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We investigate the non-Abelian topological chiral spin liquid phase in the two-dimensional (2D) Kitaev hon-
eycomb model subject to a magnetic field. By combining density matrix renormalization group (DMRG) and
exact diagonalization (ED) we study the energy spectra, entanglement, topological degeneracy, and expectation
values of Wilson loop operators, allowing for robust characterization. While the ferromagnetic (FM) Kitaev spin
liquid is already destroyed by a weak magnetic field with Zeeman energy HFM

∗ ≈ 0.02, the antiferromagnetic
(AFM) spin liquid remains robust up to a magnetic field that is an order of magnitude larger, HAFM

∗ ≈ 0.2.
Interestingly, for larger fields HAFM

∗ < H < HAFM
∗∗ , an intermediate gapless phase is observed, before a second

transition to the high-field partially-polarized paramagnet. We attribute this rich phase diagram, and the re-
markable stability of the chiral topological phase in the AFM Kitaev model, to the interplay of strong spin-orbit
coupling and frustration enhanced by the magnetic field. Our findings suggest relevance to recent experiments
on RuCl3 under magnetic fields.

Introduction. The search for highly entangled quantum
states of matter such as quantum spin liquids (QSLs) has in-
tensified in recent years 1–4. The peculiarity of QSLs lies not
only in the absence of magnetic long-rang order even at zero
temperature, but more importantly in exhibiting fractionalized
excitations and topological ground state degeneracy. Among
various theoretically proposed QSLs, a remarkable example is
the Kitaev model of spins with nearest-neighbor interactions
on the two-dimensional (2D) honeycomb lattice5. This model
is solved exactly by mapping it into a model of Majorana
fermions coupled to an emergent static Z2 gauge field. The
ground state is either a gapless spin liquid or, with weak time
reversal breaking, a gapped spin liquid phase. The latter har-
bors a non-Abelian anyon known as an Ising anyon, a descen-
dant of vortices in two-dimensional p + ip superconductors6.
The exact solution of the apparently simple Kitaev model has
motivated a search for the physical realization of non-Abelian
QSL7–9.

The highly anisotropic and spatially dependent spin inter-
action in the Kitaev model can conceivably appear in Mott
insulators with strong spin-orbit coupling and j = 1/2 lo-
cal moments. In particular Jackeli and Khaliullin10 proposed
a mechanism for Kitaev interaction in transition metal ox-
ides with edge-sharing oxygen octahedra. By now, in ad-
dition to various three-dimensional compounds11–13, a vari-
ety of two dimensional layered honeycomb lattice magnets14

have been discovered, including Na2IrO3
15–17, α-Li2IrO3

16,17,
a hydrated variant H3LiIr2O6

18, and RuCl319.

Aside from the spin liquid candidates Na4Ir3O8

(hyperkagome11,20) and H3LiIr2O6 (honeycomb18), these
compounds are magnetically ordered at sufficiently low
temperatures, indicating the presence of additional spin
interactions beyond the Kitaev model. Nonetheless, various
experimental and theoretical works suggest the magnetic
ordered states are proximate to a spin-liquid phase9,21–32. To
understand the nature of quantum phases realized in materials,
it is helpful to compare experimental findings with expected
signatures of perturbed Kitaev Hamiltonians. However,even
with the large body of available experimental data, the sign
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Fig. 1: (Color online) The honeycomb lattice and Wilson loop oper-
ators. The honeycomb lattice is spanned by unit vectors (1, 0) and
(1/2,

√
3/2) with lattice size N = Lx × Ly × 2. Green and blue

loops denote Wilson loop operators along vertical and horizontal pe-
riodic boundary conditions on the torus, respectively.

of the Kitaev interaction in the honeycomb magnets remains
an open question25–31,33–43. In models with strong spin orbit
coupling, the Curie-Weiss temperature may not reflect the
dominant interaction due to cancellation among the various
spin-orbit-coupled exchanges; for instance TCW may even
vanish44. Interestingly for RuCl3 it has recently been argued
that natural models with nearest-neighbor exchanges involve
strong Γ exchange or have dominant likely antiferromagnetic
Kitaev exchange26,27,45.

For the pure Kitaev model, the different signs of the Kitaev
exchange are related by a sublattice dependent transformation,
leading to identical energy spectrum. However, under an ex-
ternal magnetic field, ferromagnetic (FM) and antiferromag-
netic (AFM) Kitaev models are expected to behave differently.
Previous theoretical studies mainly focused on the FM Kitaev
model, and found that the non-Abelian spin liquid phase only
survives up to a very small magnetic field HFM

∗ ≈ 0.02 by
Jiang et al.46. To our knowledge, except semiclassically47, the
AFM Kitaev model in a magnetic field has not yet been stud-
ied.

In this Letter, we study the AFM Kitaev model in a mag-
netic field by performing extensive exact diagonalization (ED)
and density matrix renormalization group (DMRG) simula-
tions. The energy spectra, the expectation value of Wilson
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Fig. 2: (Color online) Panels (a, b): For the AFM (a) and FM (b) Kitaev models in a magnetic field, the pair of topological ground states
(approximately degenerate on this N = 4 × 3 × 2 torus) are separated from higher energy states by an energy gap, within the topological
phase H < H∗ where HAFM

∗ ≈ 0.2 and HFM
∗ ≈ 0.02. Panels (c, d): Wilson loop operators Wy (main panel) and Wx (inset) for the two

lowest energy states, for AFM (c) and FM (d) models. The two states have Wy = −1 but are distinguished by Wx = ±1. Panel (e): The
magnetization curves show the transitions and the stark difference between the AFM and FM models. Panel (f): The second order derivative
of ground state energy with respect to field, or equivalently the magnetic susceptibility: note the difference in magnitudes between AFM and
FM models. In the AFM case, the transition to the polarized high-field phase is achieved only at a second peak with H∗∗ ≈ 0.36.

loop operator and the ground state degeneracy as a function
of the magnetic field are computed and compared with ex-
act analytical results at zero field. We find the presence of
the non-Abelian QSL phase in the AFM Kitaev model over
a wide range of magnetic field up to HAFM

∗ ≈ 0.2, an order-
of-magnitude larger than that of the FM Kitaev model. More-
over, before a second transition at HAFM

∗∗ ≈ 0.36 to the high-
field partially-polarized paramagnet , an intermediate gapless
phase is observed for fields HAFM

∗ < H < HAFM
∗∗ .

Model and Method.—We consider the Kitaev honeycomb
model subject to an external magnetic field H along the 〈111〉
direction. The Hamiltonian is given by

H =
∑
〈i,j〉

KγS
γ
i S

γ
j −

∑
i

H · Si. (1)

Here, γ = x, y, z denote the three distinct nearest neighbor
links 〈i, j〉 of the hexagonal lattice [see Fig. 1], Sγ repre-
sents effective spin-1/2 degrees of freedom sitting on each
vertex and interacting via exchange Kγ . The ground state at
H = 0 corresponds to the Kitaev limit, which exhibits two
kinds of QSLs depending on the relative coupling strength.
When one of the three coupling Kγ is much larger than the
others, the system is a gapped Z2 spin liquid with Abelian ex-
citations, while around the isotropic point of equal couplings,
the system is a gapless spin liquid5. The latter can turn into a
non-Abelian topological phase under time-reversal symmetry
breaking perturbations5, e.g., by adding a three-spin chirality

term48 or by applying an external magnetic field5 or by deco-
rating the honeycomb lattice49.

We use both exact diagonalization (ED) and density matrix
renormalization group (DMRG) to study the Hamiltonian (1)
with isotropic coupling Kγ ≡ K, as a function of an external
magnetic field H. We compare the phase diagrams with AFM
(K > 0) and FM (K < 0) Kitaev couplings.

In the present calculation, we consider a system of size
N = Lx × Ly × 2 [see Fig. 1], where Lx and Ly repre-
sent the number of unit cells along x and y directions, respec-
tively. Our present DMRG calculations keep enough states to
ensure the truncation error of the order or smaller than 10−9

and perform DMRG sweeps until the measured quantities are
converged.

Non-Abelian topological phase.—We first compute the en-
ergy spectra of the model Hamiltonian Eq. (1) as a function of
the magnetic field. Figure 2 shows the low-energy spectra in
different momentum sectors for a system sizeN = 4×3×2 on
the torus, with antiferromagnetic (K = +1) or ferromagnetic
(K = −1) Kitaev couplings. For the antiferromagnetic case,
we find two lowest energy states in (π, 0) and (0, 0) momen-
tum sectors, which are separated from the higher energy states
by a finite gap for a range of magnetic field 0 ≤ H111 . 0.2.
In contrast, in the case with ferromagnetic Kitaev coupling,
the spectra shown in Fig. 2 (b) indicates that the topological
phase only survives in a much smaller regime at H111 . 0.02.
Meanwhile, while naively one would expect a transition di-
rectly to the partially-polarized phase (which is smoothly con-
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nected to the fully polarized H111 = ∞ limit), as is indeed
seen in the FM Kitaev model [see Fig. 2 (b), (e) and (f)],
here for the AFM Kitaev model, as shown in Fig. 2 (a),(e) and
(f), an intermediate gapless phase (discussed further below) is
observed at HAFM

∗ < H < HAFM
∗∗ before a transition to po-

larized paramagnet at HAFM
∗∗ ≈ 0.36 . In both AFM and FM

cases, the critical field is also identified by sharp peaks in the
second order derivative of the ground state energy or equiva-
lently the magnetic susceptibility[see Fig. 2 (f)]. Similarly to
the FM case46, the field-driven phase transitions in the AFM
case might be continuous or weakly first-order.

We now demonstrate the topological nature of the two
lowest-energy states below the critical fieldH∗. First, we note
that the Kitaev model at zero field with periodic boundary con-
ditions has topological ground state degeneracy in two dimen-
sions. Different ground states are characterized by two Wilson
loop operators Wy and Wx associated with non-contractible
loops along y and x directions respectively. As illustrated in
Fig. 1, the definitions of Wy and Wx are given by

Wy = −

〈
2Ly∏
i=1

σyi

〉
;Wx = −

〈
2Lx∏
i=1

σzi

〉
. (2)

where σy and σz are Pauli matrices50, i.e. twice the spin–1/2
operators. The loops along y direction only cover γ = x, z
links while the loops along x direction only cover γ = x, y
links. It is straightforward to verify that these Wilson loop
operators commute with each other and also with the Hamil-
tonian in the Kitaev limit. Each operator squares to identity,
hence its eigenvalue is either +1 or−1. The±1 eigenvalue of
Wilson loop operator corresponds to the Z2 fluxes or equiv-
alently the periodic/antiperiodic boundary conditions for the
emergent Majorana fermions.

The expectation values of Wilson loop operators Wx,y are
measured for these two lowest energy states in the model (1).
As shown in Fig. 2 (c) and (d), these Wilson loop operators
take exact quantized values in Kitaev limit and nearly quan-
tized values for a finite range of magnetic fields below the
critical value. This indicates that the emergent Z2 gauge the-
ory remains a good description of perturbed Kitaev model
away from static limit. Importantly, below the critical field,
the two lowest energy states have nearly the same value of
Wy ' −1 but distinct values of Wx, with Wx ' +1 for the
state in momentum (π, 0) sector andWx ' −1 for the state in
(0, 0) sector, as shown in the inset of Fig. 2 (c). These results
are fully consistent with our expectation that the degeneracy
between different topological sectors of the Kitaev phase in
thermodynamic limit is split by finite size effect in a quasi-
one-dimensional geometry. For a three-leg system studied in
this work, the splitting between Wy = 1 and Wy = −1 sec-
tors is strong enough that the two lowest energy states both
have Wy ' −1. As we shall show below, these two low-
est energy states become degenerate as Lx increases. Their
many-body momenta kx = 0 and π indicate that as a one-
dimensional system the three-leg AFM Kitaev model sponta-
neously breaks translational symmetry breaking and doubles
the unit cell in thermodynamic limit. This is analogous to the

charge-density-wave states obtained by placing ν = 1/3 frac-
tional quantum Hall states on a thin torus.

The expectation values of Wilson loop operators decay
rapidly near the critical field and becomes negligible above
the critical field. The near quantization of Wilson loop op-
erators (and its lack of) provide another strong evidence for
the topological (non-topological) nature of the phases before
(after) the phase transition.

For the AFM Kitaev model, we further use DMRG to cal-
culate the ground state degeneracy at H111 . 0.2 for large
Lx to confirm its topological nature. In Fig. 2 (a), we find a
small energy split between two lowest energy states. To con-
firm these two states are exactly degenerate states in the ther-
modynamic limit, we perform DMRG calculation on torus by
targeting three lowest energy states with increasing Lx. As
shown in Fig. 3 (a), we find that the energy difference between
two lowest states E1 − E0 becomes vanishingly small when
the system length Lx & 8 , while the lowest two states are
separated from higher energy states by a finite gap indicated
by E2 − E0 [see Fig. 3 (a)]. Based on these calculation, the
two-fold ground state degeneracy of such topological phase is
identified. Meanwhile, we also checked the Wilson loop oper-
atorWy for differentLy = 3 system size by DMRG, as shown
in Fig. 3 (b), we find the topological phase is very robust and
independent of system length.

The gapped feature of the topological phase can also be
confirmed by the Von Neumann entanglement entropy SVN
defined by SVN = −Tr (ρA ln ρA), where ρA is the reduced
density matrix of part A for the bipartition of the system into
A and B, ρA is got by tracing out the degrees of freedom of
B part. Here, we consider the cut parallel to y direction and
measure the value of SVN for each cut at LA. For the gapped
state, the Von Neumann entropy should be independent on the
positions of each cut and display flat behavior. As shown in
Fig. 4 (b), we calculate a long cylinder by DMRG and find
the flat SVN as a function of LA, implying the existence of the
well defined gap in the topological phase. All of these confirm
the stability of the topological phase.

In the absence of magnetic field, the Kitaev model is exactly
solvable in terms of static fluxes and Majorana fermions5. We
also analyze the exact solution on finite systems as well as
infinite ladders. In each topological sector defined by a par-
ticular set of values of the Wilson loop operators, the ground
state energy is simply given by the energy of the filled fermi
sea, i.e. the sum of all negative Majorana eigenvalues. Fig-
ure 4 (a) shows the Majorana dispersion for infinite cylinders
in Wy = −1 sector with fixed width Ly = 3. We also com-
pared the exact solution on finite-sized systems with DMRG
and ED results, which are consistent with each other.

Interestingly, the three-leg system with Wy = −1 as we
identified here is a one-dimensional topological superconduc-
tor of Majorana fermions in the thermodynamic limit Lx →
∞. This is shown by computing sgn[Pf[H[0]]Pf[H[π]]], i.e.
the sign of the product of Pfaffians of the quadratic Majorana
Hamiltonian matrices at 1D momenta k = 0 and k = π. We
find a negative value for this topological index, correspond to
a 1D topological superconductor51. Therefore, we expect the
presence of boundary Majorana zero modes for open bound-
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Fig. 3: (Color online) (a) The DMRG calculation of the lowest three
energy states as function of Lx at H111 = 0.1 on torus. The en-
ergy difference between two lowest energy sates becomes vanish-
ingly small with increasing system size while they are separated from
higher energy sectors by a finite gap. (b)The DMRG results of the
Wilson loop operator Wy on torus for the antiferromagnetic (AFM)
Kitaev model with Lx = 6, 8.

ary conditions in the Lx direction. These boundary zero
modes can be regarded as a descendent of non-Abelian anyons
in the Kitaev phase in two dimensions, and their presence
should be robust against perturbations such as the magnetic
field. Indeed, we find the lowest two states are exactly degen-
erate on cylinders by DMRG, as shown in the Fig. 4 (b) for
H111 = 0.1, and the two-fold degeneracy in the entanglement
spectrum on cylinders, confirming the existence of Majorana
zero modes on the boundary.

Discussion and Summary.—In this letter, we report a robust
non-Abelian phase in the antiferromagnetic Kitaev model un-
der magnetic field. Based on extensive DMRG and ED simu-
lations, we identify its topological features by the energy spec-
tra, entanglement, topological degeneracy, and Wilson loop
operators. We find that the topological phase in the antifer-
rmagnetic Kitaev model is much more stable to increasing
magnetic field than the one in ferromagnetic Kitaev model.
This can be partially understood from the low field magni-
tude of magnetic susceptibility (Fig. 2 (a,b) insets), which in
turn have a simple interpretation. While at zero field the AFM
and FM Kitaev models are exactly equivalent by a majorana
sign transformation on one honeycomb sublattice5, since their
spin correlations are identical except opposite in sign, the FM
Kitaev model is nearly a ferromagnet, while the AFM model
has similar strong response to a staggered magnetic field but
a weak response to a uniform field. This difference between
the AFM and FM Kitaev coupling can also be seen approach-
ing from the infinite field limit47 based on semiclassical spin
wave analysis. Our findings suggest that, in materials with
dominant antiferromagnetic Kitaev interactions, a spin liquid
phase if present may be observable under application of fairly

substantial magnetic fields, in contrast to previous expecta-
tions.

Moreover, when the gapped chiral topological order is de-
stroyed by the large field in the AFM case, before entering
the polarized phase an intermediate gapless phase is found.
Within the intermediate gapless phase of the AFM model,
the DMRG algorithm converges to a state exhibiting mod-
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Fig. 4: (Color online) (a)Majorana dispersions on infinite ladders
(Ly = 3) for Wy = −1 sector at H111 = 0, which show finite gap
and quantized value of Wilson loop operators. These are consistent
with the numerics for finite fields (see main text). (b) The energy
density of two degenerate states on cylinders at H111 = 0.1, the inset
shows the Von Neumann entanglement entropy for long cylinders,
where the flat feature indicates the existence of the finite gap.

ulations in spin density around the partially-polarized mean
(about 10% ∼ 20% of full amplitude), which appear to be
pinned by the open boundaries (see Supplementary Material52

for details). Together with the gapless spectrum [Fig. 2 (a)]
and the large entanglement, these observations serve as evi-
dence that this gapless phase involves long range correlations
or entanglement, and thus it cannot be captured reliably in the
2D limit. A possible connection to experiments remains an
open question.
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