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We derive an effective electronic Hamiltonian for square lattice Hubbard-Holstein model (HHM)
in the strong electron-electron (e-e) and electron-phonon (e-ph) coupling regime and under non-
adiabatic conditions (t/ω0 ≤ 1), t and ω0 being the electron hopping and phonon frequency respec-
tively. Using Density Matrix Renormalization Group method, we simulate this effective electronic
model on 4−Leg cylinder system at quarter-filling and present a phase diagram in g − U plane
where g and U are being the e-ph coupling constant and Hubbard on-site interaction respectively.
For larger g, we find cluster of spins i.e. phase separation (PS) gives way to a charge density wave
(CDW) phase made of nearest-neighbor (NN) singlets which abruptly goes to another CDW phase
as we increase U . But for smaller g, we find a metallic phase sandwiched between PS and singlet
CDW phase. This phase is characterized by vanishing charge gap but finite spin gap – suggesting a
singlet superconducting phase.

PACS numbers: 71.10.Fd, 74.20.-z, 71.45.Lr, 71.38.-k

I. INTRODUCTION

More than one type of interactions typically manifests
a variety of phases such as diagonal long range orders
[such as charge density wave (CDW) and spin density
wave (SDW)] and off-diagonal long range orders (such as
superfluid and superconducting states) of which some co-
operate and some compete. The study of coexistence and
competition between these electronic phases is a subject
of immense ongoing focus. In particular, the coexistence
of CDW and superconductivity/superfluidity in layered
dichalcogenides (e.g., 2H-TaSe2, 2H-TaS2, and NbSe2)

1,
helium-42, bismuthates (e.g., BaBiO3 doped with K or
P)3, quarter-filled organic materials4,5, non-iron based
pnictides (e.g., SrPt2As2)

6, quasi-one-dimensional (1D)
trichalcogenide NbSe3

7 and doped spin ladder cuprate
Sr14Cu24O41

8, and recently in optical lattice system with
effective long-range interactions9 etc.
Elecron-phonon (e-ph) coupling along with usual

electron-electron (e-e) interaction plays an important role
in condensed matter systems such as cuprates10,11 and
manganites12–14 and molecular solids such as fullerides15.
The interplay of e-e and e-ph interactions in these cor-
related systems gives rise to the competition/coexistence
of various phase such as superconductivity, CDW, SDW
etc.
The simplest model to study the co-occurring effects

of e-e and e-ph interactions is the following well known
Hubbard-Holstein model (HHM)16

Hhh=−t
∑

j,δ,σ

(

c†jσcj+δ,σ +H.c.
)

+ ω0

∑

j

a†jaj

+gω0

∑

jσ

njσ(aj + a†j) + U
∑

j

nj↑nj↓, (1)

where c†jσ is the fermionic creation operator for itiner-
ant spin-σ electrons at site j with hopping integral t and

number operator njσ ≡ c†jσcjσ. Here δ = (x̂, ŷ) with
unit lattice parameter represents the nearest neighbors
for square lattice which we consider for our calculations;

a†j is the corresponding bosonic creation operator char-
acterized by a dispersionless phonon frequency ω0, with
U and g representing the strengths of onsite e-e and e-ph
interactions respectively.

The Hubbard-Holstein model has been extensively
studied (in one-, two-, and infinite-dimensions and at
various fillings) by employing various approaches such
as exact diagonalization17–19, density matrix renor-
malization group (DMRG)20–22, quantum Monte Carlo
(QMC)23–28, dynamical mean field theory (DMFT)29–37,
semi-analytical slave boson approximations38–42, large-
N expansion43, variational methods based on Lang-
Firsov (LF) transformation44,45 and without LF
transformation46, Gutzwiller approximation47,48, cluster
approximation49 and functional renormalization group
method50,51.

However, the study of the subtle interplay of e-e
and e-ph interaction effects in low-dimensional systems,
such as conjugated polymers, charge transfer salts, in-
organic spin-Peierls compounds, halogen-bridged tran-
sition metal complexes, ferroelectric perovskites, or or-
ganic superconductors52–55, has attracted much atten-
tion. Apart from the superconductors, e-ph coupling in
quasi-1D materials sometimes can drive the electrons to
be insulating with a CDW by Peierls transition.

In earlier works16,56, in strong e-e and e-ph coupling
regime, an effective electronic Hamiltonian was derived
using a controlled analytic approach that takes into ac-
count dynamical quantum phonons. It was shown that
the e-ph interaction generates nearest-neighbor (NN) re-
pulsion which competes with NN spin antiferromagnetic
(AF) interactions produced by e-e interactions. This
competition stabilizes a correlated NN singlet phase for
intermediate e-e and e-ph coupling which was shown be
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a superfluid at all fillings (less than one-half) other than
one-third where it is a CDW.

In this paper, we derive an effective electronic Hamil-
tonian for two-dimensional HHM with both large U and
g; and study the effective model on a 4-Leg tube system
at quarter-filling using DMRG method which is very ef-
fective in studying ground-state properties of quasi-1D
systems with short-range interactions57. We show that
NN singlet phase we uncovered for 1D HHM model16,56

still survives, but these singlets arrange themselves to
form a CDW at quarter filling with finite charge and spin
gap. This phase is shown to be stabilized between phase
separation at smaller U and a CDW phase at larger U .
At smaller e-e and e-ph coupling, we find a metallic phase
in the vicinity of NN singlet-CDW phase and phase sep-
aration with vanishing charge gap, but with finite spin
gap – suggesting a singlet superconducting phase.

The paper is organized as follows: in Sec. II we briefly
derive the effective electronic Hamiltonian and explain
the various interaction terms and hopping terms. We
also briefly mention the details of DMRG simulations.
In Sec. III, we present a phase diagram in g −U/t plane
mentioning different stable phases. Next, in Sec. IV we
describe how we determine the different phase boundaries
using DMRG simulations. For this we calculate charge
gap, spin gap and different order parameters to identify
various phases. Finally we conclude in Sec V.

FIG. 1. (a) The effective NN terms in the hamiltonian, (b)

Longer range σ-spin hopping from site j+δ
′

to site j and then

to j + δ with δ, δ
′

= ±x̂,±ŷ as appropriate to avoid double

counting. Here as shown for the case of δ
′

= −x̂, we can have

δ = x̂,±ŷ. (c) Similarly δ
′

= −x̂, and δ = x̂,±ŷ for the σσ̄
pair hopping where σ̄-spin first hops from site j to j + δ and

then opposite spin σ hops from site j + δ
′

to j. The number
1(2) represents the first(second) hopping process.

II. EFFECTIVE HHM HAMILTONIAN

Here we briefly outline the procedure to get the
effective electronic Hubbard-Holstein Hamiltonian (with
more details being provided in Ref. 16, 59, and 60). This
approach involves a Lang-Firsov (LF) transformation61

HLF
hh = eTHhhe

−T where T = −g
∑

jσ njσ(aj − a†j) and
get the following LF transformed Hamiltonian:

HLF
hh = −t

∑

jδσ

(X†
j+δc

†
j+δ,σcjσXj +H.c.) + ω0

∑

j

a†jaj

−g2ω0

∑

j

nj + (U − 2g2ω0)
∑

j

nj↑nj↓, (2)

where Xj = eg(aj−a
†
j) and nj = nj↑ + nj↓. Next, we

express as follows our LF transformed Hamiltonian in

terms of the composite fermionic operator d†jσ ≡ c†jσX
†
j :

HLF
hh = −t

∑

jδσ

(

d†j+δ,σdjσ +H.c.
)

+ ω0

∑

j

a†jaj

+(U − 2g2ω0)
∑

j

nd
j↑n

d
j↓ − g2ω0

∑

j

(

nd
j↑ + nd

j↓

)

, (3)

where nd
jσ = d†jσdjσ . The last term is a constant pola-

ronic energy and can be dropped. So Eq. (3) essentially
represents the Hubbard Model for composite fermions
with Hubbard interaction Ueff = (U − 2g2ω0). The
renormalization of Hubbard U by e-ph coupling has been
recently observed in layered dichalcogenide 1T-TaS2

62.
In the limit of large Ueff/t, using standard treatment
involving a canonical (Hubbard to t−J) transformation,
we get the following effective Hamiltonian for the small
parameter t/Ueff

63–65:

Ht−J = Ps



−t
∑

jσδ

(

d†j+δ,σdjσ +H.c.
)

+ ω0

∑

j

a†jaj

+ J
∑

jδ

(

~Sj · ~Sj+δ −
nd
jn

d
j+δ

4

)



Ps (4)

where nd
j = nd

j↑ + nd
j↓, J = 4t2

Ueff
, ~Sj is the spin operator

for a spin 1/2 fermion at site j, and Ps is the single-
occupancy-subspace projection operator. This is the t−J
Hamiltonian for the composite fermionic operators djσ .
In terms of original operators cjσ, the effective t − J

Hamiltonian in Eq. (4) can be re-written as

Ht−J = H0 +H1, (5)

where

H0 = −te−g2 ∑

jσ

Ps

(

c†j+δ,σcjσ +H.c.
)

Ps + ω0

∑

j

a†jaj

+J
∑

j

Ps

(

~Sj · ~Sj+δ −
njnj+1

4

)

Ps (6)

and

H1 = −te−g2∑

jσ

Ps

[

c†j+δ,σcjσ(Y
j†
+ Y j

− − 1) + H.c.
]

Ps.(7)

Here we have rewritten the above Hamiltonian to sep-
arate into (i) the electronic part H0 which is nothing but

an effective t − J model with reduced hopping (te−g2

);
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and (ii) the remaining perturbative part H1 which cor-
responds to the composite fermion terms containing the
e-ph interaction with Y j

± ≡ e±g(aj+δ−aj).
After carrying out perturbation theory to second-order

(as outlined in Ref. 16 and 56), with t/(gω0) as the small
parameter59), we get the following effective Hamiltonian:

Heff
hh

∼= −t1ht1 + JhS − V hnn − t2hσσ − t2hσσ̄

(8)

where

ht1 =
∑

jδσ

Ps

(

c†j+δ,σcjσ +H.c.
)

Ps, (9)

hS =
∑

jδ

Ps

(

~Sj · ~Sj+δ −
1

4
njnj+δ

)

Ps, (10)

hnn =
∑

jδσ

(1−nj+δσ̄)(1−njσ̄)(njσ − nj+δσ)
2, (11)

hσσ=
∑

jδδ
′
σ

(1− nj+δ
′
,σ̄)(1 − njσ̄)(1 − nj+δ,σ̄)

×
[

c†j+δ,σ(1 − 2njσ)cj+δ
′
,σ +H.c.

]

, (12)

hσσ̄=
∑

jδδ
′
σ

(1− nj+δ,σ̄)(1− nj+δ
′
σ)

×
[

c†jσcj+δ,σc
†

j+δ
′
,σ̄
cjσ̄ +H.c.

]

, (13)

The various coefficients are defined in terms of the system
electron-phonon coupling g, the Hubbard interaction U ,
the hopping amplitude t, and the phonon frequency ω0

as follows: V = (2f1+ f2)t
2
1/ω0 and t2 = f1t

2
1/ω0 where

f1 =
∑inf

n=1
g2n

n!n and f2 =
∑inf

n,m=1
g2(n+m)

n!m!(n+m) . For large

g, f1 and f2 can be approximated by taking derivative
with respect to g2 which in turn can be expressed as
exponential of g2. We then integrate it back to get: V ≃

t2/2g2ω0 and t2 ≃ t2e−g2

/g2ω0 for large g. Hereafter
t = 1 is taken as unit of energy.
Here we have the nearest neighbor parameter δ, δ

′

=
(x̂, ŷ) for each site j to cover the 2D square lattice for
the terms ht1 , hS , hnn in effective Hamiltonian in Eq. 8.
Here just to mention that the phonon averaging (upto
2nd order perturbation) introduces a dominant NN re-
pulsion term hnn which involves the electrons hopping to
nearest neighbor sites and coming back. So this process
prefers NN sites to be empty to avoid double occupancy
and is basically a repulsion. Also this perturbation pro-
cess includes longer range three site hopping process with
further reduced amplitude t2. For each site j the next to
nearest-neighbor (NNN) hopping terms hσσ and hσσ̄ have

the sums over the parameters (δ, δ
′

) = (±x̂,±ŷ) to avoid
double counting as described and shown in Fig. 1.

FIG. 2. Different phases in g −U/t plane. Phase separation
(PS) i.e. antiferromagnetic clustering of electrons at smaller
U is broken to form insulating CDW made of NN singlets
(two electron in shaded ellipse) i.e. singlet-CDW as we in-
crease U . The breaking of singlet pairs happen with further
increase in U to give AF-CDW as shown. At smaller g, a
metallic phase sandwiched between PS and singlet-CDW is
stabilized in narrow range of parameters. The dashed black
line is an estimate of the boundary between singlet-CDW and
AF-CDW when hopping is ignored (see main text).

To study the ground state properties of this model on
quasi-1D systems, we simulate the effective model in Eq.
8 on 4−leg ladder system with periodic boundary con-
dition in y−direction i.e., 4−leg tube system by using
DMRG method57. For different values of model parame-
ters (g, U/t), we simulate the system with different tube
length and calculate the ground state energies and order
parameters. These physical quantities are then used to
extrapolate the results to thermodynamic limit by finite
size scaling. We keep upto 8000 states of the density ma-
trix to get the ground state energies with error < 10−8.

Before discussing the results, we want to mention that
our derivation of the effective electronic Hamiltonian is
valid for both U and g to be large. The double occupancy
of electrons is removed by large Ueff = (U − 2g2ω0)
enabling us to perform Hubbard to t − J transforma-
tion in terms of composite fermion (electron dressed with
phonon). The second order perturbation theory we per-
formed has the small parameter t/(gω0). So the large
value of g makes this parameter to be small validating
the perturbation theory. Also we need the effective hop-

ping t1 = e−g2

and effective exchange Jeff ≃ 4/Ueff to
be negligible as compared to phonon frequency ω0, which
is the case for the parameter regime we present the re-
sults.

III. PHASE DIAGRAM

Here we describe the different phases in g −U/t plane
at quarter-filling (one electron per two sites and equal
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number of up and down electrons) obtained by extensive
DMRG simulation with ω0/t = 1. As mentioned above,
we have two dominant interaction terms in Hamiltonian:
the effective Heisenberg interaction J/t ≡ 4

U−2g2 which

for a fixed g decreases with the increase in U and re-
sponsible for antiferromagnetic (AF) clustering of elec-
trons i.e., phase separation (PS) and singlet pair forma-
tion; and an effective NN repulsion V/t ≃ 1/(2g2) which
depends on g only and tries to break Phase separated
cluster of spins and singlet pairs. As shown in Fig. 2,
for large g and smaller U , the system is phase separated
i.e. clustering of spins happens due to large J . With in-
creasing U , the cluster of spins breaks into singlet pairs
(shaded pair of electrons) which at the commensurate
quarter-filling are arranged in a insulating CDW state.
We call it as singlet-CDW having structure factor peak
at S(π/2, π) or S(π, π/2) depending on the orientation
of the singlets. Further increase in U decreases J and

the singlet pairs are broken to give another CDW phase
as shown. The electrons are arranged in this phase to be
AF order for smaller g to gain some kinetic energy due
to NNN hopping terms. The transition between phases
is found to be abrupt which seems to be reasonable due
to the negligible contribution of effective hopping terms
for larger g.
The situations is different for the case of smaller g and

smaller U where NN hopping term t1 = e−g2

can be ef-
fective. Along with the CDW phases at larger g, we find
a narrow range of metallic phase sandwiched between PS
and singlet-CDW phase as shown as shaded area in Fig2.
This phase is characterized by the vanishing charge gap,
but with finite spin gap (singlet to triplet excitation).
With increasing g, metallic phase is narrowed down and
vanished at larger g. The singlet-CDW phase and su-
perconductivity adjacent to this phase are relevant to
organic charge-transfer solids.58
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FIG. 3. The results are for g = 2.2: (a) The order parameter S(π, π/2) i.e. the structure factor for singlet-CDW phase
when the edge potential is arranged as (δV, δV,−δV,−δV ) and (−δV,−δV, δV, δV ) on two edges of the tube system to pick
up the phase. (b) The order parameter S(π/2, π/2) i.e. the structure factor for AF-CDW when a edge potential is arranged
as (−δV, δV,−δV, δV ) and (δV,−δV, δV,−δV ) on two edges of the tube system to pick up the phase. (c) The finite size
extrapolation to determine the phase boundary between singlet-CDW and AF-CDW. The empty circles and red line represent
the points where the order parameter S(π, π/2) jumps at singlet-CDW and AF-CDW phase boundary and its thermodynamic
extrapolation respectively. The horizontal line corresponds to the jumps in (b).

IV. DETERMINATION OF PHASE

BOUNDARIES

Here we discuss how we determine the phase bound-
aries in the phase diagram shown in Fig. 2. The different
insulating phases are characterized by the structure fac-
tor peak which is the Fourier transform of density-density
correlations and is defined as:

S(kx, ky) =
1

N

∑

l1,l2

W (l1, l2)e
−i(kxl1+kyl2) (14)

where W (l1, l2) = 〈ni,jni+l1,j+l2 〉 is density-density cor-
relation. For example, the singlet-CDW and AF-CDW
phase can be captured by the structure factors S(π, π/2)

or S(π/2, π) depending on the orientation of the NN sin-
glets and S(π/2, π/2) respectively. The metallic phase
is detected by vanishing charge gap defined as ∆c =
(E(N +2, 0)+E(N − 2, 0)− 2E(N, 0))/2 with E(N,ST

z )
being the energy for N number of electrons (equal up and
down electrons) and total z component of spins ST

z = 0.
Also we confirm that metallic phase has non-zero spin
gap ∆s defined as ∆s = E(N, 1) − E(N, 0). The phase
separation has been captured by looking at the real space
density profile obtained by DMRG simulations.

We simulate 4-leg tube systems of different sizes i.e.,
8x4, 12x4, 16x4, 20x4 systems with periodic boundary
condition in y-direction (i.e., 4-leg tube) and open bound-
ary in tube direction. We study the quarter-filled system
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FIG. 4. For g = 2.2, (a) Typical extrapolation of charge gap
(∆c) approached from singlet-CDW phase to metallic phase.
(b) ∆c as a function of U/t (c) Typical local density profile
in phase separation.

i.e., number of particle is N/2 (equal up and down elec-
trons) where N is the total number of sites. The physical
quantities calculated for different system sizes enable us
to extrapolate the results to thermodynamic limit by fi-
nite size scaling analysis as described below.

A. Phase boundaries at smaller g

In our simulation, we pick up the different CDW phases
mentioned in the phase diagram by adding onsite poten-
tial at two edges of the tube. This is used to reduce the
edge effect for these insulating phases and does not affect
the results in thermodynamic limit.
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/t,

 ∆
s/

t

1/N
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∆s/t, U/t=17.6
18.4

FIG. 5. For g = 2.2, typical extrapolation of charge gap
(∆c) and spin gap (∆s) in the metallic phase.
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FIG. 6. Similar calculations for g = 2.6 as shown in Fig. 3

So, we use edge potential as (δV, δV,−δV,−δV ) on one
edge and (−δV,−δV, δV, δV ) on the other to pick up the
singlet-CDW phase. Then we calculate the order param-
eter S(π/2, π) for this phase in the intermediate region of
the phase diagram. Note that the order parameter per-
sists for arbitrary long system length and corresponds to
long range singlet-CDW state. The results are shown for
g = 2.2 in Fig. 3(a). This shows finite size effect on
singlet-CDW and AF-CDW phase boundary, but almost
no effect on the boundary with PS phase. We also simu-
late the same systems after putting the edge potential as

(δV,−δV, δV,−δV ) on one edge and (−δV, δV,−δV, δV )
on the other to settle the AF-CDW boundary from above.
The order parameter in this case is S(π/2, π/2) and is
shown in Fig. 3(b) to have no finite size effect. We then
extrapolate the two results which are shown to coincide to
same U as shown in Fig. 3(c)–suggesting a abrupt tran-
sition between singlet-CDW and AF-CDW. This transi-
tion can also be captured analytically ignoring the hop-
ping contributions. The effective model contains J and V
terms. So in singlet-CDW phase, the energy of a singlet
corresponds to −3J/4 + (2V − J/4) which becomes zero
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at the singlet-CDW to AF-CDW transition points. After
writing these in terms of U and g, this gives the transi-
tion at U/t ∼ 6g2ω0 which estimates the singlet-CDW to
AF-CDW transition better at larger g (see Fig. 2). Here
we can see that a decrease in adiabatic ratio t/ω0 i.e.,
increase in ω0 would shift this phase boundary up. Also,
we want to point out that we calculate the expectation
value of the singlet operator (S+

i S−
j + S−

i S+
j ) for each

bond connecting two NN sites i, j in singlet-CDW phase.
This gives the value −1 (as it should be for a NN singlet
pair between NN sites i, j) for each NN bond forming a
NN singlet and 0 otherwise.
For smaller g, the NN hopping can be effective and

we find that the breaking of cluster of spins at smaller
U goes through a metallic phase before forming singlet-
CDW phase. To find the metallic phase boundary with
singlet-CDW, we calculate charge gap ∆c in the singlet-
CDW phase with the edge potential as mentioned above.
As we decrease U , we see the extrapolated ∆c goes to zero
as shown in Fig. 4(a) and (b). The metallic boundary
with phase separation has been captured by investigating
the local electron density profile obtained by the DMRG
simulation. The typical density profile in PS is shown in
Fig. 4(c) where the filled circle size represents the total
electron density. We also confirm the vanishing charge
gap, but non-zero spin gap inside the metallic phase as
shown in Fig. 5. So this metallic phase is characterized
as singlet superconducting (SS) phase as shown in Fig.
2.

B. Phase boundaries at larger g

Again we present the similar calculations for larger
g = 2.6 to detect the phase boundaries. The results are
shown in Fig. 6. We see similar behavior at larger U
where the boundary approached from both CDW phases
seems to be coinciding as shown in Fig. 6(c). In contrast
to smaller g, we have not detected any metallic phase
for g = 2.6 and larger. This seems to be reasonable be-
cause for larger g, the hopping terms become less effec-
tive. In Fig. 7, the typical extrapolation of charge gap
(∆c) around the singlet-CDW and PS boundary stays
always finite. Although, a tendency to PS for smaller
system gives slightly negative ∆c/t, the ’normal’ insulat-
ing state is restored for larger system sizes.
Here we want to mention that the critical U in Fig.

3(c) and Fig. 6(c) have been extrapolated for the phase
boundary between singlet-CDW and AFW-CDW. De-
pending on the time scale of quantum fluctuation and
global ordering (singlet-CDW), a fast convergence of crit-
ical U with system size may be possible which makes the
extrapolation quadratic. On the other hand, the ther-
modynamic extrapolation of charge gap in the insulating
phases is shown in Fig. 4 and Fig. 7 . Since the open
boundary conditions are applied to the charge-gapped
state, the density Friedel oscillation decays very rapidly
from the system edges due to the exponential decay of

density-density correlation. Also, the charge gap is mea-
sured around the center of system. Therefore, the main
remaining finite-size effect in the charge gap is the dis-
crete momentum effect ∝ a/N , where a is roughly pro-
portional to the band width. Thus, we could expect a
linear scaling. However in the metallic phase, the Friedel
oscillation decays very slowly. It means that the finite-
size scaling could be substantially affected by the un-
known Friedel oscillation and it is difficult to expect the
form of scaling function, at least in case of open bound-
ary condition. Nevertheless, the period of Friedel oscil-
lation in this study is short-ranged commensurate and
the finite-size scaling (here we used quadratic in 1/N)
analyses seem to work quite well.
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FIG. 7. For g = 2.6, typical extrapolation of charge gap
(∆c) around the singlet-CDW and PS boundary

V. CONCLUSIONS

In both strong electron-electron and electron-phonon
coupling regime, we derive an effective electronic Hamil-
tonian for two dimensional Hubbard-Holstein model by
averaging out phonon degrees of freedom within second
order perturbation theory. Using density matrix renor-
malization group method, we simulate the effective elec-
tronic Hamiltonian on 4−leg tube systems to identify the
different phases of the model in g−U/t parameter space.
The phase boundaries are captured by structure factor
peak, charge gap and real space density profile obtained
from DMRG simulations which are extrapolated to the
thermodynamic limit. We show that for larger g, the
system goes through the phase separation, singlet-CDW
and AF-CDW phases respectively as we increase U/t.
The phase transitions seems to be abrupt as the effec-
tive hopping is negligible for larger g. For smaller g, we
also get the similar CDW phases (AF-CDW and singlet-
CDW) at larger U/t. But for smaller U/t, the hopping
of electrons can be effective which gives rise to a metallic
phase sandwiched between singlet-CDW and phase sep-
aration. This phase is characterized by vanishing charge
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gap, but non-zero spin gap–suggesting a singlet supercon-
ducting phase. The phase diagram mostly contains the
insulating phases. In particular, the singlet-CDW phase
has been experimentally observed in quasi-2d organic su-
perconductors which shows superconductivity (adjacent
to this phase) under pressure58. This exotic phase might
be relevant to CDW phases arising from the interplay of
electron-electron and electron-phonon coupling and ob-
served in layered dichalcogenide 1T-TaS2

62.
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maki, S. Uchida, and M. Rübhausen, Phys. Rev. Lett. 105,
026402 (2010); P. Abbamonte, G. Blumberg, A. Rusydi, A.
Gozar, P. G. Evans, T. Siegrist, L. Venema, H. Eisaki, E.
D. Isaacs, and G. A. Sawatzky, Nature (London) 431, 1078
(2004).

9 R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T.
Donner, and T. Esslinger, Nature (London) 532, 476 (2016)

10 A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D.
L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K.
Kishio, J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain,
and Z. X. Shen, Nature (London) 412, 510 (2001).

11 G.-H. Gweon, T. Sasagawa, S. Y. Zhou, J. Graf, H. Takagi,
D.-H. Lee, and A. Lanzara, Nature (London) 430, 187
(2004).

12 A. Lanzara, N. L. Saini, M. Brunelli, F. Natali, A. Bian-
coni, P. G. Radaelli, and S.-W. Cheong Phys. Rev. Lett.
81, 878 (1998).

13 A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys.
Rev. Lett. 74, 5144 (1995).

14 F. Massee et.al., Nature Physics 7, 978982 (2011)
15 O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).
16 Sahinur Reja, S. Yarlagadda, and P. B. Littlewood, Phys.

Rev. B 84, 085127 (2011).
17 A. Dobry, A. Greco, J. Lorenzana, and J. Riera, Phys. Rev.

B 49, 505 (1994).
18 A. Dobry, A. Greco, J. Lorenzana, J. Riera, and H. T.

Diep, Europhys. Lett. 27, 617 (1994).
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