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We present an exactly solvable model of a spin-triplet f -wave topological superconductor on the honeycomb
lattice in the presence of the Hubbard interaction for arbitrary interaction strength. First we show that the Kane-
Mele model with the corresponding spin-triplet f -wave superconducting pairings becomes a full-gap topological
superconductor possessing the time-reversal symmetry. We then introduce the Hubbard interaction. The exactly
solvable condition is found to be the emergence of perfect flat bands at zero energy. They generate infinitely
many conserved quantities. It is intriguing that the Hubbard interaction breaks the time-reversal symmetry
spontaneously. As a result, the system turns into a trivial superconductor. We demonstrate this topological
property based on the topological number and by analyzing the edge state in nanoribbon geometry.

Introduction: Topological superconductors have been in-
vestigated intensively in this decade1,2. A particular feature is
that they host Majorana fermions3–5. It is a crucial problem
how the topological properties are affected by the presence of
the interaction. It is in general a formidable task to attack this
problem in strongly correlated systems. Nevertheless, if there
are exactly solvable models, they are quite powerful since they
provide us with a clear physical understanding. Exact solu-
tions in one-dimensional Kitaev topological superconductors
have been constructed6–10. On the other hand, as far as we are
aware of, there are so far no exact solutions for higher dimen-
sional topological superconductors.

A Kitaev spin liquid11 on the honeycomb lattice is a beau-
tiful example of the exact solvable model on interacting Ma-
jorana fermions. A key point is that two Majorana fermion
operators are made C numbers on the basis of infinitely many
conserved quantities present. Then the interacting Majorana
fermion model is transformed into a free Majorana fermion
model. It is recently shown that this method is also ap-
plicable to trivial BCS superconductors with the Hubbard
interaction12. Explicit examples have been constructed for the
square and cubic lattices.

In this paper, we investigate interacting two-dimensional
topological superconductors on the honeycomb lattice. Our
observation is that the exactly solvable condition is the emer-
gence of perfect flat bands at zero energy. The operator de-
grees of freedom associated with the perfect flat bands become
C-numbers, and generate infinitely many conserved quanti-
ties. The resultant Majorana fermion model is transformed
into a free Majorana fermion model.

We explicitly analyze the Kane-Mele model with the spin-
triplet f -wave superconductor, since the f -wave supercon-
ducting pairing is compatible with the honeycomb lattice
structure [Fig.1]. We can tune this model so as to possess
perfect flat bands at zero energy. The system becomes a full-
gap superconductor. It is shown to be a time-reversal invari-
ant topological superconductor by analytically evaluating the
spin-Chern number. Next, we introduce the Hubbard inter-
action into this system. The system is still exactly solvable
for arbitrary interaction strength. It is intriguing that the time-
reversal symmetry is spontaneously broken by the choice of
the ground state. This leads to the conclusion that the sys-
tem becomes a trivial superconductor, which we confirm by
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FIG. 1: (a) Illustration of the honeycomb lattice and the f -wave su-
perconducting pairing. We see that the f -wave superconducting pair-
ing is compatible with the honeycomb lattice. Superconducting pair-
ings indicated by green arrows between (b) the nearest-neighbor sites
and (c) the next-nearest neighbor sites. The sign is plus (minus) for
the forward (backward) direction of the arrows. Arrows are pointing
inside for A sites, while they are pointing outside for B sites in (b).

analyzing the edge states of zigzag nanoribbons based on the
bulk-edge correspondence.

Model: We consider a model consisting of the Kane-Mele
term15 HKM on the honeycomb lattice with the spin-triplet f -
wave superconducting pairing term HSC and the Hubbard in-
teraction term HHubbard. As shown in Fig.1, the f -wave super-
conducting pairing is compatible with the honeycomb lattice
and is natural as well as the s-wave superconducting pairing.
We assume an equal spin pairing. The total Hamiltonian is

H = HKM +HSC +HHubbard (1)

with
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where c†is creates an electron with spin polarization s at site i,
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FIG. 2: (a)–(f) Bird’s eye’s views of the bulk band structures on the kx-ky plane, where (F) indicates the ferro-order, while (AF) indicates the
antiferro-order. (a’)–(f’) Band structures of nanoribbons, where red curves represent the edge modes showing whether the system is trivial or
topological. The system is topological (trivial) in the presence (absence) of edges modes connecting the conduction and valence bands. Cyan
lines represent perfect flat bands. (a),(a’) The system is a point-nodal superconductor without the Kane-Male term (λ = 0) and without the
Hubbard interaction (U = 0). (b),(b’) It is a trivial superconductor for λ = 0 and U 6= 0 due to the lack of such edge modes. (d),(d’) It is
a topological superconductor for λ 6= 0 and U = 0 due to the presence of such edge modes. (e),(e’) It is a trivial superconductor for λ 6= 0
and U 6= 0 due to the disappearance of such edge modes. The energy of the antiferro-order is found to be lower than that of the ferro-order by
comparing (b) and (c), and also by comparing (e) and (f). The vertical axis is the energy.

and 〈i, j〉 / 〈〈i, j〉〉 run over all the nearest/next-nearest neigh-
bor hopping sites. We adopt the convention that s =↑, ↓ in
indices and s = +1,−1 in equations for the up and down
spins. We explain each term: (i) The first term of the Hamilto-
nian HKM represents the usual nearest-neighbor hopping with
the transfer energy. (ii) The second term of the Hamiltonian
HKM represents the Kane-Mele spin-orbit coupling, where
σ = (σx, σy, σz) is the Pauli matrix of spin, with νij = +1
if the next-nearest-neighboring hopping is anticlockwise and
νij = −1 if it is clockwise with respect to the positive z
axis. (iii) The first/second term of the HamiltonianHSC repre-
sents the nearest/next-nearest neighbor f -wave superconduct-
ing pairings. The system has the time-reversal symmetry.

We discuss a setup of the model Hamiltonian (1), where
the spin-triplet f -wave topological superconductor emerges
by way of the Kane-Mele spin-orbit interaction. First we note
that the Kane-Mele model is realized in silicene, germane and
stanene26–29, which are monolayer materials of silicon, germa-
nium and tin. Next, the spin-triplet f -wave superconducting
pairing is induced by the Hubbard interaction in the Kane-
Mele model13,14 on the honeycomb lattice provided a certain
doping is made. Then, we consider a system made of honey-
comb layers in close proximity. The upper layer is the topo-
logical insulator described by the Kane-Mele term HKM with
the Hubbard term HHubbard, upon which we focus. The lower
layers form van der Waals hetro-structure of f -wave super-
conductor, which would induce the BCS pairing term16 HSC
to the upper layer as a proximity effect. The effective Hamil-
tonian for the upper layer is given by (1).

Non-interacting case: First we investigate the non-
interacting case; U = 0. The system has the time-reversal
symmetry T−1H (k)T = H (−k) with T = iσyK, where
K denotes the complex conjugation. Namely, the system
is the time-reversal invariant superconductor belonging to
the class DIII. The Hamiltonian is block diagonal with re-

spect to the spin; H = H↑ + H↓. In order to study
superconductivity, we use the Bogoliubov de Gennes for-
malism. The honeycomb lattice is bipartite, which con-
sists of the A and B sublattices. The nearest neighbor su-
perconducting pairing occurs between the A and B sublat-
tices, while the next-nearest neighbor superconducting pair-
ing occurs within one sublattice: See Figs.1(b)–(c). The
Nambu spinor consists of the electrons and holes, and reads
Ψs =

(
cAs (k) , cBs (k) , c†As (−k) , c†Bs (−k)

)
. In the

Nambu spinor basis the Hamiltonian Hs has the form
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We find E = ±
√

(t−∆1)
2 |F |2 + (λ−∆2)

2
S2 and E =

±
√

(t+ ∆1)
2 |F |2 + (λ+ ∆2)

2
S2 as the eigenvalues. It is

remarkable that perfect flat bands emerge when

∆1 = t, ∆2 = λ. (8)

As we verify later, the emergence of perfect flat bands gen-
erates infinitely many conserved quantities and make one
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species of the Majorana fermions inactive in the theory with
the interaction (U 6= 0): See (17). In the following, we in-
vestigate the system by requiring the flat band condition (8).
When λ = 0, the gap closes linearly at the K and K ′ points.
It is a Dirac-nodal superconductor: See Fig.2(a). Once the λ
becomes non-zero, the system becomes a full-gap supercon-
ductor: See Fig.2(d). We show that it is a topological super-
conductor by evaluating the topological numbers for λ 6= 0
and U = 0 [Fig.2(d)].

Topological numbers: The topological numbers are the
Chern number C and the spin-Chern number Cσ . The Chern
number is zero, C = 0, due to the time-reversal symmetry.
The spin-Chern number Cσ is given by Cσ = (C↑ − C↓) /2 in
terms of the spin-dependent Chern number Cs for each spin
subsector17–20. We find that Cσ is zero for the flat bands
since the eigen functions are given by Ψ = (1, 0, 1, 0) and
Ψ = (0,−1, 0, 1) for them. In order to evaluate Cs for the va-
lence band, we make Taylor expansions of (6) and (7) to find
F = ~vF (ξkx − iky) and S = ξλ, where vF =

√
3

2~ at is the
Fermi velocity and ξ = 1 for the K point and ξ = −1 for the
K ′ point. The Berry curvature is calculated as

Ωs (k) = ∇× a (k) =
sλ

2

(
(~vFk)

2
+ λ2

)−3/2
, (9)

with the Berry connection ai (k) = −i 〈ψ (k)| ∂
∂ki
|ψ (k)〉.

The Cs is explicitly evaluated as

Cs =

∫
Ωs (k) d2k/ (2π) = sgn (sλ) /2, (10)

and hence we obtain Cσ = sgn (λ), by adding the contri-
butions from the K and K ′ points. Consequently, the sys-
tem is topological for λ 6= 0. We note that the Z2 index
is identical to the spin-Chern number provided that the time-
reversal symmetry is present and that the spin is a good quan-
tum number. We may explicitly confirm the Chern number,
C = C↑ + C↓ = 0, as required by the time-reversal symmetry.

Interacting case: It is in general a very hard task to solve
the problem involving the Hubbard interaction HHubbard, since
it is not a quadratic interaction. However, it is recently
proposed12 that the Hubbard interaction can be rewritten in
the quadratic form under the flat band condition (8), by ap-
plying the method11 employed in the Kitaev spin liquid to a
fermionic system.

We introduce Majorana fermion operators η and γ for each
sublattice defined by

cis = ηis + iγis, c†is = ηis − iγis, (11)

cjs = γjs + iηjs, c†js = γjs − iηjs, (12)

for fermions on i ∈ A and j ∈ B sublattices. The Hamilto-
nian (1) is rewritten in terms of these Majorana fermions as

H = H(1) +H(2) +HHubbard (13)

with

H(1) = 2i
∑
〈i,j〉s

[(∆1 + t)γisγjs + (∆1 − t)ηisηjs],

(14)

H(2) =
1

6
√

3

∑
〈〈i,j〉〉s

νijσz[(∆2 + λ)γisγjs

+ (∆2 − λ)ηisηjs], (15)

HHubbard = U
∑
i

(2iηi↑γi↑) (2iηi↓γi↓) . (16)

Since the time-reversal symmetry T acts as21 T −1iηi↑ηi↓T =
−iηi↑ηi↓ and T −1iγi↑γi↓T = −iγi↑γi↓, there exists the time-
reversal symmetry in the interacting system (1).

By requiring the flat band condition (8), the Hamiltonian for
the η Majorana fermions becomes exactly zero in Hamiltoni-
ans (14) and (15). It produces perfect flat bulk Majorana bands
for the non-interacting system [Fig.2(a) and (d)]. They do not
generate topological edges in nanoribbon geometry since the
bulk topological quantum numbers are identically zero for the
zero Hamiltonian [Fig.2(a’) and (d’)].

To explore the interacting system, we set Di = 2iηi↑ηi↓.
Since Di commutes with the Hubbard interaction (16), or
[Di, HM] = 0 for all sites i, Di becomes a C number. It is
given by Di = ±1/2 by using the relation D2

i = 1/4. It is
analogous to the honeycomb Kitaev spin liquid model11. Sub-
stituting Di to (16), the total Hamiltonian becomes

H = 4it
∑
〈i,j〉s

γisγjs +
iλ

3
√

3

∑
〈〈i,j〉〉s

νijσzγisγjs

− U
∑
i

Di (2iγi↑γi↓) . (17)

The perfect flat bands for the η Majorana fermions are not
affected by the interaction (U 6= 0): See Fig.2. This is because
the η Majorana fermions decouple from the system and its
Hamiltonian is zero under the flat band condition (8) even in
the presence of the Hubbard interaction.

It is remarkable that the Hamiltonian (17) is exactly solv-
able for any fixed set of Di, since it is quadratic in terms of
the fermion operators γ. A set of Di serves as infinitely many
conserved quantities that make the system exactly solvable.
In particular, the ground state is given by a certain set of Di,
which breaks the time-reversal symmetry spontaneously.

There are 2N choices for the set Di in the N site system.
This is the same as in the Kitaev spin liquid system. In the Ki-
taev spin liquid system, exact diagonalizations for finite size
clusters with the periodic boundary condition show that the
ground state is uniform in the unit cell11. It is natural to expect
a similar situation to occur also in the present model. There
are two uniform states. One is the ferro-order where the sign
ofDi is the same between the two sublatticesDi = 1/2, while
the other is the antiferro-order where the sign ofDi is opposite
between the two sublattices Di = (−1)i/2. The Di = 1/2
and Di = −1/2 are related by the interchange of U and −U .

By exactly diagonalizing (17), the eigenenergy is given by

E2 = (t |F | ± U/4)
2

+ λ2S2 (18)
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for the ferro-order, and

E2 = t2 |F |2 + λ2S2 + U2/16 (19)

for the antiferro-order, where the spectrum is doubly degener-
ated. We find that the ground state is given by the antiferro-
order, where the band gap is given by

√
λ2 + U2/16. See

Supplemental Material for more details31.
The gap closes for the ferro-order with λ = 0, describing a

loop-nodal superconductor [Fig.2(c)]. On the other hand, the
gap does not close for the ferro-order with λ 6= 0 [Fig.2(b)]
and the antiferro-order with arbitrary λ [Fig.2(e) and (f)].

The spin-Chern number Cσ is no longer a good topological
number once the Hubbard interaction is switched on and a
particular choice of the ground state is made. Indeed, the time-
reversal symmetry is broken due to the last term of Eq.(17) for
a fixed value of Di for i. The Z2 index is also ill defined since
the time-reversal symmetry is spontaneously broken. On the
other hand, the Chern number is well defined and remains to
be zero (C = 0) even if the spin is no longer a good quantum
number. We can check that the Chern numbers of the two
valence bands are precisely canceled. We expect that there are
no other topological numbers in the present system. Then, the
system turns into a trivial superconductor without gap closing
due to the symmetry breaking22. It is possible to confirm this
by calculating the edge states in nanoribbon geometry based
on the bulk-edge correspondence.

Edge states: In order to visualize whether the system is
topological or not, we calculate the band structure for nanorib-
bon geometry: See Fig.2. The band structures resemble those
of graphene23 for λ = 0 [Fig.2(a’)] and silicene24,25 for λ 6= 0
[Fig.2(d’)] with the sole difference being the emergence of
perfect flat bands at zero energy. Silicene is a typical example
of topological insulators. The criterion to judge the topologi-
cal superconductor is the emergence of edge modes connect-
ing the conduction and valence bands just as in the case of the
topological insulator.

First, we investigate the case with λ = 0. There are par-
tial flat bands connecting the K and K ′ points in addition to
the perfect flat bands. These partial flat bands move away
from zero energy once the interaction is introduced (U 6= 0)
[Figs.2(b), (b’), (c) and (c’)]. The bulk spectrum is fully
gapped for the antiferro-order [Fig.2(b)], where the nanorib-
bon spectrum shows that the system is trivial [Fig.2(b’)]. On
the other hand, the bulk spectrum is gapless for the ferro-order

[Fig.2(c) and (c’)] apart from the perfect flat bands.
Next, we investigate the case with λ 6= 0. When U = 0,

there are helical edge states connecting the conduction and va-
lence bands [Fig.2(d’)] in full-gap superconductor [Fig.2(d)],
demonstrating that the system is topological. These heli-
cal edge states anticross once the interaction is introduced
for both the antiferro-order [Fig.2(e’)] and the ferro-order
[Fig.2(f’)], which implies that the system turns into a trivial
superconductor for U 6= 0. This anticrossing can be under-
stood in the low-energy continuum theory. The helical edge
states are perfectly localized in one of the sublattices. The
low-energy Hamiltonian is effectively given by

Hedge = ivk[γ↑(k)γ↑(−k)− γ↓(k)γ↓(−k)]

− iUDiγ↑(k)γ↓(−k), (20)

where v is the velocity of the helical edge. The eigenen-
ergy reads E = ±

√
v2k2 + U2. This effective Hamiltonian

well describes the anticrossing of the helical edge states for
both the ferro-order and the antiferro-order although their bulk
spectra are different [Figs.2(e’) and (f’)].

A comment is in order with respect to the differences be-
tween the present work and the previous work12. The method
is common, which is an application of the method used in
the Kitaev spin liquid to a fermion system. The p-wave su-
perconductor studied in Ref.12 is actually a px + py trivial
superconductor. See Supplemental Material for details31. On
the contrary, the present f -wave superconductor is topological
due to the Kane-Mele spin-orbit interaction.

The present model is exactly solvable under the flat band
condition (8), just as the px + py model is12. Although it can-
not be reached in realistic experiments, it is quite plausible
that the results are adiabatically connected to an experimen-
tally accessible region, as will be checked by future numerical
simulations. The existence of exact solutions is very impor-
tant to check numerical simulations, and it will motivate fur-
ther studies on two dimensional topological superconductors.
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