaf-
Witten theory that generate a dual symmetry G
and finally ungauge G by gauging G to return to
the SPT phase.

Boundary analysis

To compliment the bulk analysis we study a class of sim-
ple models that describe possible edges/surfaces for G-
bosonic SPTs. We support our analysis with the follow-
ing computations:

e We couple the boundary theory to a background
G gauge field and compute ‘twisted partition func-
tions” Z9[M, A].

e Take the aforementioned approach and try to gauge
G. We treat gauge-ability of G as a diagnostic for a
trivial /non-trivial bulk and show that the ’t-Hooft
anomaly matches with the gauge anomaly of the
SPT response theory on an open d+1 manifold con-
firming that this model indeed describes the surface
of an SPT.

e Once it is established that the theory describes the
boundary of an SPT, the SPT invariants can be
constructed directly from the surface theory follow-
ing a cut and glue construction whose calculation
essentially restricts to the boundary theory compu-
tation.

e Furthermore G-orbifold characters can be con-
structed from the ‘twisted partition functions’.
Modular transformations of these characters repro-
duce the topological data corresponding to the bulk
topological gauge theory obtained by gauging the
bulk SPT.

SPT protected by ZI'® x U(1) symmetry in 3+ 1d

In Sec. V we study surface theory for 3 + 1d SPTs pro-
tected by ZQT’R x U(1), for the case p = 0,1. We show

that for a certain action of Zi x U(1),, there is a t-
Hooft anomaly for the surface theory. We construct bulk
effective field theories that cancel this anomaly and dis-
cuss the corresponding symmetry protected phases.

Notations

Before getting to the main text we briefly summarize the
notations we use. We will be working with topological
phases on a d + 1-dimensional bulk manifold N which is
always compact and oriented. When we discuss purely
bulk physics then we often consider N to be closed. How-
ever when we consider edge/surface physics we consider
N to be an open manifold such that ON = M. We will
denote background G-gauge fields by A. These may be
both in the bulk or on the boundary. When discussing
situations involving only discrete gauge fields on triangu-
lated manifolds, we find it more convenient and rigorous
to treat A as a 1-cocycle valued in G. Such a G-valued co-
cycle is defined on a simplicial triangulation of the mani-
fold N (or M). Alternatively when the situation involves
treating fields which take values in a continuous space
we treat A as a U(1) gauge field and impose flatness as
well as restrict its holonomies to G' by means of a La-
grange multiplier field if A is dynamical and by hand if
A is a background field. In the former case where A is
thought of as a cocycle we use cup products and lattice
codifferential operators whereas when A is thought of as
a U(1) valued field we use wedge products and exterior
derivatives respectively.

When mentioned (for e.g., during the gauging procedure)
we will promote A to be dynamical. By é, we imply the
group Pontrjagin dual to G, ie., G = {p:G—=UD)}.
For discrete abelian groups, G ~QG.

Bulk notations

Notation HDescription and comments

Z4[N,A] ||SPT partition function on N with back-
ground G bundle A. ‘¢’ labels a d + 1-

cocycle w € HEPL (G, U(1)).

SPT response theory valued in R/27Z.

4[N, 4]
Zhw(N]

Dijkgraaf-Witten partition function for
q € HItL (G,U(1)) obtained by gaug-

group

ing ¢-SPT.




Boundary notations

Notation HDescription and comments

Z9M,A] ||Partition function for QFT describing
surface of ¢-SPT on d-manifold M in
the presence of background G bundle
A.

Z%¢[M, A] ||Partition function with discrete torsion
phase ¢ € HYG,U(1)). Physically e
labels a d-dimensional -SPT.

Z1,[M] | Partition function obtained by starting

from Z[M, A] and orbifolding-G.

XZ,M,...,A@?] Orbifold characters constructed by
summing twisted partition functions
Z9M,A]. These can be used to
compute topological data for bulk
Dijkgraaf-Witten theory.

II. 2+ 1d TOPOLOGICAL PHASES AND THEIR
1+ 1d EDGES

A. Bulk physics

SPT effective field theories: It is known that SPTs
with unitary onsite symmetry can be modeled by BF' the-
ories with distinct symmetry actions.?®°”°® For example
G = ZF-SPTs in 2 + 1d may be modeled by k-copies of
BF theory at ‘level’ one:

Sla,b] = /
N

where a! and b! are U(1)-connections subject to the
flux quantization conditions §g da, §;db € 2nZ for S €
Z5(N;Z). By ‘-’ we imply other non-topological sym-
metry preserving terms that we ignore in the limit of zero
correlation length. This theory is trivial, in the sense its
partition function Z[N] = 15 on any closed 3-manifold
N. However it can be coupled to a flat background G
gauge field A’ in topologically distinct ways which cor-
respond to various SPT actions

’“ 5
UbI/\dJ . (10)

1,J=1

[a,b, A]. (11)

T cpl

Sq[a,b,A]:/ OI41 p go? 4 88
N 2

Here, S [

a, b, A] is the part of the action involving cou-
pling to sources A’. Flat G gauge fields are character-
ized by their holonomies, or equivalently, A € H'(N,G).
G-SPTs are classified by group cohomology and can be
labelled by a 3-cocycle w € Hp,,,,(G,U(1)). Here ‘¢’
is meant to be a representative of w. For finite abelian

groups, there are three classes of group 3-cocycles. For

G = (Z,)* these take the form

2
Wiype-1(a, b, ) = exp{ qul al (bI ey [bI + cI])},

2
Wiype-11(a, b, €) = exp {ﬂ;qu I (bI +¢7 [b'] + c‘]]) },

271 TJK
wtyPE—IH(aa ba C) = eXp {ialecK ) (12)
where a = (a',a?,...,a"), etc., a,b,c € ZF and [a! +
b'] := a’ +b! mod n. These different families of cocycles

are called type-LILIII respectively’®. The parameters
q1,q17, 917k take values in Z mod nZ, hence

HY oup[(Z0)* U(1)] = (Zn) K ]16 >+< I; >+< ]f’j ﬂ .

(13)

Any G SPT is prescribed by the set of Z, parame-
ters ¢ = {qr,q17,q17x} € H30up(G,U(1)). Different
coupling terms corresponding to different families of 3-
cocycles take the form

1

Sthla,b, A] =~ /N AT A (dbF + grdal),
1

Sepi [a; b, A] = “on /N AT A (db" + qryda”),

a’” Na

1 n’qrri
Sd<la,b, A AT A (b + —=a’
cpl [, I= o /N ( 27 )
(14)
where I,J K are not summed over. Integrating over
a’, b’ one obtains a response theory in terms of back-
ground G-bundle:

ZIN, A] = / Dla, b|e!S bNAl = I INA] - (15)

The response theories T9[N, A] take the form

472

T[N, A] = AI A dAT,
1977 [N, A] = q”/ AL A dA7,
19775 [N, A] = —M/ AL AN AT A AR (16)
N

The relation between SPT response theories (16) and the
respective cocycles (12) can be seen most clearly within
a simplicial construction. (See App. C.)

Topological invariants for SPTs: SPT topologi-
cal invariants are a set of U(1)-valued quantities that
can distinguish different phases. These are supplied by
the partition functions {Z9[N;, A;]},.; which are pure
U(1) phases e!*[NVi:4il | Here, [N;, A;] are the generators



of the torsion subgroup of Q5°(BG), the oriented G-
equivariant cobordism group. For G = ZF  we will con-
firm that the lens space L(n,1) and three-torus T° with
appropriate flat G-bundles are sufficient to detect and
classify G-SPTs. Lens space is a three-dimensional topo-
logical space with the properties that its 1st and 2nd ho-
mology groups are pure torsion i.e Hi 2(L(n,1),Z) = Zy,.
Such a space can be constructed by taking a quotient of
the three sphere |z1|? + |22/ = 1 where 212 € C by the
natural Z, action i.e (z1,29) ~ (e%zl,e%@). Let us
compute the partition functions on these manifolds.

e Type-I and type-II cocycles: SPTs with type-I
and type-II symmetry action can be distinguished
by their partition functions on lens space (L(n, 1))
with an appropriate background G-bundle. The
topology of Lens space is captured by the torsion
part of its homology groups

H,(L(n,1),Z) = H*(L(n,1),Z) = Z,. (17)

Then [A] € Tor(H?(L(n,1),Z)). The Chern-
Simons term which appears in the type-I response
theory %[N, A] evaluates to

UL 1),1A]]

Il
o
[}
ol

_ 2migraf } ’ (18)

where Cy € Hi(L(n,1),Z) is Poincare dual to
[A] € Tor (H?*(L(n,1),Z)). Further we have chosen
the configuration [A] such that C4 = a;C; where

(4 is the generator of Hi(L(n,1),Z). Hence the
SPT invariant is
T (L), [A]) _ - 2Tt h (19)

The SPT invariant with type-II response theory
(16) can be computed similarly.

1917 I J
= -2 A A
exp { o /L(n,l) ANd }

et [L(n,1),[A]]

Il
@
i
hel
— N
L :
)
~
<
S
<
S~
b
~
——

- (20)

e Type-III cocycles: SPTs with type-III response
theories can be detected on T with a background

G bundle

G IRIT?A] exp {inQQI2JK / AT A AT A AK}
47 T3

27 s
= eXp{—iIﬂ(ﬁljkaI,ibJ,jcK,k} (21)

where a; = (ar1,ar2,ar,3) are the holonomies
around the three cycles of T°.

Summarizing, the complete set of invariants for bosonic
SPTs protected by G = ZF are

{e—m[L(n,l),,al]7 e—iI‘?[TS,A]}

27mi

= {eT(qzaﬂ thHJaIaJ)7 627”'1”%6”16

ar,ibyicrk } (22)

More generally, if G = Hljzl Zp,, then the SPTs clas-
sified by parameters {qr, qr7,qr K} parametrizing type-
LILIIT kind of responses respectively can be detected on
{L(nr,1), L(ged(ng, ny),1), T?} respectively.® 5% In the
above computation we have treated A’ as a flat U(1)
bundle with holonomies restricted to Z,,, equivalently we
could have treated A’ as a Z,-cocycle on a triangulation
of the three torus/ lens space.

Topological gauge theories from gauging SPTs :

Gauging of SPTs can be carried out by first comput-

ing the response to flat G-bundles (15) and then sum-

ming over all flat bundles with the appropriate normal-

ization. By this procedure, one obtains the well known

Dijkgraaf-Witten topological gauge theory labelled by
€ H} ., (G, R/27Z):

1 iI7[N,A
Z}%W[N]:m Z Al

A€H'(N,G)

k
= / [ DA, Bljet I 2 Binda” +ir (N4
I=1
(23)

where in the second line we have specialized to G = ZF
and written the gauged SPT action in the familiar con-
tinuum form as a ‘twisted’” multicomponent BF' theory.
A! BT are 1-form U(1) connections. Integrating over B'
imposes that A is a flat G-bundle and takes us back to
the original expression. Since (1/27)dB! is a 2-form with
integral periods we can write

1
ﬂdBI =dpl + > mix; (24)
jEFree(H?(N,Z))

where m; € Z and A; is a basis on the space of integral



harmonic 2-forms. Then, integrating over B, we get

k
Zhw = / [] DlA?, g7)e s n A7
I=1

~ H E eméumlf)\ nA7T N, A]

meZ

N,/HDAI (nFh) 1:[

I
m; €L

k
_ 1 I I 1o 27 ir9(N,A]
_N/II_IID[A ]6(nFA)6(7{LjA e Z2)e

1 iUV, A]
_— AL 25
= w2 € (%)
€H'(N,Zk)
The sum over B! fixes nFi = 0 which implies that

Fi = 0 unless Tor(H%(N,Z)) # 0. The sum over m;
sets the holonomy of A to be a multiple of 27/n along
L; the l-cycle poincare dual to A;. In other words
[A] € HY(M,ZF), a flat ZF-gauge field. The factor N/
counts the number of gauge transformations of A’ as
Z.,,-valued field. Let us take a look at few examples:

e Type-I and type-II cocycles: Consider a 3-
manifold N with vanishing torsion. Then since
dAT =0, we get [9[N, A] = I977[N, A] = 0. There-

fore
1
ZhwINT = €] Z 1
[AJ€eH!(N,G)
= a0, (20)
where b1 (N) refers to the 1st Betti number of N.

If N = 8! x M, the partition function evaluates to
Z3 M x S'] = GSD[M] = |G| (M) (27)

where GSD[M] denotes the groundstate degeneracy
on M. Similarly, the gauged partition function for
type-1 and type-II cocycle on for G = Z,, and G =
72 respectively can be evaluated on L(n, 1) using
(18) and (20)

1 << 2wigra
ZUG[L, ) ==Y e,
n ar=0
1 n—1 o
WZQIJG/IG/J
EL ] = 1 Y S (o)
LL],CLJ=O

e Type-III cocycles: The partition function on 73
for type-III cocycle can be computed using (21)

1 2mi i
= L5 b,
a,b,ce€Z3

=: GSD[T?] < |G|? (29)

Z einmjl-f/\j/\AI i TAN]

For G = Z3, q123 = 1, (29) evaluates to Z1y,[T°] =
22 = GSD[T?]%°. Groundstates on a torus can be
labelled by the spectrum of Wilson operators in
a topological gauge theory, therefore this implies
that there are 22 independent Wilson operators.
The total quantum dimension is the same for dif-
ferent Dijkgraaf-Witten theories corresponding to
the same G, hence we obtain

GSD[T?]

GI* = Xjf (30)

If GSD[T?] < |G|? there must be at least a single
Wilson operator with quantum dimension greater
than 1. This is a way to see that type-III theory
has non-abelian excitations even though G is an
abelian group®. A dual approach based on ana-
lyzing Wilson operators directly in the continuum
theory may also be used to compute this ground-
state degeneracy.5*

Ungauging and anyon condensation: Let us con-
sider the continuum formulation of Dijkgraaf-Witten the-
ory (23) in the presence of quasiparticle sources Jg,

k .
ZEWIN, Jyp] = /HD[AI,BI] exp{/N %BIAdAI
I=1
+il9[N, A] + i / J;pAAI} (31)
N

where the background fields Jqu are 2-form fields with
integral periods®®. Upon integrating out B!, § A’ €
(2rZ) /n, the periods of Jg, only make sense modulo n,
more precisely J,, € H%(N,G) where G = Rep(G) ~ G.
There is a perfect pairing

/ :HY(N,G) x H*(N,G) —» R/27Z  (32)
N

that is realized by wedge product followed by integra-
tion. For a simplicial definition of this pairing, consider
a 3-simplex as in Fig. 1 [ Jgp UA = Jp[012](A[23]) =
m(a) = 20,

Jgp generates a 1-form G symmetry. To see this, we follow
the procedure standard in Hamiltonian quantization of
gauge systems. Let N = M x S'. We define a charge
operator Qf(\!) corresponding to G symmetry

/\I A AL
(33)

S0 S :/ §J0, N AT = QT (\) =
ap 27T

where Q! (A1) is the charge operator that generates the 1-
form gauge transformation and A € Q} (M) parametrizes
the transformation. Then the 1-form symmetry acts as

QI ()« Jgy = gy + AT
: Bl — BT -\ (34)
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FIG. 1. Triangulation of a three-torus containing one
0-simplex, three 1-simplices, three 2-simplices and six 3-
simplices.

Gauging this dual 1-form symmetry means summing over
JL, € H?*(M,G). Let us call the partition function after

gauging the 1 -form G symmetry Z¢ Then

DW/G’

~ —q I Al
z! [N, A] = Z e In T AT Z LN, Ty
Jap

DW/G
_ Z Z et In JINAT—AT)4+iI [N, A
Jgp A

— L INA] (35)

Hence gauging the dual G 1-form global symmetry is
equivalent to un-gauging GG. The symmetry is generated
by the world-line of A, therefore gauging is synonymous
with proliferating the A-lines freely and may be under-
stood as anyon condensation.6-70

B. Edge physics

Consider the 1 + 1d bosonic conformal field theory on a
two-dimensional spacetime manifold M described by the
action

k
s = [ 52 [t ot —wie ) 6

where ¢t ¢>! © M + R/27Z. H denotes the Hamil-
tonian which we shall set to H = 1/4m )", ;(00"")>.
The action (36) is invariant under different realizations
of global O-form ZF-symmetry. It is well-known that
the edge theory for a G-SPT suffers from a G ’t-Hooft
anomaly, i.e., there is an obstruction to promoting the
global G-symmetry to a gauge symmetry. A diagnostic
of this anomaly that we will use is modular invariance
which is a consistency criteria for a healthy quantum
field theory. The idea is as follows: consider putting a
quantum field theory on a manifold M. Then we require
that the partition function be invariant under large dif-
feomorphisms of M.?® We will be particularly interested
in M = T? for which MCG(T?) = SL(2,Z) which has

two generators denoted S and T with the action
T 4
T:<t>e<t+$>. (37)
x x

A modular invariant partition function is one for which

ZIUM) =Z[M]; UeMCG(M) (38)
A diagnostic for a theory with a global or ’t-
Hooft anomaly is the inexistence of a modular invari-
ant partition function for the gauged (or orbifolded)
theory34 3641 To be more precise the partition function
of the gauged theory takes the form

1
~ [HO(M,G)] 2

A€eHY(M,G)

Zorn[M] 0(A)Z[M, A} (39)

where Z[M, A] is the ‘twisted’ partition function com-
puted in the presence of background flat G gauge field
A € HY(M,G). In case a theory admits distinct G
actions we will denote by ‘¢’ a specific realization of
G-symmetry. We label a ‘twisted’ partition function
with this choice of symmetry action by Z?[M, A]. In
(39), the different twisted sectors are weighted by 6(A)
where 6 is a function 6 : H'(M,G) — U(1) as a set.
More precisely we must think of §(A) as a counterterm
built from local gauge data A paired with the manifold,
0(A) = exp{i[,; Lct.(A)}. Generally there might be
inequivalent choices of # that furnish modular invari-
ant partition functions. More precisely 6(A) as well
as 0(A)e(A) may be used to construct modular invari-
ants. Here € is the discrete torsion phase classified by
HZ oup (G, R/27Z) (see App. B for details).

The theory has a 't-Hooft anomaly if there does not exist
any gauge invariant §(A) such that

Zo|UT? = Zowp|T?; U=8,T (40)
We will see that the theory (11) introduced earlier ex-
actly cancels the ’t-Hooft anomaly of (36) when M = ON
and the SPT effective action (11) lives on N. Hence the
't-Hooft anomalies discussed here are prescribed by the
same data ‘¢’ € H2,,,,(G,R/2nZ) as 2+ 1d SPTs. Since
the anomaly of the 1+ 1d theory is cancelled by the bulk
2+1d SPT, together they may be coupled consistently to
a background G gauge field and gauged. In other words

Zhw(N] 27 (M, A 2°|N|on-rr, A]

1
~ e, o

AJ€eH(N,G)
(41)

is the partition function for a well-defined or anomaly-
free G gauge theory labelled by 3-cocycle ‘¢’ €
ngoup(G, R/277Z).



Let us consider the case of G = Z2. We choose the sim-
ple case of Z2 to avoid dealing with orbifolding type-III
cocycles which appear for G = ZF when k > 3. Type-
IIT cocycles are quite subtle for several reasons and we
will mostly leave them out of our discussion. For a dis-
cussion of 't-Hooft anomalies corresponding to type-IIT

cocycles see references™ ™ Since HJ,,,,(Z%,R/27Z) =

73 ~ (q1,q2,q12) there could be three distinct kinds of
G actions and combinations thereof. Let us denote these
by §1, g2, §12 respectively. Explicitly their action on (36)

is
~ ¢1,I ¢1,I o 1
: — —
. [ R I R
R ¢1,I (bLI 2T 1
grJ: — + — ;I <J (42)
[ 6>’ T
We follow the canonical formalism in order to gauge the
global G symmetry. The first step is to compute twisted
partition functions Z[M, A]. Since A is flat it is charac-
terized by holonomies along homology cycles in M i.e
[A] € Hom[H;(M,Z),G]. Let us fix M = T2, then
[A] ~ (a,b) where a,b € G are the holonomies along the
time and space cycle respectively. The partition func-
tions in the twisted sectors are

(43)

ZUT?, Al = Z3 |, = Trya [ae”mm b2
where 7 = 11 + i7% is the modular parameter of the flat
spacetime torus, H, P are the Hamiltonian and the mo-
mentum, respectively, and we have defined the twisted
Hilbert space H{, which satisfies the boundary conditions

¢1,J _ ¢17J 21 b!]
<¢2,J ) ($+L) - <¢27j> ('/I;)JV_ n <quJ+qIJbJ> .

(44)
Let us define charge operators
QY = % /dxam“; i,i€1,2; i#A1  (45)
which implement U(1) transformations
e gl Ly i T ), (46)

Then a appearing in (43) takes the form

R 211

am e {n [alQl’I +a11Q*" + (azq2 + alqlz)Qz’Q] } .
(47)

These twisted partition functions can be computed us-

ing standard methods in conformal field theory (see for
example?+73 7). We will mainly be interested in modu-

lar properties of the twisted partition functions.
T: Zg’b(T) — Zg’b(T +1)

= Tg,bZ§+b,b(7)

e
S Zaw(T) = Zgn(=1/7)
= Sgybzzba(/r)
= 627;21' [2 > q1a1b1+1112(“1b2+b1a2)} Zzb,a(T)'
(48)

Under large gauge transformations, Z7 | transforms as

Zg.Jrnel,b(T) = BM g,b(7)7
ngneg,b(T) = ew g,b(7)7

20 e (1) = € g ()

78 e (1) = € I 0 () (49)

Gauging trivial symmetry action: Let us first con-
sider the partition functions twisted by trivial symmetry
action, i.e., ¢ = 0. For this trivial case an equal weight
sum over all twisted sectors is modular invariant

1
Zgrb(T) = @ Z Zg,b(7)~
a,beG

(50)

More generally, we may introduce a U (1) valued function
€: G? — U(1) to obtain a partition function

29¢(7) = ﬁ S ea,b)Z0, (7).

a,beG

(51)

Modular invariance and factorizability of the parti-
tion function at higher genus impose several constraints
on e such that distinct choices of e are classified by
Hg 00 (G, U (1)) as

c(a,b)

“(ab) =5

(52)

where [c] € HZ,,,,(G,U(1)).77 (see App. B for details).
Bosonic SPTs in 1+ 1d protected by G symmetry are also

classified by HZ,,,(G,U(1)). The partition function for
SPT described by [c] € HZ,,,,(G,U(1)) on a 2-torus with
flat G gauge field A evaluates to

Zap = c(a,b)/c(b,a) = €(a, b). (53)
Therefore the freedom of adding a discrete torsion phase
while constructing a modular invariant partition function
is equivalent to adding a 1 4+ 1d G-SPT. This is ofcourse
expected since a 1 + 1d SPT is perfectly consistent on
a closed 2-manifold and therefore should not contribute



to the anomaly. Hence the anomaly on the boundary of
a 2+ 1d SPT is insensitive to pasting of a 1 4+ 1d SPT
protected by G (or more generally H such that G C H).

Gauging non-trivial symmetry action: Now let us
try to gauge G for the action where ¢ # 0. We men-
tioned earlier that this is related to non-trivial ¢ €
H3 0up(G,R/21Z). Using (48) we obtain the following
conditions from requiring modular invariance

27

f(a,b) = e [ZI ‘IIb?-Hleblbz}e(a + b,b),

a(a, b) — e_%i[zj ZQIaIbI+Q12(a1b2+blaz)}9(_b’a). (54)

Using the first equation above, it can be seen that

0(a+nei,e) = e2™/"9(a, e;),

O(a+ nes,ey) = 62”‘12/"9(21, es),

2mi(g1+a2+4912)
n

f(a+n(e; +e2),e; + e2) O(a,e; + e3).

(55)

e

We interpret 6(a,b) as a local counter-term needed to
make the partition function modular invariant. That is
f(a,b) = e*Ser.[2P] We learn that requiring modular in-
variance forces us to choose a counter-term which is not
invariant under-large gauge transformations a — a-+ne;y
and a — a+ne; +ney. Hence there is a conflict between
gauge invariance and modular invariance which is a di-
agnostic of a ’t-Hooft anomaly. We can however couple
the theory to a TQFT in 2+ 1d that cancels the t-Hooft
anomaly of the 1+ 1d theory (36). Above we constructed
an invertible TFT (11) that exactly cancels the boundary
anomaly. To see this, we compute the following response
action

19D2 x SL, A] = —/ {ﬁA’ ndAT + L 41 /\dAJ} :
D2x S} 2m

2w
(56)

By D2 x S, we denote the configuration where N =
Diy x S}, and the G gauge field has a symmetry defect

puncturing D? such that

2
f Al=""a;  (57)
oDz, n

Note that this is not a flat field configuration as it is
sourced by a extrinsic symmetry defect. Then the par-
tition function for an SPT described by (36) evaluates
to

BU(D2 x S}, 4] = 1" IPEx5hA

-5 2migrarby  2migry(arbytaybr)
I

=e 2 n?2 (58)

which exactly satisfies the properties (54) and hence can-
cels the modular anomaly of the 1 + 1d theory. Further-
more it transforms under large gauge transformations in
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an opposite way to (49). Hence coupled to an invertible
TFT in the bulk, (36) is perfectly consistent.

Further, (56) is anomaly-free on a closed manifold and
the global G symmetry can be gauged to obtain DW
theory with topological order. This topological order is
characterized by some data such as braiding phases and
topological spin. It has long been known that the topo-
logical data of the bulk TQFT can be extracted directly
from the 1 + 1d edge theory.*" 54

G-characters and topological data: In order to ob-
tain bulk topological data such as braiding phases and
topological spins of excitations within a topological gauge
theory directly from the edge theory, one may exploit
the bulk-boundary correspondence. This correspondence
establishes a bijection between excitations or line opera-
tors in a topological gauge theory and G-characters built
from twisted sectors of the edge theory on a spacetime
two torus”'. The complete set of characters may be con-
structed from the edge theory as

1
Xpa = —= > wb)Z] ,(7) (59)
Gl §c
where p € Rep(G). For example if G = Z,, then explic-

27ipb

itly u(b) = e~ » . Each character constructed from the
edge theory corresponds to an excitation within the bulk
topological gauge theory. These characters form a projec-
tive representation of the mapping class group SL(2,7Z)
and the S and T matrices of projective phases encode
bulk topological data

SXpa = Z Spua),(w a) Xu
w,al

TXpa = Z Tp,2), (w2 X' 2!
wal

= exp {2mih at Xpa- (60)

Notice the action of T is diagonal and the eigenvalue
of X,,a, €xp2mih, a, is the topological spin of the bulk
excitation corresponding to X,.a via the bulk-boundary
correspondence. Instead of directly evaluating the parti-
tion function in the twisted sector Z; () (labelled by b,
a) and extracting the S and T matrices from it4%:5254.78
we can construct Zg (1) from Z ,(7) in the following
way,

Z3 o(7) :=9(b) Zp o (7),

T Iz )
beG

where Zga(T) is the twisted partition function for the

Xu,a =

trivial SPT phase. In Z{ ,(7), the interesting topolog-
ical data is encoded in 7Z(b), which has the important
algebraic property

7a(b)va(c) = Ba(b,c)ya(b + c). (62)



The group 2-cocycle 84 € CZ2.,,(Zn,U(1)) is obtained
from wgy(a, b, c) [Eq. (12)] by taking a slant product, i.e.,
Ba(b,c) = iaw(a,b,c) (for details, see App. A). Explic-

itly, 84 and ¢ take the form

S arbr +er - [b1+cﬂ)}

Bl(b,c) = exp {
1
{QWiQIJ
X exp —a
n

2w
vd(b) = exp {712(2[: qrarbr + QI.]aIbJ)} - (63)

1(by+cy—[bs+ CJ])}»

Z{ o in (61) is easier to work with than Z _ since we
do not need to evaluate the twisted partition function
Z&a directly, which may sometimes be tedious. Fur-
ther, Z{ _(7) and Z{ _(7) have the same properties under
modular and large gauge transformation, which is all we
require. It is straightforward to check that modular ma-
trices computed from ¥, , match up with (60),347®

T(u,a)(u’,a') = 0p a,a’#(a)’Yg(a)a
_ 1 1
S, (ua) = Eu(a’)ﬂ’ (—a)yvd(@)ye(a).  (64)

SPT invariants from edge theory: Next we show
that the SPT invariants for type-I and type-II SPTs can
be computed directly from the edge theory (36). Let
us consider an SPT protected by G' = ZF with symmetry
action described by some combination of type-I and type-
IT 3-cocycles ‘q’. Then such SPTs can be distinguished by
their partition functions on lens space. In??, it was shown
that the Lens space partition function may be simulated
by an expectation value of a non-local partial rotation
operation on the groundstate on S?. Let the theory (11)
be defined on N = 52 x S, where S? is the spatial
manifold. The theory has a unique groundstate [GS%.).
The partition function on lens space may be simulated
as
ZL(n,1),A] = (GSZ.|Cp,p(a)|GSL.) (65)
where C’n p(a) is an operator that implements a partial
n-fold rotation on a disc like subregion D C S? followed
by the symmetry operation a. To motivate this defini-
tion, we recall the fact that lens space may be constructed
from the surgery”®
L(n,1) = [D* x S* U, [D* x S'] (66)
where Ll, denotes gluing the boundaries of the two solid
tori 9[D? x S1] = T? via the large diffeomorphism ¢ =
ST"S. In??, it was shown that C’,L p corresponds to the
same diffeomorphism ¢. Then the lens space partition
function with background field holonomy a € G around
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the torsion cycle may be computed as
Z9[L(n,1), A] = (GS|C,p(a)|GST)
Traa(p) [én,D<a)pD}
N Trya(p) [pp]

(67)

where we have traced out the disc-like region D com-
pliment to D. We denote the Hilbert space on D (re-
spectively D) for the SPT described by 3-cocycle ‘¢’e

H3 0up(G,U(1)) as H9(D) (respectively H9(dD)). The
reduced density matrix on pp is given by the thermal
density matrix on 0D at inverse temperature &£, which is
related to the bulk correlation length®%-3!. We note that
0D is not a physical boundary but rather the boundary
of region D where the partial rotation operator acts.

e*EFIaD

Tqu(c’)D) [e—éﬁao} )

pp = (68)

Then the lens space partition function may be evaluated
as

Trya(00) [C’n’aD(a)e%HaD}
Tryq0p) [e—éﬁap}
Tryacap) {ée*%*iﬁap}
Tryaop) [e—fﬁaD]
74

_ (a,0) (g _%)

Zq

(0,0) (Z )

S (ST8)25") 24

29[L(n, 1), A] =

l sl
2 {2)

(a,0) (br.,bs) (

(br,bs)
Zb (0,0) quT,b

m
€)
B
1 iL
2mi(araftaryagay) Z(fa 0) ( nt 572)
= e n
q L
Z(O 0) ( )

(1 + O(e’L/E)). (69)

2mi(qra?+ayyaray)
= e n

In the last line we have taken the limit where the inverse
temperature ¢ is much smaller than L, the circumference
of 0D ({/L — 0). Hence we can read off the SPT invari-
ant

27mi

Z9L(n,1),Al=¢e™n

(q1a§+[IIJaIaJ). (70)

III. 3+ 1d TOPOLOGICAL PHASES AND THEIR
2+ 1d GAPLESS SURFACES

A. Bulk physics

SPT effective actions: Similar to the 2+ 1-dimensional
case, 3 + 1d SPTs can be modeled by multiple copies



of level 1 BF theories with topologically distinct cou-
pling to a flat background G bundle. SPT phases with G
symmetry are classified by Hg,,,(G,U(1)). For example
consider G = Zk bosonic SPTs which can be modeled by
the following effective field theories”37:58:62

Sq(a,b,A):/ 01T 41 4o 7+ 81 (a,b, A)
N 27T

where a and b are 1-form and 2-form U(1) gauge field,

(71)

I,J = 1,...,k, and ¢ denotes the representative w €
HYup (G.U(1)). For G = (Z,)",
() (5)-(0))
2x 9 + 3 + 4
Hyroupl(Z0)*,U(1)] = (Z0)

(72)

Different 4-cocycles [w] € H*(G,U(1)) are of three kinds

named ‘type-ILIILTV’ which explicitly take the form
wWigper1(a, b, ¢, d) = 672",172” aIb'](C'7+d‘]*[cJ+d']])7

IR oI b (K 4d ™ — [ +dX])

Wtype-IH (a7 b7 C, d) =€ " )

(73)

2Tiqr JK L aIb.ICKdL
Wiype-tv(a, b,c,d) =e™ = ,

where [al + b!] denotes addition modulo n. Here ¢ =
{q17, 017K, a1} are a set of parameters valued in
Z mod nZ that label different SPTs. Distinct SPT ef-
fective field theories differ in how they couple to the
background flat G gauge field. The coupling terms cor-
responding to different cocycle types take the form

_i I L J
(a,b, A) = 27r/NA /\<b+ L /\da),

1 I 1, NAIJK g K
(a,b, A) = QW/NA/\<b+ o a/\da),
I/\(bl

Generally, the coupling to background field A’ may in-
volve a combination of type-ILIIIIV terms for some
choice of ‘q’. For simplicity we will treat these terms
separately. The response theory can be obtained by in-
tegrating over the matter fields a, b.

eiI“[N,A] _ /D[{a,b}}eisq(“’b’N’A).

SQIJ

cpl

q1JK
Scpl

1

SQIJK 7
Cor

”CJIJKL o’
cpl — 22 Aaf Aa

(a,b,A) = A2

(74)

(75)
The different response theories are

e INAL — oy {— / AT A AT A dAJ} :
N

/ AI/\AJ/\dAK}

in3 qIJKL
83

mnqry
2

meIJK

—
et IJK[N,A] _ exp{

i J91JK L
GTIREINA] Z o {_

(76)

/ AI/\AJ/\AK/\AL}.
N

‘)
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In the above, I, J, K, L are not summed over.

Topological invariants for SPTs: Following our
previous strategy we evaluate these topological re-
sponse theories on set of backgrounds {(Ni, Ai)};cr
which are the generators of the torsion subgroup of
the equivariant cobordlsm group Q7°(BG)®°.  The
U(1) phases {e NG A ]}iEI are the SPT invariants.
For G = [];Zy,, the generating manifolds for type-
ILIILIV terms parametrized by {qrs,qrsx,qr7Kx1} are
{L(ged(nr,ny),1) x S*, L(ged(nr,ny,nk),1) x ST, 7}
respectively, equipped with some appropriate G-
bundle®. Here we compute invariants for G = ZF for
which evaluating the partition functions on L(n,1) x S*
and T* suffices. Generalization to other discrete abelian
groups is straightforward.

e Type-IT and type-III cocycles: Type-II and
type-III cocycles can be detected on N = L(n, 1) x
S, Let S € Tor (H2(N,Z)) be Poincare dual to
the generator of A7 € Tor (H?(N,Z)). Then we

obtain
exp{ / AI/\AJ/\dAJ}

exp 4 — / AT A A7
5=S1xC, ;s
exp {— / Al A AJ}
S=81xC4

exp {— ay(bray — aIbJ)} (77)

where we have decomposed the S = S' x C' where
C' is the torsion 1-cycle in N. (ar,bs) are the Z,
holonomies along C; and S* for the I'th flavor of Z,,.
The calculation for type-III follows very similarly.

exp{ /AI/\AJ/\dAK}

ingry

;1917
ezI [N,A]

nqry
2

ingrjag
2

27Tiq[.]
n

el]QIJK[N,A] ZnQIJK

_ ZnQIJK AI/\AJ
S SlchK
_ exp{ mq”K“K Al /\AJ}
S StxC
2
= exp{ ! WqIJK (b a]—ajbj)}
(78)

e Type-IV cocycles: Type-1V topological term can
be detected on T* with appropriate background flat
G-bundle. The response theory evaluates to

indqrikL

exp { 83

_2MIIKL ijk
n

JTIIJKL
e

/ A’AAJ/\AKAAL}
T4

exp

al,ibJ,jCK,de,l} (79)



where I, J,K,L =1,2,3,4, a = (a1, as, a3, a4), and
a,b,c,d € Z2 are the holonomies around the three
cycles of T*.

The complete set of topological invariants for bosonic
SPTs protected by G = Zk then is

{e—il‘?[L(n,l)xsl,A},e—ifq[T‘l,A]} (80)

Topological gauge theories from Gauging SPTs:
3 + 1d SPTs can be gauged by first coupling to a flat
bundle as we have done above and then summing over
all possible flat bundles. The gauged partition function
on a manifold N takes the form

W > 29N, Al (81)
(4]

ZhwIN] =
The gauged theory is the well-known Dijkgraaf-Witten
theory which has topological order. The ground-state
degeneracy on any 3-manifold M can be computed as
ZEwIM x S = GSD?[M]. These theories can be differ-
entiated by the phases they assign to multi-linked con-
figurations of vortices.?729:30:82-84 " Thege loop braid-
ing statistics may be computed in the bulk by perform-
ing modular transformations on the basis of ground-
states on a three-torus®® and reading off the projec-
tive phases in the modular matrices. Alternately they
may be computed from the Wilson operator algebra of
the Dijkgraaf-Witten theories?® or by directly comput-
ing partition functions on manifolds with multi-link vor-
tex defects embedded. Type-II and type-III Dijkgraaf-
Witten theories in 3 4+ 1d assign non-trivial braiding
phases to linked three-loop configurations in spacetime
or three-loop braiding processes whereas type-IV theory
assigns non-trivial phases to linked four-loop configura-
tions. Let us consider a few specific examples

e Type-IT and type-III Dijkgraaf-Witten the-
ories: Consider putting type-II or type-1II theory
on a manifold N = M x S' and gauging. Suppose
Tor(H1(M),Z) = 0. Then I9[N, A] = 1, therefore
we get

1
ng[Mx51]=@ oo
[AJeH(N,Q)
= |G| M) =. GSDY [M].  (82)

Next if M has torsion, for example if N = L(n, 1) x
S, for type-II cocycle with G = Z2 we get

1 2miq
BRIV = [y > e et e
ar,br€Ly
—. GSD% [L(n, 1)] (83)

Similarly for type-III cocycle with G = Z3 we get

n

ar,br€%Ln

—: GSDY/ [L(n, 1)] (84)

(bray—arby)

284N =
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e Unlike type-II and type-IIT Dijkgraat-Witten the-
ories in 3 + 1d, for Type-IV cocycle, GSDY[T3] <
|G|3. Similar to type-III cocycle in 2+1d [Eq. (29)],
this is related to the fact that type-IV DW the-
ory actually has non-abelian excitations. In other
words the quantum dimension of some of the qua-
sivortices is greater than one. The partition func-
tion for G = Z# on the four-torus is

i 7%5i'jklal,ibj,jcK,de,l
1 e
a,b,c,deZ
= GSD#’xL [T7] (85)

2t ) -

where a = (a1,0a2,a3,a4), and a,b,c,d € Z are
the holonomies around the three cycles of T%.

For some purposes it is convenient to formulate the G-
gauged theory in the continuum as a coupled BF theory
(see for example??)

_ 1 iT9[A]
Z}%W[N} = @ Z €
[AJ€eH(N,G)

Gz, Z, /HDAI Ble L1 [ BIAAY 4iI9[A] (86)

where A and B are 1-form and 2-form U(1) connec-
tions with standard quantization conditions.  Since
(1/2m)dB' € Q3(N), we can integrate them out to im-
pose that A” are flat Z,, gauge fields. The calculation is
very similar to (25).

Ungauging in the 3 + 1d bulk: More generally one
can gauge G in the presence of background quasiparticle
sources J,, € H3(N,G). The gauged partition function
takes the form

2N, Ty = [ DIA, Bl S P HIAy Ti
(87)

where the background fields J;p are 3-form fields with in-

tegral periods®®. Since upon integrating out B, $ Al e

(27Z) /n, the periods of J,, are only physically distin-

guishable modulo n, more precisely J,, € H*(N, é)

where G = Rep(G) ~ G. There is a perfect pairing

/ :HY(N,G) x H¥(N,G) —» R/27Z  (88)
N

that is realized by wedge product followed by integration.
Jgp generates a 2-form G symmetry implemented by the
charge operator Q! (A?) corresponding to G' symmetry.

1
TAT ::7/ AT A AT 89
Q' (\) o ), (89)



where M € Q2(M). Then the 2-form symmetry acts
QY (A) + JL, = JL, 4 dNT;

: Bl — BT -\ (90)

Gauging this dual 2-form symmetry means summing over
Jép € H3(M, Q). Let us call the partition function after

: 2l q
gauging the 2 -form G symmetry ZDW & then

Z]%W/é[Na A] - JZ efif’\’ JquAZJ%W [Na Jqp}
qap
_ Z Z et fn JapN(A—A)+4iI1[N, A
Jap A
— ein[N7A]. (91)

Hence gauging the dual G 1-form global symmetry is
equivalent to un-gauging. The symmetry is generated by
the world-line of A and may be understood as physically
as proliferating or condensing the gauge charge ~ dB
which is always bosonic since [B, B] = 0. Hence this pro-
cedure works for all bosonic SPTs protected by onsite
symimetry.

B. Surface physics

We model the gapless surface of 3 + 1d bosonic SPTs
described by (71) by the following quantum field
theory30:85-87

s= ij[;dcwdw—%(cwl)]. (92)

M

Here, ¢! : M — R/27Z and ¢! are 1-form U(1) connec-
tions which satisfy the Dirac quantization condition

do! ¢t
f 9 g, 7{ X cg (93)
Zy(Mz) 2T Zy(M,z) 2T

This model has a global 0-form (and 1-form) U(1)* sym-
metry. We will however be interested in the discrete sub-
group G = Zk c U(1)*. Similar to 1 + 1d, we probe the
theory by coupling to a flat G gauge field A € H'(M, G)
and use modular invariance of the orbifolded partition
function as a diagnostic for whether the model with a
specific action of G has a ’t-Hooft anomaly. In other
words we put the theory on M = T% and check whether
it is possible to construct a partition function upon sum-
ming all twisted sectors (flat G bundles) such that the
summed partition function is invariant under large dif-
feomorphisms of M as well as large gauge transforma-
tions. The group of large diffeomorphisms on M = T3,
i.e.,, MCG(T?) = SL(3,Z) which is generated by Uy, Us
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with the action

t Yy
U1 : €T — t s
Y T
t t+x
Us: | z | — T . (94)
Y Y

A modular invariant partition function is one for which
ZIUM) = Z[M]; U € MCOG(T?) (95)

The diagnostic for a theory with a global or ’t-Hooft
anomaly will be the inexistence of a modular invariant
partition for the gauged (or orbifolded theory). For a
review of quantization of (92), see App. D.

As with the 1+ 1d case (36), we expect (92) to accom-
modate distinct realizations of G = ZF which we label by
‘q’. We will denote partition functions of these models in
the presence of a background G bundle A as Z9[M, A].
By anomaly matching one can learn that these quantum
field theories require a bulk which cancels the anomaly.
Such bulk theories would be provided by SPT effective
actions (71). As a warm-up let us consider the simplest
G action which is non-anomalous and hence does not re-
quire a bulk to support it.

Non-anomalous 0-form Z, symmetry: A single
copy of (92) is invariant under a global 0-form U(1) sym-
metry

¢(z) = o(x) + (96)

where « is a constant valued in R/27Z. Gauging this
U(1) symmetry implies introducing a flat 1-form U(1)
gauge field A and replacing the differential

dpr— Dap:=dop+ A (97)
with the gauge transformation

o(x) = ¢(z) + o),

A(z) — A(z) — da(z). (98)

Here we gauge a subgroup Z,, C U(1) by restricting the
holonomies of A to Z,. Then defining d¢ := D 4¢ which
obeys the twisted quantization condition

%@GZ-F A (99)
L

2T L 2

i.e., quantizing in the presence of background A implies
imposing twisted boundary condition. Then the gauging
procedure is the same as before; First we compute the
partition functions in the twisted sectors Z°[M, A] and
then sum over them

70 [M] 0(A)Z°[M, A.

1
T [HO(M, Q)] 2

[A]€HL(M,G)
(100)



We compute 22, [M , A] within the canonical formalism.
Following (99) we impose twisted boundary conditions.
Let us set M = T2 and the holonomies of A along the
x,y cycles be A » respectively, then the twisted Hilbert
space is defined as

H)\17)\2 = {¢($,y)aC($,y))£ do = 27?)\1,2} . (101)

Similarly, we can also twist in the time direction, in the
path integral picture, this means coupling to a back-
ground Z, field with non-trivial holonomy in the time-
cycle. In the canonical formalism, this is implemented
via a global Z,, symmetry operator

2TIA
mmﬁ:wp{7zog}

exp {120 /T2 dC} = exp {27Ti2060 } (102)

where Sy is defined in (D3). G(Ag) implements the trans-
formation ¢ — ¢ + 2w\ /n.

27‘(’)\0

G(Xo) 1 o+ (103)

Then the partition function in the twisted sectors are
computed as®*

0 _ 2miRoH'
Z}\g,)\l,)\Q _TI.H)\l,)\Z |:g()\0)e T ]

= Zose Z exp{ 7TTQN

0
2Ry
No,1,2€7%

727TR2T2 <N1 + )\1>

R2 n
A\ 2miNGA
+2mim Ny <N1 + 1) + mnoo} (104)

As we will mostly be working on 72, we simply label
the partition functions with Xg.12, the G holonomies
on T3. Under SL(3,Z) modular transformations, the
twisted sectors transform as

0 _
UZZ)\U)\L)Q -

0
MZ3, zi 0

0
Z)\O*)\l)\ly)o’
__ 70
= Zxg, A2

(105)

1 r70 _ 70
U1Z>\07>\17/\2 - Z>\1,>\0)\2 :

A modular invariant partition function may be con-
structed by taking an equal weight sum, i.e., (4) =1 in
(100)

Zorb = % Z

A0;A1,A2€Ly,

ZR 2 h (106)

In fact, we need not choose (A4) = 1. We saw in (51),

there was a freedom worth HZ,,,,(G,U(1)) in construct-

ing a modular invariant partition function which corre-
sponded to pasting a 14+ 1d G SPT onto (36) and then

27TR0R1 <N2+)‘2>2
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gauging. Similarly in 2 + 1d, given a modular invariant
partition function, we can always find a new one by pick-
ing a [3] € H*(BG,R/27Z) and orbifolding with phase-
factors

78

orb

M) =

i A BZIM, A*EG
€ I
el [ ]

[AleMap[M,BG]
(107)

where BG is the classifying space of G which is a space
whose homotopy groups satisfy the property m;(BG) =
0;,1G. Furthermore BG admits a certain G bundle EG
known as the universal. Together these have the nice
properties that isomorphism classes of G bundles a man-
ifold M are equivalent to homotopy classes of maps from
M to BG. Furthermore one may obtain any G bundle
E — M as a pullback of the universal bundle onto M.
Above, exp {z / Y A*,B} is the partition function for an
2 + 1-dimensional G SPT with background flux A*EG,
hence the freedom of adding a phase corresponds to past-
ing a 2+ 1d SPT onto (92).

Anomalous symmetry action: Let us consider orb-
ifolding G action corresponding to type-1I or type-III co-
cycle. The minimum case where such a symmetry can be
implemented is for G = Z2 on three copies of (92).
S = / [6]‘]qu] Ad¢T —H (", ¢ (108)
M L2
where I, J = 1,2,3. The simplest G action acts indepen-
dently on the three copies as (96) as described above.
Other G-actions couple the multiple copies in a non-
trivial way and may be labelled by ¢ = {q;7,q17x}. Let
us consider the coupling to background G field A and
consider the action

5= [5”@ AdC? —H(ST )
M 271'
1,J=1,2

1
+—A1A(dg 5 ”d¢ A dg”
2

+ﬁqwd¢"m¢ )}

- (109)

where qr5,q15x € [0,...,n—1] are Z,, valued parameters
that parametrize distinct couplings to the background
field. By inspecting the equations of motion we learn that
the fields ¢! and ¢! satisfy twisted boundary conditions

iqusf— ! 7{141

27T L 27T
i]{ng:q’J;lfd¢’AAJ+
m™Js 47T s

Upon fixing background A such that

qrgn J K
12 ﬁdgb NA®.
(110)

2!

f{ Al =71 (111)
L;€H,(T3,2) n
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we define twisted Hilbert spaces as

2!
,HZ\I A = {(bl(x,y),C’(x,y)‘jf d¢I _ L’
L; n

2T iy y
]{ d¢t = ; (qrs€9A[N] +q1JK€Zj)\;»I/\jK)}
T?

(112)
The symmetry operators take the form
2N 6L
q )\I — 0 I L. h I = o~
G1(X) exp{n Q }, where Q o AT
27N}
_ exp{ 7:2 0 / 2 (dgf + ”q” gl N d” + q;;K e A d(;SK)}
T
2N} iy
_ exp{ TIAY [ﬁo anJ ”B BJ nq;;K6135515;<]} (113)

Using the twisted Hilbert space (112) and the symmetry operator (113), the twisted partition functions can be
computed

. ’
Zq = Trq/q [gq /\I 627mR0H]
A ALAL H)\{ I( 0)

7T72 I )‘I J i J )‘J K2
= Zose Z exp Z N{ +€9qry | N o Aj +éqrrr | N; . Aj

N5,1,2€Z 1=1,2,3

A 2nRoR A
,2’/TR2’7’2 <N1 " > # <N2 n )

Y . 2\ . 2\
+ 2mimy <N1I + nl) {Né +€7qry (Nzl + 7;) M +€eqrk <N{] + TZ) /\ﬂ

2N} M y 2\
+ A |:N0 +26”qIJ <NI z))\j‘FQG”(]L}K (N{I+Z) )\JK:|} (114)
n n
[
Under large gauge transformations, the partition func- function
tions in the different sectors transform as 1

I
AR @l Z 07 (NS, N A Z4 N ATAL (117)

2mie
_ o (qra M +arar AK)Z AgAD N EG
=¢ ML

(115) Imposing invariance under U, transformation, we obtain
01N AL Ay,
On the other hand, under SL(3,Z) modular transfor- 9a(NL — MM AD) =¢

mations, the partition functions in the different sectors (118)
transforms as

q
23 ner AT AL

221 (qrg (M)P A +arsx (A)?AL) )

Inspecting the Us transformation property of 8¢, we find

2min i the following constraints under large gauge transforma-

Us.7 — e X1 ﬁli(QIJAL)\jJFQIJK)\Z AJK)ZfI & 8¢ gaug

2 )\1 AL A=A AT AL tions

q _ 74 277“1”
MZs s1 38 = Zyp ap b 09 (n(er +ey),er+ese;)=e » 09(0,er +es,ey),
AmiX 27\'1(11 K

Uz — o1 mnioe(q”’\q M +arix AN 7a 09 (n(er +ey),er +es,ex) = n 0%0,er + e, ex).

1 /\I DYDY ML 1

(116) (119)

This shows that there is a conflict between gauge invari-
Let us try to construct a modular invariant partition ance and modular invariance when ¢ # 0 indicating a



't-Hooft anomaly.

To show that this 't-Hooft anomaly for Z9[M, A] is can-
celled by a bulk SPT, consider the following combination
of type-II and type-III response theories (76):

I[N, A] = — {q”A‘] A AT A dAT
N

n
472
+qIJKAJ/\AK/\dAI}. (120)
Let N = D? x S' x S' with a G configuration such that
the holonomies around the first and second S* are A{ and
Al respectively. Further consider a puncture on D? such
that the holonomy of the gauge field around 9D? is A\{.
We denote this configuration [N, A] = D3, x S5, x S},

0 1 2
The response theory for this background configuration
evaluates to

2 1
qu[D IXS I><S>\Iv ] _ 727”6 J [ars MM, +ara XA A

(121)

which has the same properties as those required from
09\, M, A\L) in order to make the gauged theory consis-
tent.

G-characters and topological data: Similar to the 14
1-dimensional case one can construct G characters from
the 2 4 1d surface theory which encode topological data
of the bulk topological gauge theory labelled by [w] €

G,U(1)). The characters are constructed as
group(
q
% = 122
ERTRY \W AIZE:G Zyrny (12
where € Rep(G), for G = ZE, I\ =

. INJ
exp {%} Instead of working with Z)J AL

find it convenient and illustrative to work with Z¢

we

)\I )\I )\I?
J

o4 —
UaXyr a1 g = i AL >\’

1 FqI7A{7A£()‘(I))
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where

Zq

[EAVAVE (123)

PYAI )\I()‘O)Z)\I >\I AI

where 7§ 1 y1 18 & projective G representation which sat-
1272

isfies

M QO (A8 = By 3 (N6 A7 A (A6 +A0)

where 5 AI(AO,AI ) = ixrinw? (AL, A, AN

where iyw denotes the slant product with respect to A,
for details, please see App.A. We note that Z)\I ML and
2
Z)\, w7y have the same properties under modular and
0271072
large gauge transformations, hence it will suffice for our
purposes to use Z9 instead of Z¢. Then we may write

vl —
XMI’)\{7)\£ - )\I )\I )\I

a2 (129)

- Z
where F AL A\ = uI(Aé)7§{7A£(A6). For the specific
case of type -IT and type-III cocycle, 79, |, (\}) takes the

1272

form

21
) = e { B (@A + M) |
(125)

By the bulk boundary correspondence, the character
X AT AL corresponds to a bulk excitation with linked

ﬂuxes )\I and A} and charge u!.3%%77 The dimension
of the representation dlm(l" oY /\,) is the quantum

dimension of the excitation correspondlng to Z¢ ML

The modular SL(3,Z) matrices can be computed as

ZO
) ASHAL AN

IRVl

U1 % =
Xt AL

I T _
Z r? pl A /\I /\ ) [ 1’ )\1’ )\1(/\1)} XZI’y)\{/’)\é

>\I’ I’

1 )\I ,\I ()‘6 + )‘I)

i\
GXP{ 2  (qraMA + ars A AY

Fq[ )\I )\I()\I +)\I>Z>\I+>\I )\I )\I

27Ti5[J[LI>\1J —q
) - T (Xwaap

\/EZF I )\I /\I()\())Z)\I )\I )\I

-1
(126)



These match with modular matrices computed directly
from the orbifold partition functions with twisted sym-
metry action. The U, eigenvalues are analogous to topo-
logical spin for string operators whereas the projective
phases for the U] transformation encodes the braiding
statistics between string-like and particle like excitations
as well braiding of three-strings known as three-loop
braiding,27:29,30.82

SPT invariants from surface computations: Above
we saw that bosonic SPTs protected by G = ZF and
described by type-II and/or type-I1II 4-cocycles ‘¢’€
Hy,oup(G,U(1)) can be detected by their partition func-
tions on L(n,1) x S with appropriate background G-
bundle. Now we show that these invariants can be di-
rectly computed from the surface theory (92). This com-
putation is based on the fact that the partition function
on L(n,1) x S* can be simulated by the groundstate ex-
pectation value of a partial C,, rotation operation on the
spatial manifold S? x S1.22

Consider putting the theory (71) with type-II and/or
type-IIT coupling to background field A on spatial man-
ifold M = S? x S1, since Hi(S% x S1,Z) = Z, we
may introduce a background field with holonomy b € G
around this spatial S'. We denote this groundstate as

|GS%s, 1) Let C,.p(a) be an operator implementing a
b

non-local partial rotation on a disc-like region D C S?
with flux a € G inserted. Then we may show that the
SPT invariant is given by the phase of

Cn.p()|GSL, .\)

Zq[L(na 1) X Sll)vA] = <ng'2 S2% 51

><Sl3},|

Trya(pxsy) {prSéén,D (a)}

Traapxsy) {/?stg,}
Traa(sixsy) [e_gHTQ én,aD(a)}

N TI'qu(Slxsé) [6_§HT2]

(127)

Z(qa,o,b) (T = % - %)

— i€
Z{0.0.0) (T - f)

Z9L(n,1) x S*, A] =

(€ryCzycy)
Zc (F)(a70’b) chmcmvcy)
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where we have traced over disc-like region D complement
to D C S? and used the fact that the reduced density
matrix effectively reduces to the thermal density matrix
on 9[D x S'] = T2 We note that T? is not a physical
boundary instead it is simply the boundary of the region
on which the partial rotation operator C), p acts.

e~ ¢Hr2

e~¢Hr2]

PDxsL ™~ (128)

Tryga(sixsi) |

where H?(S* x S1) is the Hilbert space on the torus with
holonomies 0,b € G along (9D, S) respectively. Let
T := 71 + i75 denote the modular parameter for the ¢t —
x two torus on which the modular matrices U27U{ act
as T,S € SL(2,Z) C SL(3,Z). Since the C,op acts
as a boost along the x direction. The computation is
effectively very similar to the 1 + 1d calculation (69),
except with holonomy b € G inserted along the S* cycle
in the y-direction

=)

S (U)o 7

n

_ eZI 2:1”'(q”aI(alb‘]7bIa")+q”KaI(a*’beb‘]aK)) (1 n O(e_L/f) e )

_ il
(er,cascy) (T S )

Zq (7_ == *l + iLz)
>, 2mi (qIJaI(aIbJ_bIaJ)+qIJKaI(anK_bJaK)) (—a,0,b) n &n

__ L
Z{0.0.0) (T = ?)



where in the/2nd line we have defined the diffeomorphism
I' = U,U3U; Then by taking the limit £/L — 0, we can
read off the SPT invariant.

k
H2, 25, U (V)] = (Z,) ( 2
H o[ Z8,U(1)] = (Z,) L\
Houp|Z5, U(1)] = (Z) L \ 2
Hyup|Z5,U(1)] = (Z) L\

We can read-off some pattern, notably in odd-dimensions
due to the existence of Chern-Simons terms one can build
a topological action with a single Z, gauge field. The
procedure to build a continuum topological action from
a d + 1-cocycle or vice versa is essentially the same as
the lower dimensional analogs. For example in 4 4 1d,
the Chern-simons like terms (g7 /47%) AT ANdA7 NdAK
correspond to the cocycle

we (@, b,c,d,e) =e
(131)

Similarly the topological action of the kind

2
_4rJKLm

JIIKL —
873

/ AT AN AT N AR AN dAR (132)
Ng41

corresponds to the cocycle
Warsker (37 b7 C, d, e) = ezwqu?KL aIbJCK(dL+eL_[dL+eL]).
(133)

Next, one can design effective actions for SPTs with spe-
cific actions of G which imply specific coupling to the
flat background G gauge field A. Of course these models
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IV. d+ 1-DIMENSIONAL TOPOLOGICAL
PHASES AND THEIR d-DIMENSIONAL
BOUNDARIES

Several features discussed in the previous sections for
2+ 1d and 3 + 1d bosonic SPTs can be generalized to ar-
bitrary dimensions. Let us consider bosonic SPT phases
protected by symmetry G in d + 1-dimensions where G
is a discrete abelian group which for simplicity we shall
assume to be ZF. and their d-dimensional boundaries.
SPT phases with discrete abelian symmetry G are classi-
fied by ng‘g}lp(G7 U(1)). Then each such SPT phase can
be labelled by a group cocycle [w] € HEEL (G, U(1)). Let
us consider a few low dimensional examples of the group
cohomology classification

(130)

must have a unique groundstate, no fractional excitations
and most importantly furnish the correct topological re-
sponse theories. By inspection one can realize that all
such models can be modeled simply as multicomponent
BF theories at ‘level’ 1. In d 4 1-dimensions these take
the form

Naor 2

271'333]}( ol (07 +¢7 —[b7 +cT])(d +e” —[dK +eK])

where b/ and a! are d — 1-form and 1-form U(1) connec-
tions which satisfy the usual Dirac quantization condi-
tions. ‘..." refers to piece in the coupling to background
gauge field that determines the topological response. For
example for the coupling to background A that gives rise
to Chern-Simons like term ‘AdAdA’ and ‘AAAdA’ type
term (132) respectively are

1 q K
q I I J
Sl 27T/A A (db 27Tda Ada™) and
1 q K
q I I J L
Sept = —%/A A (db 120 Aa™ Nda™). (135)

The gauging and ungauging procedures too have straight-
forward generalizations. The partition function takes the



form

Z%W[N] = ﬁ Z

[A]€H!(N,G)

eifq[N,A], (136)

where T[N, A] is the topological response theory cor-
responding to an SPT labelled by cocycle ¢ €
Hgﬁglllp(G,U(l)) that is obtained after integrating out
a,b. This can be ungauged as

GHOIN,A] Z

Jap€H(G,U(1))

emtIn T Az IN -

(137)

J

MY (X3) = {C’(z)ywl(x)

MY (Xs) = {Cf(x)wpl(x)

where L € H1(X3,Z) and V € H3(X3,Z). We note that
it is not clear how to implement this procedure for ‘type-
d + 1’ cocycles € H4TY(ZF U(1)). These cocycles take
the form

I, I Id+1)

wq111213«~1d+1 (a’l y g™y Qg

o
AL Ig- e Tg g aflal2 Tag41
n Ay Ay

—e ...(J.d+1

(140)

and generally give non-abelian topological order upon
gauging in the bulk. A quick way to see this is by the
fact that these cocycles reduce to non-abelian topological
order upon dimensional reduction. Alternately one can
check that this kind of cocycle gives rise to an algebra
that does not have any non-trivial one-dimensional rep-
resentations. Since the charges in Dijkgraaf-Witten the-
ories carry a ‘twisted’ representation. This leads to the
fact that non-trivial fluxes have quantum dimension > 1.
They cannot be embedded in U(1)*, hence we need to go
beyond effective field theory of the form (138) to model
boundary theories for SPTs protected by such group co-
cyles.

For all other cocycle types the twisted partition function
may be computed on My = X4 x S! as

Al .
Z Mg, A] = Try, (x,_1) [H g’ (ﬁl 271_) eQMRoHl
I
(141)

where G' is the Z,, symmetry operator corresponding to
I-th Z,, copy and Ry is the radius of S! along the time

W]{AI. ?{dCI
L27T_L27T’ V27T_

o
L27T_L27T7
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The generalization of boundary physics is more subtle.
First we propose a surface theory described by the action

S=5r [ dcndp-mHe (3
M,

27

Such a theory may be derived by enforcing the full
U(1)g x U(1)4—1 symmetry of the bulk BF theory®7,
where U(1), stands for a p-form U(1) symmetry. Let
My = Xg-1 x St where X _; is a compact oriented
manifold without boundary. The twisted Hilbert space
Ha(X4-1) on X4 1 in the presence of background ZF
gauge field A can be derived as before. For example
for the 5-cocycles (131) and (133) given above, ¢ is a 2-
form U(1) connection and X is a 3-manifold, the twisted
Hilbert spaces take the form

qi1JK J K
A dA
4 %V : } ’

I
ﬁ:q”KL%AJAAKAAL ,
1% 27T 87T3 174

(139)

(

direction. Then we expect Z9[My, A] to have a ’t-Hooft
anomaly that can be cancelled by the response of an SPT
on Ngi1|on,, =M, i-e., together the bulk and boundary
partition functions

Z9[My, Ale?!" Nar1,A] (142)
are gauge invariant and do not suffer from any ’t-Hooft
anomaly.

V. 24 1d SURFACE WITH U(1) x Z¥" "T-HOOFT
ANOMALY

In this section we study a mixed U(1) x Zg’R 't-Hooft
anomaly for the following model:

1
S = {%dﬁ/\dtb—?'l((,d)) : (143)

M

Here, Zg’R represents time-reversal or reflection symme-
try, which can be combined with unitary on-site symme-
try. We show that for different symmetry actions there
may be a Z2 x U(1)y or Z2"" x U(1); anomaly where
U(1), refers to p-form U(1) global symmetry. We show
that for such a symmetry action, the ZQT’R projected par-
tition function is not invariant under large U(1), gauge
transformation. In the context of fermionic SPT phases,
similar calculations have been carried out for the surface
theory (gapless (24 1)d Dirac fermion theory) of (3+1)d
time-reversal or C R symmetric topological insulators.>¢



Details of quantization of (143) can be found in App. D.
Here we will need the form of the mode expansion which
decomposes into oscillator and zero-mode parts as

d(x,y,t) = ¢°(z,y,1) + ¢°*(, 9, 1),
Gz, y,t) = (@, 1) + ¢ (2,9, 1). (144)
The zero-mode part takes the form
Bz | Pay
t) = et Hed
¢(I7y7 ) oo + Rl + RQ + )
Q; Bo
; t) = —2 0, 145
CJ(x7y7 ) 27TRj + 27TR1R2$ ],2"’ ( )

The canonical algebra for this theory implies [«g, o] = 4
and [aq, B2] = i = — e, 1]. We will only be interested
in the zero mode part of the mode expansion throughout
this section as we seek to diagnose mixed ZQT’R x U(1),
anomaly and U(1), only acts on the zeromode part of
the mode expansion.

U(l)p and U(1); symmetry

The action (143) is invariant under a 0-form and 1-form
U(1) symmetry. The O-form symmetry transformation is

GO : ¢ p+6 (146)

explicitly the symmetry operator is G(0) () = exp {if6}.
To gauge the 0-form U(1) symmetry we introduce a flat
1-form background gauge field A, the gauge equivalence

¢(z) = ¢(z) + 0(),
A(z) — A(z) — di(z),

and define the covariant derivative D¢ := d¢+ A. Then
the gauged action is

(147)

S[C, 6, A] = /M [;ﬂdg/\DAgb—H]. (148)

Notice that ¢ satisfies U(1)o twisted quantization condi-
tion

d A
LieH\(T?,2) 2T LieH\(T?,7) 2T

Hence we may define the U(1) twisted Hilbert space as

— =\ 150
‘f; EH1 T2 Z) 271' } ( )

Similarly (143) is invariant under a global 1-form U(1)
symmetry under which acts as

G () : ¢(z) — ((z) + On();

where 7 is a flat bundle. Gauging the 1-form U(1) sym-
metry implies introducing a flat 2-form background gauge
field B, and the gauge equivalence

() = C(x) + 0(x)n(x),
B(z) = B(x) — db(x) An(x),

H/\L)\z -

9 € R/27Z (151)

(152)

21

with the covariant derivative Dp( := d(+ B. The gauged
action is

SIC, 6, B] = /M [;ﬂDBC Adp— ’H] . (153)

The 1-form field ¢ satisfies U(1),
condition

twisted quantization

fEofE
T227T_T227T_' o

We may define the U(1); twisted Hilbert space as

My, = ‘fT ?{T == =X} (155)

73" x U(1)o anomaly

(154)

Let us consider the following choice of Z£ action imple-
mented by Py on (92),

PO : qZS(t,I’,]J) - Qb(t,l’, 7y)7
: Cl(t,l‘,@j) - _Cl(taxa _y)7

: C2(t,l‘,y) — CQ(t,.’L‘, _y) + AC% (156)

where A(s = 0 or . The zero-mode operators transform
under Z% action as

Py ag — aq,
o] — — o,
sag — ag + AG R,
: Bo — Bos
1B — B,

: ﬁg — — 62. (157)

Hence since G(0(0) = ™% we find [G(V)(0), P,] = 0.
We postulate the following P, action on zeromode vac-
uum sectors

Polag, a1, az) = e Pol0rDag, —ay, ay + AG),

Po|Bo, B1, Ba) = e AoBobrbBa)|g, 5, 8oy, (158)

The U(1) phase can be read off from the fourier repre-
sentation of the zero-mode ket

|ﬁ0’ B, 52> = /H daue{i(aoﬁo+a1ﬁ2—a2ﬁ1)}|a0’ as, a2>
m
(159)

which implies Ao (o, 51, B2) = Bo+p1Al. Writing £, =
N, + A\, where N, € Z is the untwisted winding mode
and A\, € R/Z is the U(1) twist parameters introduced
above. We obtain

P[)\l]eiNlA<2 |607 517 _62>

Po|Bo, b1, P2) = (160)



If we require that our Z% action does not depend on
the U(1) twist®®, we must impose P[A\;] = 1 (i.e., B =
A AG)

(Bo, B1, B2 PoBo, Br, Ba) = eN12%254, 4.

The P, twisted partition function in the presence of back-
ground U (1), flux takes the form

(161)

Z[K x Sl’ A1) = TTHM [POe_QTrRO(H'H L Ppt(izh 5+’Y)Py)]

Ty
= Zore 3 e { = g NG
No1€Z 2

— 27TT2R27'2(N1 + /\1)2

—+ 27TiT1N0(N1 + )\1) -+ ZAC2N1}
(162)

Note we cannot insert Ao flux as it is inconsistent with
Py projection. For the non-trivial choice of Py action,
ie., Als = 7, under a large U(1)y gauge transformation
A1 — A1 +1 the parity twisted partition function changes
sign

ZIK x S, ] = —Z[K x Y\ +1]. (163)

This is a Zy anomaly that signals the existence of a
bosonic topological insulator protected by ZI x U(1)g
global symmetry.?:4?

In, it was shown that bosonic SPTs protected by G =
U(1)g x ZE (or equivalently U(1)g x Z&) in 3 + 1d are
classified by Z3. The only mixed term in the response
theory takes the form
I[N,’LU17A]=/ —— W1 leuF (164)
272
where n € Zy parametrizes different phases and wy is
the first Stiefel-Whitney class of the tangent bundle of
the manifold, i.e., §, wy = 0 or 7 for any orientation
preserving or reversing cycle respectively. The effective

matter theory for such an SPT coupled to background
geometry can be modeled as

1 1 n
= — —A — .
S /N[27TbU5a+27T Uéb+27r2w1Uw1U5a

(165)

Upon integrating out the matter fields a, b using the fact
that the cup product is supercommutative upto bound-
ary terms and 0 is a Zo graded derivation, we find the
correct response (164).

72"« U(1); anomaly
We may consider another distinct Z£ action given by P
Pl : ¢(t,$, y) - ¢(t,$, 7y) + A¢7

: Cl(taxay) - _Cl(t7z7 _y)a

: CQ(t,Jf,y) — CQ(taxa _y) (166)
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Since P = 1, A¢ = 0, 7. We choose non-trivial action,
i.e., A¢ = m. The zero mode operators transform under
P, as

Pag— apg+m,
o — — o,
Do — Qa,

: Bo — Bo,
11— B,
1 B2 = — Ba.

We postulate the following P; action on zeromode vac-
uum sectors

(167)

Pilag, ay, ag) = eBrleoanaz)og 4+ Agp —aq; ay),
P1|Bo, B1, Ba) = et41(PoBrba)| g, 5 B, (168)

Similar to the case above for Py, the U(1) phase can be
read off from the fourier representation of the zero-mode
ket. We find

P1‘60751u52> = €Xp {Z(Bl - 7‘—50)} |ﬂ03517 _B2>7
P1[Bo, B1, B2) = exp{—inNo}|Bo, B1, —B2),  (169)

where we have written 8, = N; + A1 and imposed that
the P eigenvalue does not depend on U (1) twist A;. This
implies that B; = wA;. We obtain

(Bo, B1, B2|P1|Bo, B1, B2) = €085,

The P; twisted partition function which is the partition
function on IC x S§13536 takes the form

(170)

ZIK x S, Ao

:TI'HAO [P16_2”R0(H+171P et (i 7L B+7) Py )}

+Zosc Z exp{ o 2R (NO+)\O)
No1€Z

— 2112 Rymy N2 + 2miry (Ng + Ao) N1 + mNO}

(171)

Under a large gauge transformation A\g — Ag + 1 the
parity twisted partition function changes sign

ZIK x 8Y Xo] = —Z[K x S, \g + 1] (172)

This is a Z2 anomaly in the sense that it is cancelled if we
take two copies of the theory. This signals the existence
of a bosonic topological insulator protected by Z2 xU (1),
global symmetry.

We propose the response theory might be
1IN, B, wy] = / w UGB (173)
N

which can be modeled as

S= / [buéa—k —BUda+ 21 w1y UéB} (174)



VI. CONCLUSION AND OUTLOOK

In conclusion we have studied a class of invertible topo-
logical field theories that admit topologically distinct
G actions where G is a discrete abelian group. We
study these from complimentary bulk and boundary ap-
proaches. In the bulk these model bosonic G-SPTs which
are labelled by [w] € HEEL (G,U(1)). Different SPTs
furnish distinct responses to background flat gauge field
A depending on w. We explicitly compute these re-
sponses on manifolds with field configurations that can
distinguish different SPTs. These set of responses supply
SPT topological invariants. Next we describe the gauging
procedure and confirm that gauging an SPT gives a topo-
logical gauge theory which is none other that Dijkgraaf-
Witten theory labelled by w. We show that Dijkgraaf-
Witten Atheories can be ungauged by gauging a dual sym-
metry G. This is synonymous to condensing the Bosonic
charge of the gauge theory.

In the dual boundary approach, we study bosonic quan-
tum field theories with global G symmetry which suffer
from a G-’t-Hooft anomaly. For the cases we study, it
is shown that these 't-Hooft anomalies can be cancelled
by a Dijkgraaf-Witten topological action in one dimen-
sion higher signaling that these theories are consistent
on the surface of SPTs. Further we compute SPT invari-
ants directly from the boundary theory and describe a
procedure of constructing G-characters by orbifolding G
on the boundary. These characters can be used to gener-
ate modular data for the bulk topological gauge theory
further confirming the bulk boundary correspondence for
these topological gauge theories.

Finally we study a quantum field theory in 2 + 1d
that suffers from a mixed anomaly between time rever-
sal/reflection and U(1). Depending on how time rever-
sal/reflection acts the U(1) could be a 0-form or 1-form
symmetry. We postulate the topological action of the
3 + 1d bulk that cancels such a ’t-Hooft anomaly. For
0-form (resp. 1-form) U(1) x Z1" this theory could model
the surface of the bosonic SPT phase with this symmetry.

We close with a few comments on open issues:

e In this work we only study gapless surfaces of SPT
phases however for bulk spatial dimension > 3, the
boundary can support a gapped QFT with anoma-
lous topological order*?°°92. For onsite symmetry
G and in 3+ 1d, the SPT invariant can be extracted
from the violation of pentagon identity?® on the
2 + 1d G-equivariant topological order. Moreover
the time reversal anomaly can be computed using a
recently proposed anomaly indicator by Wang and
Levin®3 however it would be interesting to explore
how SPT invariants can be extracted for mixed
symmetry groups with both anti-unitary symme-
tries such as time reversal/ mirror reflection as well
as onsite unitary symmetry.
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e Categorical generalizations of groups have been
explored for constructing topological gauge theo-
ries. The topological actions of these gauge theories
serve as response functions for non-trivial gapped
phases of matter protected by the corresponding
generalizations of groups. These gapped phases of
matter have global symmetries termed as general-
ized global symmetries”®"® that act on higher di-
mensional objects within a quantum field theory in
addition to point-like objects”®. There is much to
be studied in such theories both on the side of SPTs
as well as the corresponding topological gauge the-
ories. There are several open directions such as
't-Hooft anomalies for (higher) generalizations of
groups”’, quantization of higher topological gauge
theories, spectrum of higher gauge theories etc.

e Floquet SPTs” 191 or non-trivial dynamical
gapped phases of matter as well as several phases of
matter protected by certain spacegroup symmetries
have not been understood much within the frame-
work of low energy topological field theories. Since
TQFT is a robust framework to study phases of
matter it is interesting to ask whether such space-
time symmetries can be incorporated within such
a framework!%2.

e Although we can understand bulk physics for SPTs
protected by discrete abelian group G directly by
analyzing the boundary. There is a class of co-
cycles such as Type-III in 2 4+ 1d and type-IV in
3+ 1d bulk that cannot be captured by our scheme
and consequently we cannot study such phases di-
rectly from the boundary. This has to do with the
fact that upon gauging such SPTs one gets non-
abelian topological order that cannot be embedded
in U(1)¥. In future work we would like to con-
sider a class of models that can admit non-abelian
symmetries with the hope that these can model the
boundary behavior of type-III or respectively type-
IV SPTs.
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Appendix A: Group cohomology for finite abelian
groups

Here we collect some facts about the group cohomol-
ogy of discrete abelian groups. In this paper we use both
additive and multiplicative definition of group action.
When we use additive definition, we will always work
with R/27xZ coefficients, however, when we work with
multiplicative definition, we will work with U(1) coeffi-
cients. Here we define HZ, . (G,R/27Z). The space of

group
n-cochains is defined as the set of homomorphisms

Caroup(G,R/27Z) = {f : G" — R/27Z} .

(A1)

Cgroup 18 an abelian group under pointwise addition:

(f+g)(a17a27 s 7(1”) = f(a17a27' .. 7an)
+g(ar,az,...,a,), (A2)
where f,g € Cg,,p- Then there exists a coboundary
operator ¢ : Cg,.,, — Cobl ) with the action
(5f)(a17 v 7an+1) = f(a27 sy an+1)
+ (— "M f(a,. .. an)
Jrz flar,...;a; 4+ aip1,. .. ;ant1)  (A3)
0 satisfies the properties
6(f +9) =4f+dy,

52 =0. (A4)
¢ naturally defines two subgroups of Cg,,,-the group
of n-cochains these are n-coycles Zg.,,(G,R/27Z)
and n-coboundaries By, (G,R/27Z) where By, C
Zgroup c CVgroup

group {f € C roup |f - 5h h € Cgro&p (A5)
Then the cohomology is defined as usual as
rou (G R/QWZ)
roup (G R/27Z) = Do (A6)
g P group(G R/ZWZ)

The slant product can be defined, which lowers the degree
by 1

n n—1
a ' Coroup (G5 R/27Z) — Cgoun (G R /27Z). (A7)
Explicitly7 this takes the form
(iaf)(al, cosan1) = (=" f(a,an, ... an_1)
+Z 71 1+1f al;-"aaiaa7ai+1a"'7an—1)'
(A8)

Further it can be checked by explicit computation that
d(iaf) = ia(6f). Therefore, if f € Z2, ., (G,R/27Z),

group
then i, f € Z2o1,(G,R/2n7Z), i.e., i, establishes a homo-
morphism

CH (G R/27Z) — H'SL (G, R/2n7).

group group

(A9)
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Appendix B: Orbifolding with discrete torsion and
relation to 1+ 1d SPTs

Consider the following partition function on a torus

Zorb(T)Z Z e(a,b)Zab

a,beG

(B1)

Under modular transformations, the twisted sectors

transform as

T: Za,b(’r) g Za+b,b(7_)7
S

t Zap(T) = Z_pa(T). (B2)
Since the mapping class group of a torus is SL(2,Z), a
general element may be written as
U_(pq>; ps—qr =1 (B3)
s
Then this implies that
e(aP’b?,a"b’) = ¢(a, b). (B4)

Further, consider putting the theory on X2, a Riemann
surface of genus 2. Then € : Hom[m (X2),G] — U(1). By
modular invariance we demand

e(a1,bi;as,b2) = e(aibib, ', bi;azbob; . ba),  (B5)

where aj,as, by, by are the G-fluxes inserted along the
non-contractible cycles L1, L2 L1 L2 respectively. Fur-
ther by the factorization property at genus 2,

E(al,bl;ag,bg) = E(al,bl)é(ag,bg) (BG)

If we normalize €¢(1,1) = 1, then by modular invariance
(B3),

e(g,1) =¢€(1,g) = 1.

Using these facts and (B5),(B6) it can be shown that e
is a 1-dimensional representation of G

(B7)

e(a1 =+ 327b) = E(al,b)ﬁ(ag7b). (BS)

It was shown in”®7 the set of inequivalent € that satisfy

(B7) and (BS8) are classified by [c] € H2,.,,(G,U(1)) and

group
can be written as

e(a,b) =

(B9)

Since [c] € Hg,up(G,U(1)) it satisfies the cocycle condi-
tion

c(a,bc)e(b, c) = c(ab, c)c(a, b). (B10)



FIG. 2. A triangulation of T2 with flux a,b € G along the two
cycles. Dijkgraaf Witten theory labelled by Hzoup (G, U(1))

associates the U(1) phase c(a,b)/c(b,a) to this assohnment
A.

Now using this form of €, we may verify that the above
two properties are satisfied. First

e(ajaz,a3)  c(ajag,az)c(as,ai)c(as, az)

_ clanay, ag)e(ag,ar)
e(ar,az)e(ag,az) ¢ Je(ag,ag)c(as, az)
( ag)c( )
( )e( )

ag,ajaz
claijaz,ag)clas, az

clajaz,az)clag, ag

|
—

= e(aP,a"b’)e(b?,a"b?)
,a"b*)Pe(b,a"b®)?
"b®,a) Pe(a”b®, b)
b* a) Pe(a”,b) "¢
)(ps qr)

b) (B11)

e(aPb?,a"b?)

I
™
o P

|
()

ela

)

(
(
(
(
(a
(a,

ela

Furthermore the discrete torsion phase e(a,b) =
c(a,b)/c(a,b) is exactly the response of a 1+ 1d SPT
protected by G and characterized by 2-cocycle [¢] €

HZ 0up(G,U(1)) in the presence of G-flux a,b along the
two non-contractible cycles of the torus. (See Fig. 2.) To
see this recall that given a triangulation K of manifold
M, Dijkgraaf-Witten theory associates to an assignment
A: H{(K,Z) — G a U(1) phase i.e the response theory
of an SPT classified by [c], explicitly given by

Al =TT (e(d), o)™ (B12)
ceCs(K)

where o, = =1, the orientation of simplex o. For
a simplex olvgvivs] and an assignment A(vgvi) = a,
A(viv2) = b, we get (¢(A),o) = c¢(a,b). Then it is easy

to check
iI°[T?,A] _ c¢(a,b) _ b B13
‘ e —cab) (1

Appendix C: SPT response theory and group
cocycles

In this appendix we show the relation between the SPT
response theories and the respective group cocycles. We
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3
C
a+[b+c] [b+c]
/]
0 [al+b] 2
b
a
1

FIG. 3. Configuration of a flat Z,, gauge field on a 3-simplex.
a,b,c € ZLn,.

would like to show explicitly that the SPT response the-
ories written in the main text matches the expression for
the group cocycle. Consider a triangulation of the mani-
fold N. (See App. A in for an introduction to simplicial
calculus.) Then a flat G gauge field [A] € C1(N, Q) that
satisfies the conditions

e A(Of) =0 for all f € C2(N,Z).

o A(—e) = A(e)™! for all e € C1(N,Z) where —e
implies reversing the orientation of edge e. .

Let us consider the specific case of Z,, SPT in 2+ 1d. We
pick a triangulation for a 3-manifold N. Then a 3-simplex
o' = [vgv1vav3] comes with an ordering of vertices 0 <
1 < 2 < 3 that picks an orientation. A choice of [4]
means assigning Afvgv1] = 2ma/n. Alvivs] = 2wb/n and
Alvguz] = 2we/n where a,b,c € [0,1,..,n — 1]. Then it
straightforward to check that for this choice of flat field
[A] (see Fig. 3).

<%AU5A,UZ'> = Tlabre—p+d)  (CL)

The precise meaning of § A should be understood as fol-
lows. Let A € Z'(M;227%/7) be a Z, field. The coef-

ficient 277/Z means A(01) takes values in 22% mod 2

with a € Z, i.e. A(01) € {0,2%,... 2“” 2rn=1 " We shall
define the topologlcal action hke “A USA”. To do S0, we
introduce a lift

A Ae o ). (C2)
n
The closed condition of A implies that
6A € CY(M;2n7), (C3)

i.e. (6A)(012) takes values in 27Z. A lift A is not unique:
an integer valued 1-cochain a € C1(M;27Z) also gives a
lift

A A+a, a € C*(M;2n7). (C4)
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We define a topological action S[A] of Z,, fields by

/ Ausde "L, (C5)

This is ill-defined as 2ZZ-valued action. However, I[A]
mod 277 is well-defined: Under a change of lift, the ac-
tion is changed as

1~ ~ 1 ~
gAU(SA 2—(A+a) (0A + da) (C6)
1 ~ -~
:7[ u5A+au5A+Au5a+au5a] (C7)
7r
~ 1 ~ 1 ~ 1 _~
:714 _ _— _—
5 U6A+27raU6A 27T(5(AUa)+27T(5AUa+aU6a (C8)
277 exact 277
1~ -~ 1 _ -~
=—AU{A— —0(AUa) (mod 27Z). (C9)
2m 2m
—_—

exact

This means e*/[4] serves as a U(1)-valued topological ac-
tion. Similarly for type-II and III cocycle, it is straight-
forward to check

<q”AIU5A7 z>

<QIZK27L AjuAquK,ai> _
7r

27Tl]1J ol

b7+t = + 7)),

2K (10 K (C10)
n

Consider a triangulation of a three-torus as shown in Fig.
4. The triangulation has six 3-simplices . Then it is easy
to check that the partition function takes the form?2?-60

Z[T3,a,b,c] = \G|H

c€EZ3
~ w(a,b,c)w(b, c,a)w(c,a,b)
- w(a7 C’ b)w(b7 a” c)7 w(c7 b’ a)

(C11)

2 )
(TEATu AT UsA o)
4r2
2 ,
(AL AT U AT UoAR ")
472

<7‘”‘;K§” ATu A’ u AR U A",
T

The computations for partition functions on 7% and
L(n,1) x S are more tedious but quite similar to those
in 1-dimension lower on T and L(n, 1) as the latter are
dimensionally reduced versions of the former.

27TZ(][] IbJ(

271
q1JK alv? (c

; 2w
1> _ SMWIIKL 17 K gL

(

This matches with field theory calculation in (26) and
(21). Furthermore one can compute the SPT or Di-
jkgraaf Witten theory partition function on lens space
L(n,1). This was recently shown in® and we do not re-
peat the calculation here. The field theory calculation
(18) matches the result in%

Similarly for 3 + 1d SPTs for G = 7k, we consider a
4-simplex o' = [vgv1v2u3v4] and a flat G field [A] with
the assignment A!(vovy) = 2mal /n, Al (vive) = 27b! /n,

Al(vqu3) = 2me! /n and Al (vgvy) = 2md! /n.

Tvd! — ! +d’]),

n2

— Ko df — [+ dN]),

(C12)

(

Simplicial calculus is naturally analogous to differential
calculus where p-cochains map to p-forms, cup product
maps to wedge product and the differential § maps to the
exterior derivative ‘d’. This matches with the response



a
FIG. 4. Triangulation of a three-torus containing one
0-simplex, three 1-simplices, three 2-simplices and six 3-
simplices.

theories in Egs. (77) and (79
SPTs.

) for response theories of

Appendix D: Quantization of 2 4 1d surface theory

The equal time canonical commutation relations for (92)
are
[(x,1), €90;¢;(x, t)] = 2mid(x — x') (D1)

The mode expansion decomposes into oscillator and zero
mode parts

o(z,y,t) = ¢°(x,y, 1) + ¢°°(x,y,t)

G2,y t) = G,y 1) + (2, y, 1) (D2)
The zero-mode part takes the form
prx | B2y
Pz, y,t) = ap + TR, T
aj Bo
t 05 D3
Gy = orp SRy 02 T (D3)

27

The canonical algebra for this theory implies [, Bo] =4
and [B1, as] — [B2,01] = i. One possible choice of com-
mutation relations that satisfy this algebra is

[B1,00] = 0; [B2,00] = —i (D4)
however to quantize 3, we impose
la, Bo] = i = — [z, B1] (D5)

with this 8, € Z. The oscillator part of the mode expan-
sions are

osc _ 1 i
) = mm 2/\1

Z 1/2 [ E)e—iE.F+dT(E)eiE.F}

e

05¢(r) = L M
I ~ VERiR, \/ 87r2

Z P /2 ek [a(E)e—W + aT(E)eW]
o ¢
(D6)

With the commutator algebra [a(k), a'(k")] = 6. The
partition function is given by

7 =Try [e%iRUHI} (D7)

where H = ®N012’HN0,N17N2 and H' = H +iaR, P,/ Ry.
The zero-mode part is

Zo = Z

No,N1,N2€Z
27’27TR0R1
Ry

exp{ 2R No —2r? 7TR27'2N1
N2+ 2m'nN0N1} (D8)

The oscillator part of the partition function is the same
as that of free boson.
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