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We uncover an infinite family of time-reversal symmetric 3d interacting topological insulators of
bosons or spins, in time-periodically driven systems, which we term Floquet topological paramagnets
(FTPMs). These FTPM phases exhibit intrinsically dynamical properties that could not occur
in thermal equilibrium, and are governed by an infinite set of Z2-valued topological invariants,
one for each prime number. The topological invariants are physically characterized by surface
magnetic domain walls that act as unidirectional quantum channels, transferring quantized packets
of information during each driving period. We construct exactly solvable models realizing each of
these phases, and discuss the anomalous dynamics of their topologically protected surface states.
Unlike previous encountered examples of Floquet SPT phases, these 3d FTPMs are not captured
by group cohomology methods, and cannot be obtained from equilibrium classifications simply by
treating the discrete time-translation as an ordinary symmetry. The simplest such FTPM phase
can feature anomalous Z2 (toric code) surface topological order, in which the gauge electric and
magnetic excitations are exchanged in each Floquet period, which cannot occur in a pure 2d system
without breaking time reversal symmetry.

Low temperature 2d systems with a gap exhibit dis-
cretely quantized electrical and thermal Hall conductance
associated with chiral edge channels that reflect the un-
derlying bulk topology of the many-body state. In the
absence of excitations with fractional charge and statis-
tics, there are fundamental minimum values for these
topological quantities. For example, the minimal thermal
Hall conductance per unit temperature is κ0,f/T = 1 for
(non-superconducting) fermion systems, and κ0,b/T = 8
for bosonic systems1. Strikingly 3d time-reversal sym-
metry (TRS) symmetry protected topological phases
(SPTs), such as electronic topological insulators2 (TIs)
and their interacting bosonic counterparts, topological
paramagnets3–6 (TPMs), can violate these fundamental
constraints, exhibiting anomalous surface states with ef-
fectively half of this minimum Hall quantization. For
example, in electronic topological insulators this half-
integer surface Hall conductance is a direct consequence
of the unpaired surface Dirac fermion that is topologi-
cally protected by TRS and charge-conservation. This
anomalous Hall conductance has been observed by ex-
amining domains between opposite surface magnetiza-
tions, whose interface carries a single chiral electron mode
with electric and thermal Hall conductance twice that
of the neighboring magnetic domains7. Equivalently,
this surface property corresponds to bulk electromag-
netic and gravitational axion angles θe,g = π8, leading
to a topological magneto-electric effect9, and exposing
unexpected connections between electronic materials and
non-perturbative anomalies and dualities of gauge theo-
ries8,10–14.

These phenomena are, by now, rather well under-
stood in thermal equilibrium settings, even in the pres-
ence of strong interactions, due to recent advances
in understanding and systematically classifying SPT
phases2–5,15–26. In this paper, we venture beyond this

familiar equilibrium setting to investigate new non-
equilibrium Floquet SPT (FSPT) phases arising in time-
periodically driven systems27–40.

In this context, quantum Hall systems with non-zero
Chern number are unstable to drive-induced heating41,42.
Instead, time-periodic driving enables a new set of topo-
logical phases with chiral edge dynamics but zero Hall
conductance31, dubbed chiral Floquet (CF) phases37,
which can be many-body localized (MBL)43. In the
absence of fractional excitations37,40,44, CF edge chan-
nels periodically pump a quantized integer number of
quantum states, pR to the right, and an integer num-
ber of states, pL, to the left. This pumping is character-
ized by a topological invariant, the chiral unitary index:
ν = log pR

pL
, that is the logarithm of a rational fraction,

inspiring the name “rational CF” phases.

In this paper, we investigate whether there are 3d TRS
SPT phases whose surface states can exhibit a “fraction”
of the minimal dynamical chiral invariant, ν, analogous
to anomalous Hall conductance and anomalous θ-angle
of equilibrium TIs and TPMs. To avoid technical com-
plications associated with fermion systems, we focus on
3d Floquet systems of interacting bosons or spins sub-
jected to a TRS drive. In this context, we uncover an
infinite family of 3d FSPT phases, which we refer to as
Floquet topological paramagnets (FTPM). In analogy to
how the surface state of an equilibrium topological para-
magnet is effectively a TRS “half” of the minimal 2d in-
teger thermal quantum Hall insulator, the surface states
of these 3d FTPM phase are effectively “square-roots”
of minimal chiral Floquet (CF) phases31,37,40. Just as a
magnetic domain wall at the surface of an equilibrium
electronic topological insulator behaves as the edge of an
integer quantum Hall phase with odd-integer Hall con-
ductance, a TRS-breaking domain on the surface of the
3d FTPM phase exhibits the same dynamics as the edge



2

of a 2d rational CF phase whose rational topological in-
variant is not a perfect square (the multiplicative analog
of “odd”). These FTPM phases are governed by an in-
finite set of dynamical Z2-valued topological invariants,
one for each prime number, or equivalently the positive
rationals modulo perfect squares, Q+/Q2

+
45. After con-

structing these invariants, we build solvable lattice mod-
els for driven systems that realize each of these 3d FTPM
phases, and explore their anomalous, topological surface
state dynamics.

A complementary perspective on the 3d FTPMs is pro-
vided by their possible anomalous 2d surface topological
orders. The simplest example is the 3d FTPM phase real-
ized in a spin-1/2 lattice model, whose surface has chiral

unitary index log
√

2. We will show that this phase can
exhibit a Floquet enriched Z2-topological order (Toric
code) with emergent gauge electric e, magnetic, m that
get periodically interchanged, e↔ m. In a purely 2d sys-
tem, we have previously shown40,46 that this e ↔ m ex-
change is necessarily accompanied by TRS-breaking rad-
ical CF edge state with chiral index ν = ± 1

2 log 2. How-
ever, the special (anomalous) feature of the 3d Floquet
phase, is that it enables this surface e ↔ m exchang-
ing surface topological order to occur in a time-reversal
symmetric fashion.

Topological invariants for 3D FTPMs – We begin
by constructing a new dynamical topological invariant
for 3d FTPMs. Our setting will be a 3d system of inter-
acting bosons (e.g. spins), subjected to a time-dependent
Hamiltonian H(t) with period, T , H(t) = H(t+ T ), and
associated with the Floquet operator (time-evolution op-
erator for one period):

U(T ) = T̂ e−i
∫ T
0
H(t)dt (1)

where T̂ denotes time ordering. In this driven setting,
heating can be either avoided by introducing strong dis-
order to drive the system into a many-body localized
(MBL) regime47–49, or postponed for an exponentially
long time by rapid driving50–53. We will restrict our
attention to MBL settings, though we expect our re-
sults to extend straightforwardly to pre-thermal systems.
Our focus will be on drives with time-reversal symmetry
implemented by an anti-unitary operator T acting as:
T H(t)T −1 = H(−t) (i.e. T U(T )T −1 = U†(T )), which
acts like T 2 = 1 on all particles. The latter require-
ment avoids local Kramers degeneracies that would spoil
MBL54.

In the absence of a boundary, the Floquet evolution
is MBL, and decomposes into the product of quasi-local
unitary operations: U(T ) =

∏
α Uα, where Uα commute

for different α, and are exponentially well localized near
position rα. There are two distinct ways to define the
action of U(T ) in the presence of a spatial boundary:

1. We can simply truncate the terms in the Hamilto-
nian H(t) that cross the boundary.

2. Alternatively, we could omit the factors of Uα

whose position, rα, lies within a finite width region
near the boundary.

Denoting these two bulk-truncated Floquet evolutions
as UB1,2

respectively, we can then identify the action of
U(T ) at the boundary by their difference:

Y = U−1
B2
UB1

(2)

which is exponentially well-localized to the boundary. By
definition, the phase is trivially localizable in the ab-
sence of symmetries. This ensures that we can write Y
as a local Hamiltonian evolution of a 2d Hamiltonian:
Y = Te−i

∫ T
0
HS(t)dt, where HS(t) is exponentially well

localized to the surface. Since UB1.2
are manifestly TRS,

and commute55, Y is also TRS. Crucially, however, it
might be the case that its generating Hamiltonian HS(t)
necessarily breaks TRS. To quantify this obstruction to
the existence of a TRS generating Hamiltonian, we first
pick any generating Hamiltonian HS(t) and from it con-
struct a modified 2D Hamiltonian with enlarged period
2T :

H ′S(t) =

{
HS(t) for 0 < t < T

−T HS(t− T )T −1 for T < t < 2T
(3)

where the minus sign in the second line makes H ′S(t) a
time-reversal anti-symmetrized version of HS . Since, Y
is TRS on a closed surface. this anti-symmetrization im-

plies U ′S(2T ) = e−i
∫ 2T
0

H′
sdt = T Y T −1Y = 1, i.e. U ′S(t),

0 ≤ t < 2T forms a closed loop in the space of finite depth
unitaries. Moreover, since H ′S is a purely 2D Hamilto-
nian, we can truncate it to a finite 2d disk and compute
its chiral unitary edge index, ν, which is equal to the ν of
HS minus the ν of its TR-conjugate (due to the TRS anti-
symmetrization in Eq. 3). Since Y = 1 away from the
edge of the disk ν takes a (log) rational value37,44,56,57:

ν(Y ) = log r(Y ) (4)

for some rational r. It will be convenient to represent
this rational number via its unique prime factorization:

r(Y ) =
∏
i

p
ni(Y )
i , (5)

where pi is the ith prime number, and ni ∈ Z.
Without driving a delocalizing phase transition in the

bulk dynamics, we can at most alter Y by attaching a
purely 2d rational CF phase with chiral unitary index
ν2d =

∑
imi log pi to the surface. Specifically, any mod-

ification of the surface Such surface deformations pre-
serve the unitary loop property of U ′S. Due to the anti-
symmetriziation in Eq. 3, this changes ν[U ′S] by twice that

of the attached 2d phase, i.e. r →∏
i p
ni+2mi
i . Given the

completeness of the bosonic CF classification37, this 2d
CF alteration is the only way to modify the surface ν with
a finite depth unitary transformation of the surface evo-
lution, such that the integers ni are well-defined modulo
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2. Each of these integers gives a distinct Z2 valued topo-
logical invariants, {ni(Y ) mod 2}. The infinite set of Z2

invariants (one for prime number), can be conveniently
expressed via an integer:

η(Y ) =
∏
i

p
ni(Y ) mod 2
i . (6)

In this notation, η(Y ) combines multiplicatively upon
composing different TRS unitary evolutions, and should
be viewed as an element of the rationals modulo the ra-
tionals squared, η ∈ Q+/Q2

+.

Models – Having uncovered a Z∞2 (equivalently
Q+/Q2

+) valued topological invariant for 3D FTPMs, we
next show that all values of this invariant are realizable
in a local 3D system by constructing explicitly solvable
lattice models. We emphasize that these models are not
intended as a realistic proposal for the implementation
of these FTPM phases. Rather, they provide a formal
proof of existence for FTPM phases with arbitrary in-
variant η, and serve as a controlled theoretical platform
for investigating their anomalous surface dynamics.

The key physical property of the 3d FTPM phases is
already visible from the structure of η(Y ): the interface
between one region of the surface governed by HS and an-
other governed by T HST −1 will behave like a CF edge
with chiral unitary index ν = log η(Y ). This motivates a
“decorated domain wall” construction58, in which mag-
netic domain walls (DWs) are “decorated” with chiral
Floquet phases having ν = log p.

Specifically, we consider a 3d lattice of spins-1/2, ~σi
that transform under TRS as T ~σiT −1 = σxi ~σ

∗
i σ

x
i . The

model also contains p-state boson degrees of freedom on a
dual lattice with one spin at the center of each boson unit
cell, transforming trivially under TRS (see Appendix A
for details). For a fixed spin configuration, we can iden-
tify domains of σz =↑ or ↓, and define an orientation for
the 2D DW surfaces via a normal vector on each cubic
face of the “particle” cubes that points from σz =↓ to
σz =↑. Then, our strategy will be to evolve the bosons
on each DW with the unitary evolution of a 2D chiral Flo-
quet (CF) phase, with chirality chosen in a right-handed
sense with respect the DW orientation. One can attempt
to implement these DDW dynamics by a unitary time
evolution of the form:

UDDW = T̂ e−i
∫ T
0
dt

∑
a,s Πa∈DWsHCF,s,a(t)Πa∈DWs (7)

where, Πa∈DWs
is a projection operator onto spin config-

urations in which plaquette a resides on a DW with ori-
entation s = ±1, and HCF,s,a(t) is the (time-dependent)
Hamiltonian for a chiral phase of bosons residing on pla-
quette a, with chirality s = ±1. An explicit lattice-scale
implementation of HCF,s,a for an arbitrary DW geometry
is given in Appendix A. As written, the schematic form
Eq. 7 is not manifestly TRS invariant. However, in Ap-
pendix A, we show that, by breaking the CF evolution
on the spin domain into pieces first evolving plaquettes
oriented in the x- and y- directions, and subsequently

FTPM

Trivial

FIG. 1. Schematic of decorated domain wall construc-
tion Boson degrees of freedom on the domain walls (DWs
= blue surfaces) between ↑ and ↓ spins (black dots and ar-
rows) are subjected to Chiral Floquet evolution. In the bulk,
the DWs form closed surfaces so that the bosons circle around
small loops (small red arrow loops). The intersection between
a spatial boundary (gray plane) and a DW exposes a long chi-
ral Floquet edge (red circle with arrows).

those in the z-direction, we can implement an equivalent
unitary evolution in a manifestly TRS sequence of steps.

The result is a TRS phase in which the spin DWs are
“decorated” by a CF state with ν = log p. DWs inside
the 3D bulk form closed surfaces, for which the CF evolu-
tion is trivial (all bosons traverse short loops and return
to their initial position after each period). In contrast,
the intersection of a spin DW and the spatial bound-
ary however, exposes the 1D chiral edge state of the CF
phase, and produces a non-trivial value of η = p, and (as
we will describe below) topologically protected surface
dynamics.

Finally, to convert this idealized zero-correlation
length model into a stable MBL phase, generated by ap-
plying:

Hdis = −i
(∑

i

hiσ
x
i +

∑
r

p∑
α=1

µr,α|αr〉〈αr|
)

(8)

for one unit of time, where hi is a random transverse
fields for the spins, and µr,α gives a random on-site en-
ergy to the different states of the p-state boson degrees
of freedom.

We take the complete form of the Floquet evolution for
one period including both the random transverse fields
and DDW dynamics to be:

U(T ) = e−iHdis/2UDDWe
−iHdis/2. (9)

Since Hdis is generated by a TRS Hamiltonian and ap-
pears symmetrically around UDDW, U(T ) is manifestly
TRS. Moreover, since Hdis commutes with UDDW, the
evolution is equivalent to U(T ) = UdisUDDW as described
above, and moreover preserves the zero correlation length
and decorated domain wall structure of UDDW. Crucially,
the transverse fields in Udis ensure that the Floquet eigen-
states are paramagnetic, i.e. consist of quantum super-
positions over all magnetic configurations.
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Surface phases – With solvable lattice models in
hand, we next explore the anomalous surface dynamics of
FTPMs. We will see that, while the bulk dynamics of the
above model are trivial and localizable, the surface can-
not be localized while preserving TRS. For concreteness,
throughout, we will consider an open boundary where the
surface terminates on an infinite 2D plane of the σ-spins.

Thermal surface – If we simply extend the bulk evolution
all the way to the surface without modification, (which
preserves TRS) then the intersection of the spin DWs and
the surface carry chiral modes. Then, including the dis-
order term, Udis, the surface spins will exhibit a quantum
superposition of all chiral DW edges of arbitrarily long
lengths (e.g. Fig. 2a), which will necessarily thermalize
upon the inclusion of arbitrarily weak perturbations37,
and cannot be localized, resulting in a delocalized ther-
mal59 boundary.

TRS breaking surface – Instead, we may localize the sur-
face by breaking TRS, by redefining the projection terms
Π at in UDDW as if the surface layer of spins were per-
fectly polarized ↑ in the z-direction (regardless of their
actual state). In this case, the CF-coated spin DWs are
“repelled” away from the surface into the bulk and the
surface can be fully localized. The time-reversed ver-
sion of this surface termination would redefine the pro-
jectors Πa as if all surface spins were pointing ↓ in the
z-direction. From this construction, one immediately
sees that the interface between these two conjugate TRS-
breaking boundary configurations has a single chiral Flo-
quet mode corresponding to the edge of a ν = log p CF
phase, showing that the 3D bulk has η = p.

Anomalous surface topological order – So long as the
surface DWs carry CF edge modes with chiral invariant
νDW dictated by the bulk topological properties, then
the surface cannot be localized without breaking symme-
try. We can attempt to neutralize these chiral channels
by “painting on” 2D CF phases to the TR-breaking sur-
face domains (Fig. 2b). However, in order to preserve
TRS, we would have to “paint” the ↑ and ↓ surface do-
mains with TR-conjugate 2D CF phases having chiral
invariant: ν↑ and ν↓ = −ν↑ respectively. Then, all told,
the modified surface TR DW would have chiral invariant
νDW′ = νDW + 2ν↑.

If we could choose the the additional 2D phase to have
ν↑ = − 1

2νbulk, then νDW′ = 0, and we could trivially lo-
calize the DW with only a local, TRS modification of the
Floquet evolution near the surface. The resulting sur-
face would be both localized and symmetry preserving.
However, the resulting surface cannot be topologically
trivial. Rather, neutralizing the DW chiral modes in this
way would require adding a 2D radical CF phase with
ν↑ = − log

√
p40,46. In bosonic systems, such a radical CF

invariant is only possible if the drive induces a non-trivial
Floquet enriched 2D topological order (FET)40, exhibit-
ing anyonic excitations that get dynamically exchanged
by the Floquet drive. This FET order will persist af-
ter the surface DWs have been neutralized and TRS has
been restored.

a) b)
⌫" = log

1p
p

⌫# = log
p

p

⌫DW = log p

FIG. 2. Time-reversal symmetric surface phases – a)
symmetry preserving and thermal due to proliferated chiral
edges, b) surface Floquet enriched topological order that is
localized with anyonic time-crystal order, due to attaching 2d
radical chiral Floquet phases to magnetic domains to cancel
their chiral motion.

For example, in40 a solvable spin model was con-
structed that exhibited a radical CF phase with ν =
± log

√
p, which exhibited bulk Zp topological order in

which the gauge charge and flux excitations were peri-
odically interchanged by the Floquet drive, and whose
edges chirally pump non-Abelian parafermionic twist de-
fects with fractional quantum dimension d =

√
p. For

the simplest case of p = 2, the e ↔ m interchanging Z2

FET order was shown to always break TRS as indicated
by its chiral edge40. However, the above construction
shows that this FET order can occur in a TRS fash-
ion, at the surface of a 3D Floquet TI. This situation is
analogous to that of the ordinary equilibrium electronic
3D TI, whose surface can exhibit non-Abelian topologi-
cally ordered states similar to the Moore-Read fractional
quantum Hall state, which have chiral edge-modes and
break TRS when realized in 2D but which can occur with-
out TRS breaking at a 3D TI surface26,60–62. We note
that our construction of a non-trivial 3d surface with Zp
FET order exchanging e ↔ m during each period, also
shows that this FET order has a dynamical time-reversal
anomaly that prevents it from being realized in pure 2d
settings.

One complication here is that in a generic MBL state
with a finite density of e and m excitations, this type
of FET order necessarily results in spontaneous break-
ing of time-translation symmetry40,63 corresponding to a
2T-periodic oscillations between charge and flux anyons.
This “anyonic time-crystal” will arise in the FET phase
for for any non-zero density of anyon excitations.

Time-translation symmetry protection – Finally, we note
that the topological surface states of FTPMs also rely on
the discrete time-translation symmetry associated with
the T -periodicity of the Floquet drive. For example, their
surface states can be trivially localized by 2T -periodic
surface drive, described in Eq. 3. We note that there is a
formal distinction between spontaneous64, versus explicit
breaking of time-translation symmetry (TTS). Since the
invariant η is defined in terms of the Floquet evolution
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Symmetry &
Dimensionality

SPT X-SPT F-SPT

None, 2d Z Z1 (none) Q+ ' Z∞

ZT2 , 3d Z2×Z2 Z2 Z2 ×Q+
2 ' Z2 × Z∞

2

TABLE I. Dimensional hierarchy of bosonic SPTs.
Group structure of various types of SPT classifications includ-
ing equilibrium gapped ground-states (SPT), excited state
MBL systems (X-SPT), and periodically driven Floquet sys-
tems (F-SPT). The equilibrium SPT include chiral phases
with thermal Hall conductance and their 3d descendant, the
beyond cohomology SPT (red). These cannot be MBL and
are absent from the X-SPTs. Instead, for Floquet systems,
the chiral phases are replaced by rational CF phases and their
3d FTPM descendents SPTs in the second column are the
equilibrium gapped ground states, where a time reversal sym-
metric SPT in 3d, the beyond cohomology state (blue). Here
Q+ denotes the group of (positive) rationals with multiplica-

tion, and Q+
2 = Q+/

(
Q+

)2 ' Z∞
2 is the group of rationals

modulo perfect squares.

operator U(T ) itself (rather than its eigenstates), it re-
mains well defined even if the eigenstates of this Floquet
operator spontaneously develop motion with an enlarged
period32,64–66. However, η becomes ill-defined if one in-
troduces perturbations to U(t) that are explicitly 2T pe-
riodic.

Discussion – The infinite family of Floquet topolog-
ical paramagnets (FTPMs) identified here open an av-
enue for interacting Floquet topological phases beyond
the cohomology framework, with dynamics that cannot
be mimicked by any static Hamiltonian system. Exten-
sions of these ideas to fermionic systems and fractional-
ized phases with topological order is an important task
for future work. In Appendix B, we comment on our
current (partial) understanding and open issues for such
generalizations.

We close by asking how the 3d FTPMs fit in within
the general set of 3d Floquet SPTs of bosons protected
by time reversal symmetry and MBL (see Table I). A
large class of Floquet SPTs can be understood by apply-
ing equilibrium classification techniques (e.g. group co-
homology and its generalizations) with an enlarged sym-
metry group that includes an emergent dynamical dis-
crete time-translation symmetry, Z, in addition to other
microscopic symmetries, e.g. for TRS Floquet drives the
enlarged group would be ZoZT2 34,35. Taking a step back
we recall that for the equilibrium case of ground states
of gapped bosonic phases, there are two root SPT phases
in 3d, conveniently labeled by their surface topological
order, the eTmT and eFmF states3,4. While the for-
mer is captured within group cohomology, the latter is
not. However, the eFmF state cannot be MBL, and
does not enter the Floquet classification. As we argue in
Appendix C, this follows from the fact that the eFmF
state is a condensate of T -breaking domain walls deco-

rated by 2d chiral E8 states, which exhibit non-zero grav-
itational anomaly that prevents their localization42,67.
Hence, viewing 3d TRS Floquet systems as equilibrium
systems with an enlarged Z o ZT2 symmetry group, it
would appear that only a single Z2 invariant (deriving
from the equilibrium eTmT state) survives. However,
this misses the crucial feature that in 2d there are an in-
finite set of dynamical chiral phases with no equilibrium
counterpart, the rational CFs (see Table I). These can
substitute for the E8 state in decorating the T -breaking
domain walls – leading to the infinite family of 3d FTPMs
discussed in this paper.
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Appendix A: Details of lattice model construction

In this Appendix, we provided details of the construc-
tion of the lattice models realizing the decorated domain
wall Floquet evolution described in the main text. We
first construct a convenient lattice implementation of a
2d CF phase, which forms the basis for the domain wall
decoration in the 3d lattice models of FTPMs.

1. 2d Chiral Floquet Model

To build chiral Floquet (CF) evolution HCF,s,a(t) uti-
lized in the main text, we need to choose a particular im-
plementation of the 2d chiral Floquet unitary evolution
of the p-state bosons. Previously constructed CF models
based on applying a time-dependent sequence of boson
SWAP operations31,37 have inconvenient properties for
arranging onto arbitrary 2d planar domains, and we will
find it convenient to design an alternative (though topo-
logically equivalent) implementation, whose edge acts as
a uniform chiral edge-translation by one site, and which
can be easily applied to a 2d domain of arbitrary geom-
etry.

A key building block in this construction is an oper-
ator: Ca,s that cyclically permutes the p-state bosons
around a square plaquette, a, in either a right (s = +1)
or left (s = −1) handed sense. For example, for a four
site plaquette, a, with sites labeled D

A�
C
B :

Ca,+ =

p∑
jA...D=1

|jD, jA, jB , jC〉〈jA, jB , jC , jD| ≡ e−iHaT

(A1)
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1 2

34 5

5

5

1 2

34

1 . . . 4 5 total

a)

b) c)

d)

FIG. 3. 2d chiral floquet model a) Schematic of the 5-step
2d lattice model with CF evolution for a 9-site boson pla-
quette. Steps 1 . . . 4 consist of applying chiral permutations
(colored circling arrows) around the 4-site boson to the pla-
quettes of type 1 (blue), 2 (red), 3 (green), and 4 (purple) in
sequence. Steps 1 . . . 4, are equivalent to a uniform chiral edge
translation up to a finite depth local unitary transformation
(panel b). This difference is undone in step 5 by appropri-
ately chosen boson SWAP operations (gray ovals), such that
the total evolution results in uniform edge translation by one
site (panel c). Panel e) illustrates the 5-step evolution for a
larger 7× 7-site square.

The cyclic permutations, Ca,s can always be generated
by a local Hamiltonian, Ha, i.e. Ca,s = e−isHaT , acting
only on the spins in plaquette a.

To implement the CF evolution on the spin DWs, we
can then label all of the plaquettes of the boson lattice by
a number between 1 and 4 (see Fig. 3), and sequentially
apply Ca,s on plaquettes of type 1, 2, 3, and then 4. The
result of this four-step sequence is shown in Fig. 3b, for
a 3 × 3 square. There is no motion for the site at the
center of the square. The states of the edge sites are
moved either 0, 1, or 2 sites along the edge in a chiral
fashion (dashed arrows in Fig. 3b), such that one boson
state is transferred across each point along the edge. This
evolution differs from an ideal chiral edge translation only
by a finite-depth local unitary evolution. We can remove
this superficial difference by applying a 5th stage of the
evolution, in which the boson states are swapped between
neighboring sites shown with a dark gray oval in Fig. 3a.

The resulting 5-step evolution implements an idealized
chiral edge translation unitary, in which the bosons at the
boundary are shifted by precisely one site in the right-
handed direction. This idealized CF evolution can be
implemented on arbitrary 2d domains made from arbi-
trary edge sharing configurations of this minimal 3 × 3

1 . . . 4 5 1 . . . 4 5

1 . . . 4 5 1 . . . 4 5

a) b)

c) d)

1 . . . 4 5

e)

FIG. 4. 2d chiral Floquet model on non-square do-
mains The difference in the edge motion (dashed arrows)
from stages 1 . . . 4 and the ideal uniform chiral edge transla-
tion can be removed by a local unitary transformation (step
5), that depends on the local geometry of the 2d domain, and
involves either 2-state bosonic SWAP operations (gray ovals)
or 3-state chiral SWAP operations (cyclic solid arrows). (a)-
(e) show illustrative examples for various domain shapes made
from edge-sharing tilings of the minimal “unit cell” shown in
Fig. 3a), that consists of 4 square boson plaquettes.

unit. The precise implementation of step 5 depends on
the local geometry of the 2d domain (illustrative exam-
ples are given in Fig. 4).

2. 3d Decorated Domain Wall Model

With the 2d CF implementation in hand, we can begin
to assemble the 3d decorated domain wall model of a
FTPM. The lattice model is formed from two types of
degrees of freedom:

1. Spins-1/2, ~σi that transform under TRS as
T ~σiT −1 = σxi ~σ

∗
i σ

x
i , and

2. p-state bosons, with an onsite Hilbert space
spanned by a basis: {|1〉, |2〉 . . . |p〉} that transforms
trivially under TRS.

We arrange the spin-1/2, σ degrees of freedom on a
layered triangular lattice with each layer being a verti-
cally shifted copy of the one below it (Fig. 5). We take
each σ-spin to be surrounded by a cube with a 5× 5 grid
of p-state boson sites on each face. In each layer, the
boson cubes form a brick lattice around the spins, which
has the advantage that the spin domain walls projected
onto the boson cube faces will always contain an inte-
ger number of the elementary 4-square-plaquettes used
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a)

a

a

a

ax

y

z

b)

FIG. 5. Schematic of 3d decorated domain wall model
– (a) The σ-spins (black arrows) form a layered triangular lat-
tice (layers depicted as gray sheets). Each spin is surrounded
by a cube of boson sites (inset), with each face of the cube
containing a grid of p-state boson sites (open circles). (b) Top
view of one of the layers, with the boson cubes (black squares,
see inset of panel a for detailed structure of each cube) form-
ing a brick lattice surrounding the triangular lattice of spins.

in the 2d CF implementation (Fig. 3). This arrangement
also avoids issues with point-like intersections between
domain walls.

Our strategy will be to apply the 2d CF evolutions
described in the previous section, to the boson plaquettes
sitting on spin DWs. We define an orientation of the
DWs point from down to up spins, and will evolve with
the CF phase of right-handed chirality (with respect to
the DW orientation). We further label the minimal 4-
square boson plaquettes based on the direction of their
normal vector: ±x, ±y, or ±z (with ± sign given by the
DW orientation).

Complications arise in “folding” the 2d CF evolution
onto a closed 3d surface. Namely, it is impossible to
evolve all of the x, y, and z plaquettes simultaneously
according to the 5-step CF evolution, without acting
with Ca,+ on multiple overlapping plaquettes at the same
time. Since Ca/b commute only for disjoint plaquettes a
and b, this would spoil the desired zero-correlation length
property of the model (i.e. render it not exactly solv-
able). To avoid this problem, we divide the CF evolution
into two stages, evolving the x and y plaquettes in the
first stage, and then the z plaquettes in the second stage
(Fig. 6). This division enables us to apply a Ca’s to a
disjoint set of boson plaquettes at every step.

In order to make the overall Floquet evolution TRS, we

x

y

z
xy1

xy3

z2

z1
a) b)

FIG. 6. Two stage DDW evolution – The solid shape
represents a spin domain wall (DW) with spin down inside
and spin up outside.The decorated domain wall (DDW) evo-
lution proceeds in two stages: First (a), the xy-oriented boson
plaquettes residing on spin domain walls (gray shaded plaque-
ttes in panel a) undergo a CF evolution. To ensure TRS, this
CF evolution is implemented in three steps as described in
the main text. The effect of the steps xy1 and xy3 are in-
dicated by blue and red arrows respectively. Second (b), the
z oriented boson plaquettes on the spin domain walls (gray
shaded plaquettes in panel b) undergo a CF evolution, again
in two steps z1 and z2 (whose effects are indicated by red and
blue arrows in panel b).

will need to further sub-divide the first stage into three
steps:

xy1: Evolve the +x̂ and +ŷ facing plaquettes with the
CF evolution. Denote this unitary evolution as
Uxy1.

xy2: Apply an appropriate set of SWAP operations to
such that step xy1, and the next step, xy3, result in
ideal chiral translations at the boundaries between
xy and z surfaces (see Fig. 7)

xy3: Evolve with Uxy3 =
(
T −1Uxy1T

)−1

Step xy3 is effectively the same as applying the CF
evolution to the −x̂ and −ŷ oriented plaquettes. To see
this, note that the time-reversal operators flip the spin-
projectors in Uxy1 so that T −1Uxy1T implements a left-
handed CF evolution as if the spin domain orientation
were reversed. Hence, this will act on the negative xy-
oriented plaquettes that were left out of step xy1. Lastly,

the overall inversion in Uxy3 =
(
T −1Uxy1T

)−1
switches

the CF evolution back to the original right-handed one
(though still acting on the −x and −y oriented plaque-
ttes). Together with an appropriate choice of the SWAP
operations in step xy2 (see Fig. 7), xy3 undoes the chi-
ral motion at the boundary of the +x̂ and +ŷ plaque-
ttes, leaving only a chiral motion around the z-plaquettes
(which subsequently be undone in the second, z, stage of
the evolution).

The virtue of dividing the xy-evolution into these steps
is that it ensures that the overall evolution for the xy-
stage:

Uxy = Uxy3Uxy2Uxy1 (A2)
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xy1
xy3

xy2

x

y

z

x

y

a) b)

c) d)

FIG. 7. Evolution near corners of xy-plaquettes – Top
view (a,b) and perspective view (c,d) of two corners of the
intersection between ±x̂ and ∓ŷ plaquettes, whose CF evo-
lution needs to be patched together by an extra SWAP oper-
ation (gray oval). Domain walls are oriented (black arrows)
from spin down to up (balls and arrows). In the first step,
xy1, the +x̂ and +ŷ oriented plaquettes (blue) are evolved
with the CF evolution with right-handed chirality indicated
by the circular arrow, then the two site SWAP operations are
applied in step: xy2, and finally the time-reverse of the first
step is applied to the remaining −x̂ and −ŷ oriented plaque-
ttes (red). Motion (dashed arrows) is indicated for the CF
steps only for the boson sites (open circles) near the problem-
atic corners.

is manifestly time-reversal symmetric. Specifically, since

T Uxy1T −1 = T
(
T −1Uxy1T

)−1 T −1 = U−1
xy1, and since

the SWAP operations used in Uxy2 are manifestly TRS

(T Uxy2T −1 = U†xy2), we verify: T UxyT −1 = U†xy.
To complete the construction, we need to remove the

remaining chiral motion at the edge between the xy-
facing and z-facing DW plaquettes. This is done by ap-
plying right-handed CF evolutions to the z-plaquettes.
Again, to ensure TRS, it is convenient to divide this z-
stage into two steps:

z1: Evolve the +ẑ facing plaquettes.

z2: Evolve with Uz2 =
(
T −1Uz1T

)−1
, which does the

CF evolution of the same orientation to the −ẑ fac-
ing plaquettes in a way that is manifestly the time-
reverse of step z1.

Finally, in order to combine the xy and z stages together
in a way that is overall TRS, we should “sandwich” the
z-steps around the the xy steps as:

U(T ) = Uz1UxyUz2 (A3)

This unitary evolution implements the decorated do-
main wall picture of the FTPM phase described in the
main text, while preserving the overall TRS. We note, in
passing, that U(T ) is unitarily equivalent to applying all
the steps in sequence as shown in Fig. 6: Uz2Uz1Uxy =

FIG. 8. Surface chiral domains – The intersection (blue
area) of a DW between ↓ and ↑ σ-spins and a spatial boundary
exhibits chiral translation of the p-state bosons. Spins are
represented by black arrows, and are recessed into the page by
a half-lattice spacing. The boson sites (open circles) exhibit
chiral translation (red arrows) around the spin domains.

Uz2U(T )U†z2. Changing between these two orderings sim-
ply amounts to a shift in our definition of the period, and
a corresponding shift to the “center of inversion” for the
time-reversal operation. We can readily verify that the
construction of U(T ) results in a TRS evolution:

T U(T )T −1 = T Uz1T −1U†xyT Uz2T −1 = U†z2U
†
xyU

†
z1

= U(T )† (A4)

Crucially, each of these steps can be implemented by a
local Hamiltonian involving projectors onto spin configu-
rations multiplied by the local boson terms corresponding
to the terms in the appropriate 2d CF implementation de-
scribed in the previous section. The evolution is easiest
to picture when projected onto a 2d plane. Fig. 8 shows
the result of the z plaquette evolution for a fixed arrange-
ment of spins. One can readily verify that, overall, every
bulk site on the DW returns to itself after one period of
this evolution (even at the corners and edges of various
3d domain shapes, Fig. 7), so that the Floquet evolution
is equivalent to the identity in the bulk. However, the
intersection of a DW with a spatial boundary exposes a
chiral edge (Fig. 8), as required for the FTPM phase.

Appendix B: Possible fermionic analogs

In this section we investigate the possible connections
of the ideas in the main text to fermionic SPT phases
protected by TRS, whose surface states are character-
ized by time-reversal breaking domain walls that exhibit
the chiral edge dynamics of a 2d fermionic CF phase46.
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Our current understanding of such fermionic generaliza-
tions is incomplete at present, and this appendix aims to
assemble our current partial knowledge, lay out possible
scenarios, and highlight open issues.

1. Decorated domain walls with spinless fermions

A seemingly simple extension of the models described
in the main text is to replace the p-state boson sites
with complex (spinless) fermions described by creation
operators f†r on site r. Since the on-site Hilbert space
of a fermion has the same number of states as a p =
2 boson, this procedure would naively also produce a
phase with η = 2. In the presence of microscopic
fermions, though, this η = 2 fermion phase seemingly re-
quires charge conservation symmetry in addition to time-
reversal symmetry for stability, since in superconducting
systems, a purely 2d Majorana CF phase with ν =

√
2 is

possible37,40,46.
This construction appears to yield a Floquet topolog-

ical insulator (FTI) protected by U(1) charge conserva-
tion and spinless time-reversal symmetry, T , with T 2 = 1
(class AI). We will refer to this phase as a “spinless
fermion FTI”.

In the absence of interactions, FTIs are described by
a non-interacting Floquet band structure, whose pos-
sible topological features have exhaustively classified38.
For this class, there are no non-trivial Floquet-band TI
phases, i.e. the spinless fermion FTI does not exist with-
out interactions. Hence, we are left with three possibili-
ties:

1. The spinless fermion FTI is topologically equivalent
to a purely bosonic η = 2 phase,

2. the spinless fermion FTI is inequivalent to any
bosonic phase, and instead constitutes an intrin-
sically interacting fermion Floquet SPT phase, or

3. there is a subtle (i.e. currently unknown) way in
which the spinless fermion FTI surface states are
not topologically protected.

While we do not currently have a definitive understand-
ing of which option is correct, let us weigh some circum-
stantial evidence regarding each of these possible scenar-
ios.

Two observations speak in favor of scenario 1 (spinless
fermion FTI = bosonic FTPM). First, we can employ a
gedanken experiment that is frequently useful in equilib-
rium SPTs of inserting a π-flux (vison) into the surface
state. In equilibrium, a non-trivial fermionic SPT will
react non-trivially to such a π-flux (e.g. the flux will
acquire a symmetry protected degeneracy or fractional
symmetry charge) – otherwise one could proliferate such
π-flux excitations and gap out the fermions at the surface,
showing that the topological properties arise from purely
bosonic degrees of freedom. The spinless fermion FTI

phase, on the other hand, does not have a topological re-
sponse to a π-flux, suggesting a topological equivalence to
a purely bosonic system. A second piece of circumstantial
evidence for scenario 1, is that in the absence of U(1)-
number conservation symmetry, the ν = log 2 CF phase
of bosons and fermions are topologically equivalent37,46.

However, there are two possible reasons to doubt these
arguments (supporting scenario 2, spinless fermion FTI
6= bosonic FTPM). First, the application of the π-flux
proliferation to “gap” out the fermion degrees of free-
dom is subtle in the context of highly excited states of a
Floquet MBL system where energy is not conserved, and
the topological properties come from highly excited dy-
namics, potentially involving excitations with arbitrary
quasi-energy. Second, the demonstration of equivalence
between boson and fermion CF phases with ν = log 2 in
Ref.37, hinged on the absence of U(1) charge conserva-
tion, to show that the boson and fermion on-site Hilbert
spaces can be made equivalent by tacking on auxiliary
degrees of freedom with trivial dynamics. One can read-
ily convince themselves that this trick cannot be done
in a charge conserving way, so long as one has a finite
on-site Hilbert space. Namely, in a fermion system, all
bosonic degrees of freedom have even charge, whereas all
fermionic degrees of freedom have odd charge. Hence,
the maximal charge state in a fermionic site can never be
equivalent to that of a bosonic site. This raises the more
subtle possibility, that the fermion and boson phases may
only be equivalent in a system with an infinite on-site
Hilbert space (e.g. a quantum rotor model), though such
an unbounded on-site Hilbert space may be problematic
for MBL.

Lastly, while we presently see no concrete issue with
the fermionic decorated domain wall (DDW) model,
there is potential cause to worry that there is some hid-
den obstruction that we have yet to identify (scenario 3).
For example, in equilibrium, one could try to create a
DDW model of an ordinary electronic TI, by decorating
TRS-breaking magnetic domains with integer quantum

Hall states of spinless fermions with σxy = e2

h . This
would seemingly result in a model in which surface mag-
netic domains have a single chiral mode equivalent to
the quantum Hall edge – the hallmark of an electronic
TI with electromagnetic theta angle θe = π. However,
in that context, it is known that the surface state is
not protected, and that only spinful (Kramers doublet,
T 2 = −1) electrons can form a stable TI phase5. By anal-
ogy, it is conceivable that the “spinless FTI” is not a sta-
ble topological phase, but rather, its surface state is not
SPT protected. Instead, a non trivial SPT order requires
spin-1/2 fermions to form. Such a spinful fermion FTI
(class AII) does exist in the absence of interactions, and is
characterized by a non-trivial Floquet band invariant38.
This spinful fermion FTI cannot be many-body local-
ized without breaking time-reversal symmetry due to lo-
cal Kramers degeneracies54, however, it may occur as a
long-lived pre-thermal phenomena.

At the present, we are unable to definitively decide
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among these three scenarios, and raise this task as a chal-
lenge for future work.

2. Floquet topological band insulator of electrons

In this section, we briefly outline the topological prop-
erties of a (non-interacting or prethermal) Floquet topo-
logical insulator (TI) of spin-1/2 electrons protected by
charge conservation and spinful time-reversal symmetry
(class AII). We will call this phase the “Floquet band
TI”. This phase is classified by a non-trivial Floquet
band invariant38. In general, Floquet band structures
are classified by two copies of the equilibrium band in-
variants. The first copy can be intuitively viewed as an
equilibrium phase that is realized in a Floquet context,
and has the usual equilibrium topological surface states
at quasi 0. Similarly, the extra Floquet phases can be
viewed as a second set of equilibrium invariants for topo-
logical surface states that wrap around the quasi-periodic
energy direction. In this appendix, we reinterpret these
results in a manner that allows us to characterize them
non-perturbatively without reference to band-invariants.

In particular, the floquet band TI uncovered in the
K-theory classification of38 all have the following struc-
ture: while the time evolution operator for a single pe-
riod cannot be reproduced by evolution with a local,
symmetric, and time-independent Hamiltonian, the time-
evolution for two periods can be reproduced by a local,
time-independent, and symmetry preserving Hamilto-
nian, Heff = i

2T logU(2T ). Then, as shown in Ref.68 (see

also66), this structure implies the existence of an emer-
gent dynamical Z2 symmetry generator g = U(T )eiHeffT .
Loosely speaking, the relative “charge” of two states un-
der this symmetry generator represents the difference in
their quasi-energy.

In particular, for the Floquet band TI, Heff contains
two surface Dirac cones with opposite charge under the
emergent Z2 symmetry generated by g. Ordinarily, under
time-reversal symmetry alone, such a pair of Dirac cones
could be made massive by a symmetric surface pertur-
bation. However, this perturbation is forbidden by the
Z2 symmetry, which prevents any non-interacting term
coupling the two Dirac cones with opposite g-quantum
numbers.

As a concrete example, consider four-component
fermions ψσ,τ with σ, τ ∈ {1, 2}, and define Pauli matri-
ces ~σ and ~τ which act on the corresponding flavor indices.
Then consider the Hamiltonian:

Heff,surface = −iv
∫
d2rψ(r)†∇ · ~σψ(r) (B1)

with time-reversal acting on the fermion operators like
T ψ = iσyKψ with K denoting complex conjugation, and
the dynamical Z2 symmetry acting like: gψ = τzψ, so
that the τ = 1, 2 fermions have opposite Z2 charge. The
only mass term compatible with time-reversal symmetry

is
∫
ψ†σzτyψ, however, this is odd under the Z2 symme-

try, and hence the combination of Z2 × ZT2 protect the
surface Dirac cones.

This structure can arise from a two step stroboscopic
Hamiltonian in which the surface evolution is:

U(T ) = e−i
π
2

∫
d2rψ†(1−τ3)ψe−ivT

∫
d2r

∫
d2rψ(r)†(−i∇)·~σψ(r)

(B2)

from which, one finds: g = e−i
π
2

∫
d2rψ†(1−τ3)ψ. While

written in terms of continuum surface degrees of free-
dom, this surface evolution can be readily generated from
a bulk lattice model. Namely, consider stroboscopic evo-
lution, Ubulk(T ) = e−iH2T/2e−H1T/2 with:

H1 =
π

2T

∑
σ,η,τ,i,j

Ψσ,η,τ (k)† (HTI-FB)σ,η,i;σ′η′,j Ψσ′,η′,τ (k)

H2 =
π

T

∑
i,σ,η,τ

Ψ†(1− τ3)Ψ. (B3)

Here Ψ are 8-component fermions, i, j label lattice sites,
and HTI-FB = Πc − Πv is a 4-band flattened topologi-
cal insulator Hamiltonian with flat-bands at dimension-
less energies ±1. Here Πc/v are projection operators
into conduction or valence bands, each with a non-trivial
Z2 index, which are exponentially well localized in real
space. The result is that Ubulk(T ) contains two copies
of TI flat bands at quasi-energies ε = ±π/2 (in units
1/T ). In the presence of a a spatial boundary, this evo-
lution produces surface Dirac cones described by the ef-
fective surface U(T ) in Eq. B2 above, with ψ being a
4-component fermion obtained from restricting Ψ to the
sector of bound surface states of H1.

While we have constructed this model for a particu-
larly simple set of parameters, the existence of an emer-
gent dynamical Z2 symmetry is preserved by any per-
turbation to the drive which modifies U(2T ) only by a
local unitary transformation (although the explicit form
of the symmetry generator g will be modified by the same
transformation, see Ref.68 for an explicit calculation for
a related system).

As written the above model has an extra U(1) symme-

try generated by Uα = e−iα
∫
d2rψ†τ3ψ for any α ∈ [0, 2π],

for which the discrete time-translation symmetry is a dis-
crete Z2 subgroup: g = Uπ. Denote this auxiliary sym-
metry by U(1)′ to distinguish it from the U(1) associ-
ated with the conserved particle number. Let us analyze
the theory with this enlarged (U(1)× U(1)′) o ZT2 sym-
metry. We can then ask which properties survive upon
breaking the U(1)′ symmetry down a Z2 subgroup. To
this end, consider an interface between the Floquet band
TI and trivial vacuum, and imagine dragging a magnetic
monopole from the vacuum into the TI. Such a gedanken
experiment often yields nonperturbative insights into the
topological structure of SPTs5. For the equilibrium elec-
tronic TI with a single surface Dirac cone, a monopole
outside the topological insulator becomes a 1/2-charge
dyon inside the TI. For the Floquet TI, each surface
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Dirac cone will contribute a ± 1
2 charge, but only one

of these is charged under the U(1)′ symmetry, so the
bulk monopole will have effective ± 1

2 charge under U(1)′

transformations. In particular, the Z2 subgroup of this
U(1)′, will have g = Uπ = ±i, i.e. g2 = −1, for any
state of the bulk monopole. This property will remain
unchanged if we break the extraneous U(1)′ symmetry
down to its Z2 subgroup, which will be present due to
the discrete time-translation of the Floquet drive.

To make the above notion of the local action of g on
a monopole precise, we can formally consider promot-
ing the U(1)-charge-conservation and dynamical Z2 sym-
metries of Heff = i

2T logU(2T ) to classical background
U(1) and Z2 gauge fields respectively. We can then in-
troduce a a Z2 gauge flux line (incidentally, this line de-
fect will contain gapless helical modes protected by time-
reversal symmetry, but these can be ignored in the fol-
lowing). Then, we can create a monopole/anti-monopole
pair, adiabatically drag the monopole around the the Z2-
flux line and re-annihilate with its anti-monopole part-
ner. The phase accumulated in this process will be ±i,
which can be interpreted as the g-quantum number of
the monopole.

To summarize, these considerations show that a mag-
netic monopole inside the Floquet band TI has a 1

2 -charge
under the emergent time-translation symmetry. We re-
mark that this monopole gedanken experiment distin-
guishes the spinful Floquet band TI, from the putative
spinless fermion FTI obtained by decorating magnetic
domain walls with fermion CF phases, which was ex-
plained in the previous section: the latter does not re-
spond non-trivially to magnetic fluxes and hence can-
not be topologically equivalent to the Floquet band TI.
Namely, in the spinless fermion FTI, bulk fermions either
stay still (if they are not on a magnetic domain wall)
or traverse a small loop (if they are on a domain wall).
These phases can be equivalently produced by adding an
extra local interaction between the spins and fermions in
the Floquet evolution, and hence cannot have any global
topological effects – in particular cannot produce frac-
tional charge of the dynamical Z2 symmetry for fluxes
corresponding to a magnetic monopole.

3. Fractionalized generalizations

In the main text and previous sections, we have focused
on short-range entangled bulk phases without anyon ex-
citations, we may also consider consider “fractional”
analogs of these FTPM phases which can be accessed via
a related decorated domain wall construction in which
TRS breaking domains are decorated with radical CF
phases, which would result in intrinsic 3D bulk topolog-
ical order. The surface of a putative fractional FTPM
would then have an effective fractional value of the 3D
TRS topological invariant η ∈∏i

(√
pi
)ni mod 2

, and sur-
face states with effective chiral index that is a quartic
root of a rational number, r, νsurface = ± log 4

√
r. While

such phases should be stable as metastable pre-thermal
“ground-states”, there is a potential complication for re-
alizing an MBL state in disordered versions of these sys-
tems. Namely, the bulk 3D topological order would ex-
hibit string-like gauge-flux excitations, which, in the ide-
alized zero-correlation length limit, would result in an
exact degeneracy growing exponentially with the num-
ber of intersections between the string excitations and
fluctuating spin-DWs. Upon moving away from the fine-
tuned integrable limit, in the related case of 2D radi-
cal CF phases, these degeneracies were lifted either by
a spontaneous breaking of time-translation symmetry, or
a breakdown of MBL. Whether simply breaking time-
translation symmetry in the above construction is suffi-
cient to produce a stable MBL phase remains an open
question for future study.

Appendix C: General classification of bosonic
Floquet topological paramagnets

Recall that the static equilibrium classification of 3d
bosonic phases with time reversal symmetry is Z2 × Z2,
with one Z2 generated by the in-cohomology (eTmT )
SPT state23 and the other by the beyond-cohomology
(eFmF ) SPT state3. In this appendix we will argue that
the in-cohomology state can be realized by a many-body
localizable (MBL) Hamiltonian, whereas the beyond-
cohomology one cannot. A general proof that all in-
cohomology states are MBL was given in42. Here, we
present a related, complementary argument that also al-
lows us to argue that the beyond-cohomology state can-
not be localized. Thus, the proposed full classification
of bosonic Floquet topological paramagnets will include
the in-cohomology SPT state, together with the infinite
family of models constructed in this paper: i.e. the new
infinite family replaces the beyond-cohomology state in
the Floquet classification

They key property of any in-cohomology SPTs in spa-
tial dimension d ≥ 1 is the fact that its ground state can
be disentangled into a symmetric product state by a fi-
nite depth unitary V that commutes with all symmetry
generators:

|Ψg.s.〉 = V |Ψprod〉. (C1)

Here |Ψg.s.〉 is the SPT ground state, V is a finite depth
circuit of local unitary operators, and

|Ψprod〉 = ⊗j |ψj〉 (C2)

is a tensor product state over the sites j of the system
of symmetric states |ψj〉. Indeed, the disentangling cir-
cuit V can be constructed directly for the zero correla-
tion length models introduced in23, and its existence is a
universal property of the SPT phase. This ground-state
construction was generalized to all excited states of an
MBL system in42. Note that only the entire circuit V
is symmetric – the individual unit-depth unitary steps
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making up V will not, by themselves, be symmetric for
a non-trivial SPT phase.

If the symmetry group G is onsite and Abelian, then
each site Hilbert space decomposes as a sum of orthog-
onal one dimensional representations α. Letting Pαj de-
note the projector onto the α representation at site j, we
see that the ground state |Ψg.s.〉 is the unique state an-
nihilated by {V P 0

j V
†}, where 0 denotes the symmetric

representation generated by |ψj〉. Thus the Hamiltonian

HMBL =
∑
j,α

Jj,αV P
α
j V
† (C3)

with suitably chosen (random or quasi-periodic) cou-
plings Jj,α is a Hamiltonian with a full set of local con-
served quantities believed to be in or close to an MBL
phase, realizing |Ψg.s.〉 as an eigenstate.

Conversely, if an SPT ground state can be realized as
the eigenstate of a symmetric Hamiltonian with a full
set of symmetric local conserved quantities, then we con-
jecture that such a symmetric disentangling circuit V
must exist. Indeed, in this case one can define V via
the unitary transformation mapping projectors onto on-
site degrees of freedom to projectors onto the conserved
quantities (“l-bits”) of the MBL system, which is a local-
ity preserving, and quasi-local transformation. Indeed,44

showed that in one dimension such locality-preserving
unitary operators are always finite depth quantum cir-
cuits up to a generalized translation. Assuming some
version of this result holds in higher dimensions, and the
generalized translation can be argued to act trivially (i.e.
take product states to product states), this would imply
the existence of a symmetric finite depth circuit disen-
tangling the ground state.

Although we cannot prove this at this time, we conjec-
ture that this is true in the case of 3 spatial dimensions
and time reversal symmetry. In fact, we can almost take
the existence of such a V as the definition of symmetry
preserving MBL. Certainly any counterexamples would
have a very different structure than known MBL phases,
and would likely require modifying several common defi-
nitions of MBL. In particular, the in-cohomology, eTmT
state has a TRS disentangling circuit V and can be many-
body localized in this fashion. On the other hand, we
claim that for the beyond cohomology state, no such cir-
cuit V exists, which by the argument above strongly sug-
gests that it cannot be MBL.

We will now argue by contradiction, that no such cir-
cuit exists for the beyond cohomology, eFmF , state.
Suppose that a symmetric circuit, V did exist, which
could disentangle the bulk of the eFmF state in the ab-
sence of boundaries. Then, consider a system with a

boundary (e.g. a solid rectangular block with a surface),
and as the surface state, take the time reversal symmetric
eFmF state3,69. This is a gapped surface topological or-
der with an anomalous realization of time reversal sym-
metry: namely, any truly 2d realization of the eFmF
state necessarily has a chiral central charge equal to 4
modulo 8.

In this open geometry, we can define a truncation of
the hypothetical V to the bulk, which disentangles the
bulk but not the boundary (generically it is not possi-
ble to disentangle the boundary of a nontrivial SPT with
a finite depth unitary). The putative V would be TRS
in the bulk. Namely, writing the time-reversal operator
as T = UTK with UT being a product of on-site unitary
operators and K being complex conjugation (in some ba-

sis), V and U†T V
∗UT have the same action on operators

localized in the bulk of the system. Note that time rever-
sal property of the disentangling circuit V is not the same
as that of the time evolution operator, which requires an
extra inverse. Thus we see that the operator V −1U†V ∗U
acts only on the spins localized near the surface, i.e. is a
surface operator.

The key point now is that V would break time reversal
symmetry near the surface and maps an SPT eigenstate
to a product state in the bulk tensored with a surface
state |Ψs〉. This surface state |Ψs〉 is now a truly 2d re-
alization of the eFmF state, and hence has a nonzero
chiral central charge of c equal to 4 modulo 8. On the
other hand, if we had disentangled the bulk of the orig-
inal (TRS) state with the time-reversed partner U†V ∗U
of V , we would have obtained the time-reversed eFmF
state, with chiral central charge −c. Also, these two
time-reversed incarnations of the eFmF surface state are
mapped into each other by the 2d locality preserving sur-
face operator V −1U†V ∗U .

This leads to a contradiction, as follows. Let us de-
note by eFmF+ and eFmF− the surface states with chi-
ral central charge c and −c respectively, and let W =
V −1U†V ∗U be the 2d locality preserving operator that
maps one to the other. Now stack each of eFmF+

and eFmF− with another copy of eFmF−. Augment-
ing W by the identity on this second copy of eFmF−,

we obtain an operator W̃ that maps eFmF+ × eFmF−
to eFmF− × eFmF−. However, eFmF+ × eFmF− is
simply the quantum double of eFmF , and necessar-
ily has a parent Hamiltonian equal to a sum of local
commuting projectors. Conjugating these local com-
muting projectors by the locality-preserving operator W̃
we would obtain a local commuting projector Hamilto-
nian for eFmF− × eFmF−, which is impossible because
eFmF− × eFmF− has nonzero chiral central charge67.
This is the desired contradiction.
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