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Strong and weak second-order topological insulators with hexagonal symmetry and Z3 index

Motohiko Ezawa

We propose second-order topological insulators (SOTIs) whose lattice structure has the hexagonal symmetry
C6. We start with a three-dimensional weak topological insulator constructed on the stacked triangular lattice,
which has only side topological surface states. We then introduce an additional mass term which gaps out the
side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk
topological quantum number is shown to be the Z3 index protected by the inversion time-reversal symmetry IT
and the rotoinversion symmetry IC6. We obtain three phases; trivial, strong and weak SOTI phases. We argue
the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries,
where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where
topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained
when the interlayer hopping interaction is strong and weak, respectively.

Topological phase of matter remains to be a most active
field of condensed matter physics. Topological insulators
(TIs) are well established, where the emergence of topolog-
ical boundary states is a manifestation of the bulk topological
number1,2. This is known as the bulk-boundary correspon-
dence. Recently, the notion of topological insulators is gen-
eralized to second-order topological insulators (SOTIs)3–15.
A SOTI is such an insulator that has no topological surface
states though it has topological hinge states. They are one-
dimensional (1D) edge states emerging at hinges of a prism
respecting the symmetry based upon which the bulk topolog-
ical quantum number is defined.

One powerful method to create a SOTI is to introduce a
mass term to a strong TI in such a way that it gaps out sur-
face states but preserves hinge states10. A topological hinge
insulator was first constructed10 by applying this method to
the C4 symmetric lattice model. However, in this model10

a tetragonal prism of finite size has gapless surface states at
the top and the bottom of the prism in addition to four gap-
less hinge states. This is because the symmetry indicator is
characterized by C4T and C̄4 = IC4, where T and I are the
time-reversal symmetry generator and the inversion generator,
respectively. These surface states can be gapped out16 by in-
troducing the Zeeman term violating C4T but preserving C̄4.
The bulk topological number, being characterized by the ro-
toinversion symmetry C̄4, is given by the Z2 index.

Very recently, by employing topological quantum chem-
istry for material prediction17–22, bismuth was predicted theo-
retically and shown experimentally to be a SOTI23 with a clear
observation of hinges. It has the C6 symmetric lattice struc-
ture. The tight-binding model has been proposed, but it is an
eight-band model and rather too complicated. On the other
hand, there is a classification of 2D topological crystalline in-
sulators, which shows a system having six corners protected
by the particle-hole symmetry24. For instance, the six-corner
states emerge in a photonic crystal25.

In this paper, we propose a simple four-band model pos-
sessing the C6 symmetric lattice structure realizing a SOTI.
We start with a weak TI realized on the stacked triangular lat-
tice, whose topological surface states are present only at the
side surfaces. Namely, it has no gapless surface states at the
top and the bottom when we consider a hexagonal prism of
finite size as in Fig.1(a). Then, we gap out the side surface
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FIG. 1. (a)–(b) A hexagonal prism is a typical structure respecting
the rotoinversion symmetry C̄6. The real-space plot of the local den-
sity ρi of the zero-energy states for a hexagonal prism in the case of
(a) a weak TI with ∆ = 0 and (b) a topological hinge insulator with
∆ = 0.7. The amplitude is represented by the radius of spheres.
The length of one side of the hexagon is L = 8, and the height of
the prism is H = 11. (c)–(d) A hexagon is a typical structure re-
specting the rotoinversion symmetry C̄6. The real-space plot of ρi of
the zero-energy states for a hexagon in the case of (c) a TI and (d) a
topological corner insulator. A weak (strong) topological hinge insu-
lator is obtained by stacking topological corner insulators when the
interlayer interaction tz is weak (strong). We have set t = 1, tz = 2,
λ = λz = 1 and m = 3.

states by introducing an additional mass term with parameter
∆. As a result, we obtain a SOTI, which has topological hinge
states as in Fig.1(b). The bulk topological quantum number
is shown to be the Z3 index characterized by combinations of
the rotoinversion symmetry C̄6 = IC6 and the inversion time-
reversal symmetry IT . In accord with the Z3 index, there exist
two different types of SOTIs. We call them strong and weak
SOTIs. We also study a 2D SOTI by taking the limit of the
zero interlayer hopping, where the bulk topological quantum
number is given by the Z2 index.

Hamiltonian: We construct a weak TI realized on the
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FIG. 2. (a)–(c) Band structures of top surface states in a thin film for ∆ = 0, where gaps are open. (d)–(f) Band structures of side surface
states in a thin film for ∆ 6= 0. Two and one Dirac cones are observed in (d)–(e), respectively, showing the system is in the weak TI phase. A
gap exists in (f), showing the system is in the trivial phase. (g)–(i) The figures corresponding to (d)–(f) for ∆ 6= 0, showing the weak TI phase
is transformed into the SOTI phase. (j)–(l) Band structures of a hexagonal prism, where hinge states are shown in red. They are remnants of
the Dirac cones observed in (d) and (e). The gap closes at two or one points in the weak or strong SOTI as in (j) or (k). Parameters (∆,m, tz)
are displayed in figures. The other parameters are t = 1 = λ = λz=1. (m) Topological phase diagram of the 3D model. The horizontal axis is
m/t, while the vertical axis is tz/t. Numbers in red represent the symmetry indicator κ6. The topological quantum number ν3D is defined by
ν3D = mod3κ6. Thus, there are two SOTI phases shown by κ6 = ±1, corresponding to (j) and (k). It does not depend on λ, λz and ∆. The
horizontal axis of (j)–(l) is kz in the range of (−π, π).

stacked triangular lattice. The Hamiltonian consists of the 2D
Hamiltonian and the interlayer interaction terms. As the 2D
Hamiltonian we take26

H0
2D = Htτz +HSOτx (1)

on the triangular lattice, where

Ht =

3∑
n=1

m− t
∑

cos (dn · k) , (2)

HSO = λ

3∑
n=1

Cn3 σxC
−n
3 sin (dn · k) (3)

in the momentum space. Here, m, t, λ are real parameters,
k = (kx, ky), and dn = |dn|[cos(2πn/3), sin(2πn/3)] is
the pointing vector; σ = (σx, σy, σz) and τ = (τx, τy, τz)
represent the Pauli matrices for the spin and the pseudospin
corresponding to the orbital degrees of freedom, respectively;
C3 = τ0 exp [−iπσz/3] is the generator of the π/3 rotation. It
has been shown26 that the HamiltonianH0

2D describes a 2D TI.
According to the bulk-boundary correspondence there emerge
gapless edge states for a hexagon as in Fig.1(c).

We may stack triangular lattices to generate a 3D lattice.
The 3D Hamiltonian is given by

H0
3D = H0

2D +Hz (4)

with

Hz = −tzτz cos kz + λzτxσz sin kz, (5)

which is a well-known term describing interlayer hopping
with real parameters tz and the spin-orbit interaction λz .

We consider a hexagonal prism of finite size subject toH0
3D.

Provided both tz and λz are small enough, since the prism is
simply obtained by stacking hexagons having the density of
state as in Fig.1(c), it has naturally topological surface states
at the six sides but none at the top and bottom as in Fig.1(a).
This remains true even if the parameters tz and λz are not
small based on explicit calculations. See Fig.2(a)–(c) with
respect to the absence of gapless surface states at the top and
the bottom. Such an insulator is called a weak TI.

The problem is how to gap out the edge (side surface) states
preserving the corner (hinge) states in the 2D (3D) TI. This
is the main issue of the present work. For this purpose we
propose to consider the Hamiltonians

H2D = H0
2D +H∆τ0, H3D = H0

3D +H∆τ0, (6)

with

H∆ = ∆

3∑
n=1

Cn3 σyC
−n
3 cos (dn · k) , (7)
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where ∆ is a real parameter. It is a hexagonal generalization
of the term for the tetragonal symmetric system10. Our result
demonstrates that the H∆τ0 term transforms the weak TI into
a topological hinge insulator as in Fig.1(b). We also see that
it transforms the 2D TI into a topological corner insulator as
in Fig.1(b), about which we discuss after the 3D model.

Topological phase diagram: We analyze the Hamiltonian
H3D. The band structure is obtained by diagonalizing it. The
essential point is that the bulk topological quantum number
is defined by the band structure at the six high-symmetry
points with respect to the six-fold rotoinversion: See (15)
with (14). They are Γ = (0, 0, 0), K = (4π/3, 0, 0),
K ′ = (−4π/3, 0, 0), A = (0, 0, π), H = (4π/3, 0, π),
H ′ = (−4π/3, 0, π). Consequently, to determine the topo-
logical phase boundaries, it is enough to solve the zero-energy
condition (E = 0) at these six high-symmetry points.

The energies at these points are analytically obtained as

E (Γ) = ± (3t+ tz −m) , (8)
E (K) = E (K ′) = ± (3t/2− tz +m) , (9)
E (A) = ± (3t− tz −m) , (10)
E (H) = E (H ′) = ± (3t/2 + tz +m) . (11)

The topological phase boundary is given by tz = ±3t + m
and tz = ±3t/2−m, which are shown in Fig.2(m). They are
independent of the values of λ, λz,∆.

Symmetries: In order to identify the bulk topological quan-
tum number, it is necessary to study the symmetry of the
HamiltonianH3D. We note that the HamiltonianH0

3D has both
the time-reversal symmetry TH0

3D (k)T−1 = H0
3D (−k) and

the inversion symmetry IH0
3D (k) I−1 = H0

3D (−k), where
T = −iτ0σyK generates the time reversal symmetry (TRS)
with the complex conjugation K, while I = τzσ0 is the in-
version symmetry generator. In addition, there is the six-fold
rotational symmetry C6,

C6H
0
3D (kx, ky, kz)C

−1
6 = H0

3D

(
k′x, k

′
y, kz

)
, (12)

where C6 = τ0 exp [−iπσz/6] is the generator of the π/6
rotation, and

k′x = kx/2 +
√

3ky/2, k′y = −
√

3kx/2 + ky/2. (13)

The term H∆ breaks both the TRS and the inversion symme-
try but preserves the combined symmetry IT and the rotoin-
version symmetry C̄6 = IC6, which is similar to the case of
the tetragonal system10.

Symmetry indicator: The symmetry indicator is already
known for the tetragonal system possessing the C̄4 and IT
symmetries10,27. By making its hexagonal generalization, we
define the symmetry indicator κ6 protected by the C̄6 and IT
symmetries by the formula

κ3D
6 =

1

2
√

3

∑
k

∑
α

e
iαπ
6 nαK , (14)

where k runs over the symmetry invariant points associated
with C̄6, Γ, K, K ′, A, H and H ′; nαK is the number of the oc-
cupied bands with the eigenvalue e

iαπ
6 of the symmetry oper-

ator C̄6, C̄6|ψ〉 = e
iαπ
6 |ψ〉. The symmetry indicator is shown
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FIG. 3. Band structures of the 2D model (a)–(c) with ∆ = 0 and
(d)–(f) with ∆ 6= 0 in nanoribbon geometry for typical points in the
phase diagram. (g)–(i) Eigenenergy of the 2D model in hexagonal
nanodisk geometry for typical points in the phase diagram. (h) Six
degenerate zero-energy states emerge in the SOTI phase. Parameters
(∆,m) are displayed in figures. The horizontal axis of (a)–(f) is kx
in the range of (−π, π).

to be quantized and real. First, α is quantized to be α = 1, 3,
5, 7, 9, 11, because of the relation

(
C̄6

)6
= −1. Second, κ6 is

real, since the band structure is always two-fold degenerated
in the presence of the IT symmetry. The symmetry eigenval-
ues form a conjugate pair10 for these bands due to the commu-
tation relation [C̄6, IT ] = 0 and the fact that the IT symmetry
is anti-unitary. Third, κ6 is a constant within one topological
phase since it can change its value only when a phase bound-
ary is crossed by changing system parameters. Consequently
it is a candidate of the topological quantum number. We ex-
plicitly evaluate κ6 using the formula (14), which is shown in
the phase diagram Fig.2(m).

Surface states: We first examine the surface states by ana-
lyzing the band structure of a thin film. (i) When ∆ = 0, gap-
less modes are found in the side surfaces [Fig.2(d)–(e)] in the
TI phase, but not in the up and bottom surfaces [Fig.2(a)–(b)],
which shows that the system is a weak TI. (ii) When ∆ 6= 0,
these surface states are gapped [Fig.2(g)–(h)]. These features
are consistent with the local density of states for the hexagonal
prism as shown in Fig.1(a)–(b). Hence, the system is naively
a trivial insulator according to the bulk-boundary correspon-
dence. However, as we now see, hinge states appear, signaling
that it is a SOTI.

Hinge states and Z3 index protected by C̄6 and IT : We
next investigate the hinge states by analyzing the band struc-
ture of a hexagonal prism [Fig.2(j)–(l)] at various points in the
phase diagram [Fig.2(m)]. According to the band structure of
a hexagonal prism, hinge states emerge in the two phases in-
dexed by κ6 = ±1 as in Fig.2(j)–(k), while no hinge states
are present in the phase indexed by κ6 = 0,±3 as in Fig.2(l).
They are identified with SOTI and trivial phases. The two
SOTI phases indexed by κ6 = ±1 are distinguished by the
band structure of hinge states. Namely, hinge states are de-
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tached from (attached to) the bulk band, or the gap closes at
two (one) points, for κ6 = −1 (κ6 = 1): See Fig.2(j) and (k).
Consequently, the bulk topological index is given by the Z3

index defined by

ν3D = mod3κ6, (15)

which is a generalization of the Z2 index ν0 to the hexagonal
symmetric system in the absence of the TRS and the inversion
symmetry.

It is intriguing that we have two different types of hinge
states. We may understand their origin as follows. Recall
that the hexagonal prism is described by the Hamiltonian
H3D = H2D + Hz . The building block of a hexagonal prism
is a hexagon described by H2D. As we soon discuss, it has
six detached corner states protected topologically, as shown
in Fig.1(d). Hence, when we construct a prism by stacking
hexagons, we would obtain a perfect flat band for the hinge
states in the vanishing limit of interlayer hopping (Hz → 0).
On the other hand, when the interlayer hopping interaction tz
is strong, a mixing occurs between H2D and Hz , making the
corner states a part of the bulk bands. The resultant hinge
states form the SOTI phase with κ6 = 1, which we call a
strong SOTI phase.

We proceed to study the perturbation effects on hinge states
by applying the interaction of the form Hαβ = Bτασβ . The
results read that the hinge states split when both the rotoinver-
sion symmetry C̄6 and the inversion time-reversal symmetry
IT are broken. See Supplementary Materials for details28.

2D SOTI: We analyze a hexagonal SOTI model in two di-
mensions. The Hamiltonian is H2D given by (6). There is an
additional chiral symmetry CH2D(k)C−1 = −H2D(k) with
the chiral symmetry operator C = τxσz . The properties of the
2D hexagonal SOTI are summarized as follows.

First, the topological phase diagram is obtained by setting
tz = 0 in Fig.2(m). Namely, there emerge a SOTI phase for
−3/2 < m/t < 3, and trivial phases for m/t < −3/2 and
m/t > 3. There are only two phases for tz = 0. We will soon
see that the topological number is Z2 in the 2D SOTI, which
is contrasted with the Z3 index in the 3D SOTI.

Second, we investigate the topological index. We start with
the symmetry indicator (14) protected by the C̄6 and IT sym-
metries in a slightly modified form,

κ2D
6 =

1√
3

∑
k

∑
α

e
iαπ
6 nαK , (16)

where k runs over Γ, K and K ′, and the prefactor is doubled
since the number of the high-symmetry points in the 2D model

is three instead of six in the 3D model. It follows that κ2D
6 = 3

for m/t < −3/2, κ2D
6 = −1 for −3/2 < m/t < 1 and

κ2D
6 = −3 for m/t > 3. The topological phase transition

occurs at m/t = −3/2 (m/t = 3) because the band inversion
occurs at the Γ point (K and K ′ points).

As we have noticed, there are only one kind of topological
phase: See the phase diagram Fig.2(m). Hence, the 2D SOTI
is characterized by the Z2 index. Accordingly we define the
bulk topological quantum number by

ν2D = mod2(mod3(−κ2D
6 )). (17)

It follows that ν2D = 0 for m/t < −3/2 and m/t > 3 and
ν2D = 1 for −3/2 < m/t < 1. We note that the notion of the
strong or weak can only be applied for the hinge states.

Third, we show the band structure of a nanoribbon in
Fig.3(a)–(f). When ∆ = 0, there are helical edge states in
Fig.3(b). We have previously shown26 that the system is a TI.
They are gapped for ∆ 6= 0 as in Fig.3(e), indicating that the
system would be topologically trivial. Actually, it is not trivial
but it is in the SOTI phase.

Forth, we show the band structure of a hexagonal nanodisk
in Fig.3(g)–(i) for ∆ 6= 0. Six-fold degenerate zero-energy
corner states emerge for the SOTI phase as in Fig.3(h), show-
ing the system is a topological corner insulator as in Fig.1(d).
These zero-energy corner states are protected by the chiral
symmetry C.

Finally, we study the finite-size effect on the eigenenergies
of a hexagonal nanodisk. When the size is reasonably large,
the spectrum forms a continuous line across the Fermi level
for ∆ = 0, while the six corner states are fixed at zero energy
for ∆ 6= 0. We also study the perturbation effects of the form
Hαβ = Bτασβ . The corner states remain as they are as long
as the chiral symmetry is intact. See Supplementary Material
for details28.

In this work we have presented a simple model for a hexag-
onal topological hinge insulator. Although the hinge struc-
ture at the sides looks the same as that of bismuth, there are
some difference between them. Indeed, the topological quan-
tum number is the Z3 index in the present model but it is
the Z2 index in the bismuth model. The origin of the differ-
ence is traced back to the fact that a hexagonal prism is con-
structed by stacking hexagons which are weak TIs. It yields
two types of SOTIs depending on the interlayer hopping in-
teraction whether it is strong or weak.
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