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The pairing symmetry of the Hubbard Hamiltonian on a triangle lattice with a nearly-flat low
energy band is studied with the determinant quantum Monte Carlo method. We show that the low
temperature phase is insulating at half-filling, even for relatively weak interactions. The natures of
the spin and pairing correlations upon doping are determined, and exhibit an electron-hole asym-
metry. Among the pairing symmetries allowed, we demonstrate that the dominating channels are
d-wave, opening the possibility of condensation into an unconventional dx2−y2 + idxy phase, which
is characterized by an integer topological invariant and gapless edge states. The results are closely
related to the correlated insulating phase and unconventional superconductivity discovered recently
in twisted bilayer graphene.

Introduction- Over the last decade, studies of bilayer
and rotated layer graphene have revealed a wealth of
information concerning the modifications to the Dirac
band structure of a single honeycomb lattice which re-
sult from interlayer hybridization t⊥. Much of the ini-
tial work1–3 explicitly tackled the very large unit cells
associated with small twist angles θ. Although Bernal
(AB) stacked bilayers lose linear dispersion and chirality
properties, it was shown that these can be restored at
other twist angles. For intermediate 2◦ < θ < 15◦, for
example, Dirac bands with a renormalized velocity per-
sist. These calculations helped clarify experimental ob-
servations of graphene-like properties even in materials
with large numbers of planes4–9, far from the single-layer
graphene limit.

Beyond the continued presence of Dirac dispersion, two
other fundamental conclusions were drawn for twisted
graphene bilayers. First, at certain ‘magic angles,’ flat
bands are formed from the merger of van Hove singulari-
ties on either side of the Dirac point2. Second, associated
with these flat bands, electronic states become confined
in the ‘AA’ regions of the Moiré pattern formed by the
rotation,

Along with these band structure investigations, the ef-
fects of interlayer hybridization on magnetic and super-
conducting properties in the presence of an on-site Hub-
bard interaction U were explored10–14. In a single honey-
comb layer there is a critical value Uc/t ∼ 3.8715,16 for the
onset of antiferromagnetic long range order (AFLRO).
For Bernal (AB) bilayer stacking, at t⊥ = t, it was shown
that Uc/t ∼ 2.211, and is accompanied by the opening of
a single particle gap ∆sp at a roughly comparable U/t.
The presence of sites with different coordination num-
bers, z = 3 and z = 4, lends an additional richness to
the magnetic behavior, as does the possibility of quench-
ing AFLRO through interlayer singlet formation in the
(unphysical) regime of larger t⊥.

These explorations of band structure and magnetism
lay an essential foundation for the very recent discov-

ery of unconventional superconductivity in magic angle
graphene bilayers17,18, which themselves already build on
work on novel pairing in single layers19,20. Indeed, the
understanding of the Moiré triangular superlattice of AA
and AB sites provides a possible approach to the under-
standing of pairing in these systems based on effective
Hamiltonians which treat extended AA and AB regions
as ‘sites’ of a simplified model.

This approach underlies a recent paper which considers
topological superconductivity in a two orbital Hubbard
model on a triangular lattice21. Importantly, it opens the
door to the use of Quantum Monte Carlo (QMC) meth-
ods, which can provide an exact treatment of correlated
electron physics, but are limited to lattices of finite size,
and are unfeasible for direct treatment of the immense
unit cells at small θ. Despite the sign problem22–24, QMC
approaches provided an early, essential clue concerning d-
wave pairing in the single band Hubbard Hamiltonian on
a square lattice25–27, and hence, if applicable to an ap-
propriate description of bilayer graphene, might similarly
lend important insight.

In this paper, we apply QMC approaches to the Hub-
bard Hamiltonian on a triangle lattice with a nearly-flat
low energy band, which yield results sharing interesting
features with those observed experimentally17,18. Our
key conclusions are: (i) a correlated insulator arises at
half-filling even at relatively small values of U/t; (ii) the
dominant pairing symmetry is d-wave, degenerate in the
x2−y2 and xy channels, opening the possibility of a chiral
phase; (iii) (short range) antiferromagnetic fluctuations
are present and on sites participating in the flat band
are significantly stronger below half-filling (ρ = 1) than
above. Finally, (iv) the tendency to superconductivity
is also asymmetric, with a stronger response to doping
below half-filling.

In the remainder of this paper we describe our effec-
tive model, providing some additional motivation, discuss
its band structure, and present the qualitative physics
within mean field theory, along with the associated topo-
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logical properties. We then turn the results of DQMC
for the Mott gap and magnetic correlations, and, finally,
superconductivity.

FIG. 1. (a): The effective lattice which results from treat-
ing each AA region as an effective ‘site’ connected by mod-
ulated hopping amplitudes. Three elementary vectors e1,2,3,
the A,B,C sublattices are indicated. (b): The honeycomb
lattice in the limit t′ = 0. (c): The dice lattice in the limit
t = 0. (d): The band structure of the effective model in the
first Brillouin zone. (e): The density of states corresponding
to the band shown in (d). In (e) we also show the density of
states of the limiting cases of the triangular (t′ = t) lattice
and hexagonal (t′ = 0) lattice. In the latter case, we do not
show the δ-function peak at E/t = 0. In (d) and (e), the
anisotropic factor t′/t = 0.3.

The effective Model- Twisted bilayer graphene has
been found to have nearly flat low-energy bands for spe-
cial discrete angles, where the Moiré pattern is a superlat-
tice comprised of AA and AB(BA) stacking regions28–32.
The wave function is highly concentrated in the AA re-
gions and is associated with a band with weak dispersion.
A correlated insulator is found at half filling17. These
considerations suggest the possibility of simulating each
AA region as a ‘site’ in an effective model which includes
a charging energy penalty for occupation of AA regions,
and result in an effective Hubbard Hamiltonian on a tri-
angle geometry with modulated hoppings giving rise to
a nearly flat low energy band,

H = −
∑
〈lj〉σ

tljc
†
jσclσ + U

∑
i

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
. (1)

Here c†jσ and cjσ are the creation and annihilation opera-

tors, respectively, at site j with spin σ =↑, ↓. niσ = c†iσciσ
is the number of electrons of spin σ on site i, and U is the
on-site repulsion. The modulation t, t′ can be understood

by a constuction which begins with a honeycomb lattice
with hopping t and then adding a site at the center of
each hexagon in the honeycomb lattice. These sites are
linked with hopping t′ to their six near neighbors. See
Fig. 1(a), (b). Throughout the paper we set to t = 1 as
the unit of energy.

The modified triangle lattice has a three-site unit cell.
In momentum space, the U = 0 Hamiltonian is,

H0(k) =

 0 −tγk −t′γ∗k
−tγ∗k 0 −t′γk
−t′γk −t′γ∗k 0

 , (2)

with γk =
∑
j e
ik·ej (j = 1, 2, 3). The spectrum can be

directly obtained and contains three branches, as shown
in Fig. 1(c), (d). The upper and lower bands have sig-
nificant dispersion, while the middle band has a narrow
width, with a flatness that can be continuously tuned
by t′. At either extreme of hopping t = 0 (dice lattice)
and t′ = 0 (honeycomb lattice), there is a completely flat
band intersecting the Dirac points at zero energy. The
flat band in the limit t′ = 0 is formed by isolated sites,
thus is trivial compared to that of the dice lattice.
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FIG. 2. The pairing symmetries considered in this paper.
A partner down spin fermion is created on the six nearest-
neighbor sites of the up spin fermion placed at the hexagon
center. For triplet pairing, there is an additional sign when
the pairing is along the opposite direction of the arrow.

Pairing symmetries and mean-field description of the
superconducting state- In the presence of on-site repul-
sive interactions, pairing has to be nonlocal. One can
consider a collection of operators ∆α which create an
up spin electron on a site, with a surrounding cloud of
down spin electrons on its near-neighbors. The pairing
symmetries should be in compatable with the underlying
lattice. The form of the self-consistent BCS gap equation
∆k = −

∑
k′ Γkk′(∆k′/2Ek′) tanh(Ek′/2T ) for Γkk′ > 0

suggests that only solutions ∆k which change sign (have
nodes) in momentum space are allowed33. Although the
pairing amplitudes will differ on strong and weak bonds
due to the hopping modulation, the symmetry remains
that of the triangle lattice, i.e. described by the crystal
symmetry group D6h with kz = 0. The possible pairing
states can be classified by the irreducible representations
of D6h, and include the singlet pairing symmetries: s∗-
wave, dx2−y2-wave, dxy-wave, and triplet pairing symme-
tries: px-wave, py-wave, f -wave. These are schematically
shown in Fig. 2. Since dx2−y2 , dxy (px, py) belong to the
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same representation E2g (E1u), they are degenerate, and
a linear combination of them is possible when it is ener-
getically favored.

FIG. 3. The quasiparticle spectrum on zigzag edge ribbon:
(a), the d + id chiral superconducting state; (b), the triplet
p+ ip state. The parameters are t′/t = 0.3,∆ = 0.3,∆′ = 0.1
and µ = 0.22 (corresponding to ρ = 0.94).

In the Nambu representation, the superconducting
Hamiltonian in mean-field theory is,

HSC =
∑
k

Ψ†kHkΨk, (3)

with Ψk = (cA,k↑, cB,k↑, cC,k↑, c
†
A,−k↓, c

†
B,−k↓, c

†
C,−k↓)

T

and

Hk =

(
H0(k)− µ ∆†k

∆k −H0(k) + µ

)
, (4)

∆k =

 0 ηk ζη
′∗
k

ζη∗k 0 η′k
η′k ζη

′∗
k 0

 .

Here µ is the chemical potential. ηk =
∑
j ∆je

ik·ej and

η′k =
∑
j ∆′je

ik·ej , with pairing amplitudes ∆j and ∆′j
which can be read from the real space arrangement in
Fig. 2; ζ = −1(+1) for singlet (triplet) pairing. In the
presence of these more complex interband pairings, the
quasiparticle spectrum does not follow the standard BCS
form, and it is not straightforward to identify whether
there are zero-energy quasiparticles. By numerically di-
agonalizing the Hamiltonian Eq. (4), it is found that the
s∗-wave state is fully gapped, and the triplet f -wave state
has nodes.

Although the dx2−y2- and dxy-wave pairings are gap-
less, the chiral one arising from their linear combination
is gapped. The chiral state is a topological superconduc-
tor characterized by an integer Chern number34,

C =

occ.∑
n

1

2π

∫
BZ

dkxdkyFn, (5)

Fn = (5×An)z,An = i〈unk|
∂

∂k
|unk〉.

Using a gauge-independent method, the Chern number
can be directly calculated numerically35. C = 2 for the

dx2−y2 + idxy state. In the presence of edges, gapless
states appear which tranverse the gap (see Fig. 3). The
triplet chiral p + ip-wave state is also topological, with
C = 1.

With this general mean field insight in hand, we turn
now to an explicit evaluation of the superconducting cor-
relation functions in the different pairing channels.

DQMC study of the dominating pairing symmetry.-
The Hubbard model Eq. (1) can be solved numerically
by means of the DQMC method26,36. In this approach,
one decouples the on-site interaction term through the
introduction of an auxiliary Hubbard-Stratonovich field
(HSF). The fermions are integrated out analytically, and
then the integral over the HSF is performed stochas-
tically. The only errors are those associated with the
statistical sampling, the finite spatial lattice and inverse
temperature discretization. All are well-controlled in the
sense that they can be systematically reduced as needed,
and further eliminated by appropriate extrapolations.
The systems we studied have N = 3×L×L sites with L
up to 10. The sign problem22–24 limits accessible temper-
atures unless special symmetries prevent the product of
determinants, which serves as the HSF probability, from
becoming negative.
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FIG. 4. The (a) density and (b) average sign as functions of µ
for linear lattice sizes L = 6, 8, 10. Here U = 2, T = 1/12 and
t′/t = 0.3. From (a) we see a clear indication of the formation
of a insulating gap at half-filling. (b) indicates that accessible
temperatures will be limited to T & t/12 at µ ∼ −0.5

Figure 4 shows the density ρ and average sign 〈sgn〉 as
functions of µ at U = 2. At t′ = 0, the geometry consists
of a honeycomb lattice and a collection of independent
sites; there is no sign problem. As t′ increases, the lat-
tice is no longer bipartite and 〈sgn〉 < 1. As shown in
Fig. 4(b) at T = 1/12, U = 2, t′/t = 0.3, 〈sgn〉 & 0.6
over the full range of densities. ρ(µ) has a flat ρ = 1
region near µ = 0 which becomes more pronounced as
the lattice size increases. This implies that the system
exhibits an insulating phase at half filling, with the gap
size ∆sp ∼ 0.5t set by the width of the ρ = 1 plateau.
(This value is of the same order of magnitude as found
in the Bernal case ∆sp ∼ 0.3t at U = 4 and t′ = t.
See Ref.11.) The correlated insulator behavior is consis-
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tent with that recently observed in magic-angle graphene
superlattices17, indicating the model of Eq. (1) captures
one of the key experimental features. A (Slater) gap ap-
pears at weak coupling also for a square lattice. Its ori-
gin there is in the AFLRO which onsets for any U > 0
owing to Fermi surface nesting. For generic geometries
without AFLRO, a non-zero Uc, set by the bandwidth,
is required to enter the Mott phase. Here the flatness of
the central band induces strong correlation physics even
at small values of U relative to the total bandwidth.

Short range antiferromagnetic correlations are also
present, as seen in Fig. 5. Values are identical in the
triangular lattice limit t′ = t. mt grows steadily in mag-
nitude as t′, and hence frustration, are reduced. mt′

decreases with weakening t′ [Fig. 5(a)]. Data for mt at
ρ = 0.94 and ρ = 1.06 are virtually indistinguishable.
However, at t′/t = 0.3, mt′ is roughly three times larger
in magnitude for dopings below ρ = 1 than for dopings
above ρ = 1 [Fig. 5(b)]. This suggests a similar asym-
metry might occur for superconductivity which plays off
magnetic fluctuations.

To determine the dominating pairing symmetry, we
evaluate the uniform pairing susceptibility,

χα =
1

N

∫ β

0

dτ
∑
ij

〈∆α
i (τ)∆α†

j (0)〉 , (6)

The time dependent pairing operator ∆α
i (τ) =∑

j f
α
ij e

τHci↑cj↓e
−τH with fαij = 0,±1 or ±2 for the

bond connecting i and j, depending on the pairing sym-
metry α (Fig. 2). The effective susceptibility χαeff =
χα − χα0 , subtracts the uncorrelated part χα0 from χα,
thereby more directly measuring the enhancement due to
U . χαeff can be used to evaluate the pairing vertex33,37.
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FIG. 5. The near-neighbor spin correlations mt′ and mt along
the t′ and t bonds respectively. (a) as a function of t′/t for
fixed U = 2. (b) As a function of U for fixed t′/t = 0.3. The
temperature T = 0.2t. Results for densities on either side of
half-filling are shown.

Figure 6 shows χαeff vs temperature for different pairing
channels at ρ = 0.94 and ρ = 1.06 for U = 2 and t′/t =
0.3. The values for triplet p - and f -wave pairings are
negative (repulsive); those of the corresponding singlet
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FIG. 6. The effective pairing susceptibility at ρ = 0.94 as a
function of temperature for different pairing channels. Here
U = 2 and the lowest temperature accessed by DQMC is
T = 1/13. Here ∆′/∆ = 0.3 and the results are similar for
other ratios.

s∗- and d- channels are positive (attractive). Moreover,
χdeff increases rapidly at low temperatures (in contrast to
the behaviour of χs∗eff .
χeff cannot distinguish degenerate symmetries, such as

dx2−y2 , dxy and px, py. Linear combinations will have
the same χeff . To determine the optimal pairing sym-
metry, an analysis of the Ginzburg-Landau free energy
such as in Ref.19 should be performed. From our fi-
nite lattice DQMC results, where no spontaneous sym-
metry breaking is possible, we can infer only that a chiral
dx2−y2 + idxy symmetry is a candidate phase. A quali-
tative argument in favor of the chiral phase is that it
allows a non-trivial solution of the gap equation (see dis-
cussion above), while leaving the gap everywhere large.
This suggests it might be energetically favored33.

Conclusions.- The appropriate lattice geometry (band
structure) and nature of interactions that need to be in-
corporated in a Hamiltonian describing superconductiv-
ity in twisted bilayer graphene are, of course, uncertain
at this point. Suggestions include bilayer triangular and
honeycomb models21,38–40, and interactions which have
SU(4) intra and inter-orbital symmetry. Studies starting
from a continuum model41 or considering other pairing
mechanisms42 have also appeared. The situation par-
allels that following the discovery of cuprate supercon-
ductivity, where single band (square lattice) models con-
tended alongside three band (CuO2) models, and both
on-site U (spin fluctuation) and inter-band V (charge
fluctuation) mechanisms were explored.

In this work, we have studied the pairing symmetry of a
triangular lattice Hubbard Hamiltonian with modulated
hoppings using the DQMC method. We first argued that
the band structure of this model incorporates a nearly-
flat low energy band, which underlies the physics of the
graphene superlattice, and then demonstrated that in-
sulating behavior occurs at weak interactions. Among
the pairing symmetries allowed by the triangular sym-
metry, the dominating pairing channels are linear com-
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binations of the degenerate dx2−y2 and dxy symmetries,
including dx2−y2 + idxy pairing, a form which is topolog-
ical and characterized by an integer topological invariant
and gapless edge states.
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Appendix A: Evolution of the band structure
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FIG. 7. The evolution of the band structure as a function of
the anisotropic ratio t′/t.

The band structure evolves with the anisotropic ratio
t′/t, which is shown explicitly in Fig.7. For t′ < t the
trivial flat band disperses as t′/t increases. The t = 0
limit is the dice lattice and the Hamiltonian in the mo-
mentum space writes as,

Hdice0 (k) =

 0 0 −t′γ∗k
0 0 −t′γk
−t′γk −t′γ∗k 0

 . (A1)

The energy spectrum contains three branches: E
1(2)
k =

±
√

2t′|γk| and E3
k = 0. The flat band also disperses for

t/t′ 6= 0. At t = t′ the band structure becomes that of
the triangle lattice.

Appendix B: The superconducting order parameter

When t = t′, the geometry is the normal triangle lat-
tice. The superconducting Hamiltonian in the momen-

tum space is,

Htk =

(
Ht0(k)− µ ∆t†

k
∆t

k −Ht0(k) + µ

)
, (B1)

Here the noninteracting Hamiltonian is Ht0(k) = −t(γk+
γ∗k). The superconducting order parameter is ∆t

k =∑3
j=1 ∆j(e

ik·ej + ζe−ik·ej ) with pairing amplitudes ∆j

which can be read from the real space arrangement in
Fig. 2; ζ = 1(−1) for singlet (triplet) pairing. Figure 8
shows the momentum dependence of ∆t

k, which is con-
sistent with the symmetries of the corresponding pairing
channels.

FIG. 8. The momentum dependence of ∆t
k for s∗, dx2−y2 ,

dxy, f , px, py pairing channels.

For the case t′ 6= t, it is expected that the pairing
amplitude ∆′ on bonds with t′ should be different from
that on bonds with the hopping amplitude t. However
the ratio ∆′/∆ can not be determined by our method.
We calculate the effective susceptibility for different val-
ues of ∆′/∆ and find that the d-wave phase is always
dominate(see Fig.9).
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FIG. 9. The effective susceptibility at different ∆′/∆ for s∗-,
d-wave pairing channels. The filled (open) symbols represent
d-(s∗-)wave pairing phases. The f - and p-wave phases have
smaller χeff , and are not shown here. The filling is ρ = 0.94.
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A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Vizzini,
H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W. A.
de Heer, A. Lanzara, and E. H. Conrad, Phys. Rev. Lett.
103, 226803 (2009).

6 J. Hicks, M. Sprinkle, K. Shepperd, F. Wang, A. Tejeda,
A. Taleb-Ibrahimi, F. Bertran, P. Le Fèvre, W. A. de Heer,
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