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We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a
general theoretical framework and show that thermally stable traps can be generated by magnetically
driving the particle’s internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next
we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for
quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real
time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize
for two specific setups, one based on a superconducting circuit and another one based on surface
acoustic waves.

I. INTRODUCTION

The advent of cold atoms trapped in optically defined
potential landscapes has enabled experimental break-
throughs in various discplines ranging from condensed-
matter physics to quantum information processing1,2.
Especially, thanks to largely tunable system parame-
ters and the possibility to mimic and gain understanding
of complex solid-state systems, ultra-cold atomic gases
have become a rich playground and valuable tool to ex-
plore novel quantum many-body physics3. On a com-
plementary route towards controllabe quantum matter
and a fully fledged quantum simulator, solid-state plat-
forms allow to pursue the same goals in a very differ-
ent physical context, both bearing challenges such as
to overcome impurity-induced disorder in semiconduc-
tor systems4, but also offering the potential to benefit
from long-range inter-particle interactions, access to a
wide variety of quasiparticles and, in principle, means
to build scalable on-chip architectures for quantum in-
formation processing. To this end, different kinds of
quasiparticle traps in semiconductor nanostructures have
been proposed and realized5–11. Likewise, in the realm
of atomic12,13 and molecular14,15 systems, mesoscopic on-
chip platforms have been tailored to miniaturize experi-
ments with ultracold quantum matter. Apart from more
established solid-state platforms like, e.g., quantum-dot
based architectures16, it has recently been proposed17
to employ surface acoustic waves (SAWs) to trap and
control semiconductor quasiparticles such as electrons
in intrinsically scalable and tunable acoustic lattices.
The latter operate at elevated energy scales with typ-
ical lattice spacings a & 100 nm and recoil energies
ER/kB ∼ (0.1 − 1) K (where ER = h2/(8ma2) with an
effective particle massm which is typically of the order of
the electron rest mass) as compared with optical lattices
where typically ER/kB ∼ 10−7K18. Inspired by these
results and recent advances in the rapidly evolving field

of nanomagnetism19,20, i.e., the generation and control
of (high-frequency) magnetic fields on the nanoscale, the
present work aims to bring the favourable scaling prop-
erties and flexibility of optical lattices to the solid-state
domain.

In contrast to electrically defined confinement poten-
tials for charged particles in quantum wells, the spin
degree of freedom (DOF) can be addressed with mag-
netic field gradients in order to trap and control parti-
cles in semiconductor nanostructures; note that this is in
close analogy to the working principle of optical dipole
traps where the induced AC Stark shift of the atomic
levels gives rise to a dipole potential for the atom21.
In previous theoretical proposals22,23 and experimental
demonstrations24,25, magnetic traps for charge carriers
in low-dimensional quantum wells were induced by a
spatially inhomogeneous giant Zeeman splitting in di-
lute magnetic semiconductors (DMS)26, which feature
extremely large g-factors ∼ 102. In particular, microscale
magnets27 and current loops28 as well as superconducting
(SC) vortex lattices23 have been considered in this con-
text. So far, however, none of these previous results have
yet been tailored to scalable architectures and, moreover,
only static traps with limited tunability of system param-
eters have been taken into account. In this work, we take
a significant next step towards tunable and scalable mag-
netic lattices and develop a general theoretical framework
fit to describe the latter. We show that a non-standard
form of the Hubbard model with two independently tun-
able hopping parameters can readily be implemented.
Ultimately, two alternative implementations of the de-
veloped model will be discussed in detail, one based on
SAWs and the other based on magnetic field gradients
generated by SC nanowires, both operated in yet un-
explored parameter regimes and with highly favourable
tunability and scalability properties.

The basic scheme is depicted in Fig. 1. We consider
electrons with two internal (spin) states |↑〉 and |↓〉 which
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are confined to a conventional low-dimensional quantum
well or a purely two-dimensional material, e.g., from the
group of transition-metal dichalcogenides (TMDs), and
subject to a spatially inhomogeneous magnetic driving
field. Due to the thereby induced AC Stark shift acting
on the internal energy levels, the electrons feel an effec-
tive state-dependent potential which is periodic along one
axis (in the one-dimensional setup we consider here), as
illustrated in Fig. 1. As a result, the electrons are at-
tracted to a regular lattice of antiferromagnetic charac-
ter, since the two internal states are found to be trapped
at nodes or antinodes of the magnetic field distribution,
respectively, cf. Fig. 1(b). For simplicity, we consider
only one-dimensional systems, but all results can readily
be generalized to two dimensions.

This paper is organized as follows. In Sec. II, we
first introduce the theoretical framework to describe mag-
netic trapping potentials for electrons confined to a two-
dimensional electron gas (2DEG). All requirements for
the validity of the theoretical treatment and relevant ap-
proximations are discussed in Sec. IIA, followed by an
investigation of hopping and interactions in magnetic lat-
tices [see Sec. II B] and a detailed description of possible
implementations in Sec. III. Finally, we will provide case
studies for both implementations with realistic parame-
ters in Sec. IV.

II. GENERAL THEORETICAL FRAMEWORK

A. Single-particle physics in magnetic traps

Single-particle physics.—We consider an electron con-
fined to a 2DEG with effective mass m and the two in-
ternal states |↑〉 and |↓〉 exposed to an external magnetic
field, B(r, t) = B⊥(r, ωt) + B||. The spatially homoge-
neous, static (in-plane) part of the field, B|| = B0ẑ, gives
rise to a Zeeman splitting, ~ω0 = gsµBB0, and the inho-
mogeneous (time-dependent or time-independent) (out-
of-plane) field component, B⊥(r, ωt) = B1Λ(r) cos(ωt)x̂,
drives spin transitions with frequency ω. The corre-
sponding Hamiltonian can be written as (here and in the
following, we adopt the convention that ~ = 1)

H =
p̂2

2m
+ h(ẑ) =

p̂2

2m
+
ω0

2
σz +

Ω(ẑ)

2
cos(ωt)σx, (1)

where ẑ, p̂, σx = |↑〉 〈↓|+ |↓〉 〈↑|, σz = |↑〉 〈↑| − |↓〉 〈↓| de-
note the particle’s position, momentum and Pauli spin
operators, respectively. The inhomogeneous Rabi fre-
quency is denoted by Ω(ẑ) = Ω0Λ(ẑ) with Ω0 = γB1,
where γ = gsµB is the gyromagnetic ratio of the electron.
We assume Λ(ẑ) = cos(kẑ) in the following, where k de-
notes the wavevector, but more general periodic functions
can be considered. While the universality of this model
will become more apparent later, especially when we con-
sider different implementations in Sec. III, we may al-
ready distinguish between two physically dissimilar cases
both captured by Eq. (1): (i) static traps (ω = 0) are

|↓〉

|↑〉 |+〉

|−〉

∆

Ω(r)
ω0

(a)

∼ Ω(r)2

∆

(b)

Figure 1: (color online). Schematic illustration of the trap-
ping scheme and magnetic lattice. (a) At each point, the
two-level spin systems experience an AC Stark shift which
defines an effective (state-dependent) potential landscape for
the electrons. (b) The local eigenenergies ±ε(ẑ) of the two
spin components |+〉θ(ẑ) and |−〉θ(ẑ) are shifted with respect
to each other. The energies +ε(ẑ) (dashed) and −ε(ẑ) (solid)
are shown for ∆/Ω0 = 10 (blue), ∆/Ω0 = 1 (black) and
∆/Ω0 = 0 (red) in units of Ω0. The hopping matrix elements
[see Sec. II B] tc and t± denote next-nearest neighbour spin-
conserved and nearest-neighbour spin-flip assisted tunneling,
respectively. V0 denotes the trap depth.

time-independent and (ii) dynamic traps (ω > 0) are ex-
plicitly time-dependent realizations of the model. Due to
their intrinsic flexibility and in-situ tunability of system
parameters, we put the main focus on dynamic magnetic
traps, i.e., ω > 0.

Within a co-rotating frame and rotating-wave ap-
proximation (RWA) for |∆| = |ω0 − ω| � ω0 + ω
and Ω0 � ω, the time-independent internal model
hRWA(ẑ) = [∆/2]σz + [Ω(ẑ)/2]σx can be diagonalized
exactly which yields the local eigenenergies ±ε(ẑ) with
ε(ẑ) = 1

2

√
Ω2(ẑ) + ∆2 and position-dependent eigen-

states,

|+〉θ(ẑ) = cos
θ(ẑ)

2
|↑〉+ sin

θ(ẑ)

2
|↓〉 ,

|−〉θ(ẑ) = − sin
θ(ẑ)

2
|↑〉+ cos

θ(ẑ)

2
|↓〉 ,

where θ(ẑ) = arcsin[ Ω(ẑ)√
Ω2(ẑ)+∆2

]. The trap depth of the

effective potentials ±ε(ẑ), which is given by the difference
|max
z

ε(ẑ)−min
z
ε(ẑ)|, depends only on Ω0 and ∆ and will

be denoted by V0 in the following [see Fig. 1]. In the limit
Ω0 � |∆|, the standard result from second-order pertur-
bation theory, ε(ẑ) ≈ |∆|/2 + Ω2

0Λ2(ẑ)/(4|∆|), can be
recovered. Note that the periodic modulation of the in-
ternal energy levels |±〉θ(ẑ) amounts to a state-dependent
potential for the motional DOF such that the states are
trapped at nodes and antinodes of the driving field, re-
spectively. As a consequence, magnetic trapping poten-
tials for the two spin components are shifted with re-
spect to one another, as illustrated in Fig. 1(b). In fact,
this result is reminiscent of state-dependent optical lat-
tices which can be enriched by laser-assisted tunneling
between internal atomic states29,30, whereby gauge fields
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for ultracold atoms can be generated31–34.
Note that, in the realm of the RWA introduced before,

the Rabi frequency Ω0 is limited to relatively small val-
ues, as compared to other relevant energy scales. This
limitation can be overcome, to some extent, by deriv-
ing an effective Floquet Hamiltonian without RWA, see
Appendix A for details.

Until now, we have not explicitly taken into account
the presence of the kinetic term, p̂2/(2m), in Eq. (1).
Its presence induces a coupling between the local spin
eigenstates |±〉θ(ẑ) and, as a consequence, undesired spin
flips may result in particle loss from the trap35. In
order to quantify this effect, it is instructive to intro-
duce a unitary transformation U(ẑ) which diagonalizes
hRWA(ẑ) at each point, such that |+〉θ(ẑ) = U(ẑ) |↑〉
(|−〉θ(ẑ) = U(ẑ) |↓〉). The thereby transformed Hamil-

tonian, H̃ = U†[ p
2

2m + hRWA(ẑ)]U = p̂2/2m+ h̃(ẑ) + ∆T ,
contains the kinetic term from Eq. (1), the diagonal (in
the local eigenbasis spanned by |+〉θ(ẑ) and |−〉θ(ẑ)) spin
Hamiltonian h̃ = U†hRWAU and an additional term ∆T ,
which stems from the transformation of the kinetic term,
see Appendix B for details. If the latter contributes
only a small correction to the system’s characteristic en-
ergy scale set by the motional quantum ωHO, the in-
ternal spin DOF follows adiabatically the local direc-
tion of the magnetic field and the contribution from ∆T
can be safely neglected. For this adiabatic approxima-
tion (also refered to as Born-Oppenheimer approxima-
tion) to hold, the local eigenstates of the two-level system
spanned by |+〉θ(ẑ) and |−〉θ(ẑ) must be sufficiently sep-
arated in energy. If this energy gap by far exceeds ωHO,
i.e. χ := ωHO/|∆| � 1, spin-flip processes are typically
negligible35.
Requirements.—Following the line of arguments out-

lined above, we have implicitly made a few assumptions
about the system parameters which we are going to sum-
marize in the following: (i) We have assumed idealized
two-level spin systems with well-resolved energy levels
and thus a relatively small intrinsic linewidth Γ � |∆|.
(ii) We require a weak electron-phonon coupling, i.e., the
spontaneous phonon emission rate γ which quantifies mo-
tional damping of the electron must be small compared
to all other characteristic system’s time scales; explic-
itly, we demand that it should be smaller than the mo-
tional transition frequencies, i.e., γ � ωHO. (iii) In order
to obtain thermally robust traps and minimize particle
loss from the trap, we need thermal energies kBT � V0

(where kB denotes the Boltzmann constant). Typically,
in case ground-state cooling is desired, this requirement
is replaced by the stronger condition kBT � ωHO. (With
at least one bound state, nb = V0/ωHO ≥ 1, supported
by the trap, the latter condition is more restrictive.)
(iv) The magnetic trap depth V0 is either much smaller
than Ω0, i.e. V0 = Ω2

0/(4|∆|) in the perturbative regime
Ω0 � |∆|, or approaches V0 → Ω0/2 in the opposite
limit |∆|/Ω0 → 0; however, in both cases V0 is limited
from above by Ω0/2. In terms of other relevant physi-

cal parameters contained in Ω0 = γB1, this means that
strong magnetic radio-frequency (RF) fields ∼ B1 and
large g-factors are favourable. (v) The Rabi frequency
Ω0, in turn, is typically much smaller than the driving
frequency within the RWA, Ω0 � ω, but this condition
can be relaxed as mentioned earlier. However, for too
large Ω0, even the high-frequency expansion of the Flo-
quet Hamiltonian fails to converge. For our purposes, we
therefore demand Ω0 < ω. (vi) Finally, introducing the
small number εad = V0/ω . 0.5, the adiabaticity condi-
tion χ � 1 can be rewritten as ω � nb|∆|/εad. How-
ever, this condition may be relaxed at the cost of higher
loss rates. The Majorana loss rate Γloss, compared to
the natural frequency scale ωHO of the trap, can be es-
timated as η := Γloss/ωHO ≈ 2π exp (−4/χ)35 (compare
also Ref.36 for a related description of non-adiabatic spin-
flips in radio-frequency dressed magnetic traps for cold
atoms); deep in the adiabatic regime with χ = 0.1, spin-
flip losses are negligible as η ∼ 10−17, but even for mod-
erate values χ = 0.5 (χ = 1), the loss rates are relatively
small with η ≈ 2 · 10−3 (η ≈ 1.2 · 10−1). Hence, the
adiabaticity condition may be relaxed in order to obtain
well-performing traps. Putting these findings together
results in a concise list of necessary requirements and, in
general, without resorting to the RWA or the perturba-
tive regime where Ω0 � |∆|, we find:

γ, kBT � ωHO . V0 . Ω0/2 . ω/2. (2)

In order to obtain reliable magnetic traps, both imple-
mentations discussed in Sec. III need to be operated in
a parameter regime where Eq. (2) is fulfilled and η is
sufficiently small.

B. Engineering of Hubbard models

Towards many-body physics.—Based on the theoreti-
cal framework fit to describe single traps as worked out
above, the following paragraphs are dedicated to the
study of Fermi-Hubbard physics in magnetic lattices,
i.e., periodic arrays of magnetic traps. Explicitly, we
show that spin-dependent forms of the Hubbard model
with independently tunable hopping parameters tc and
t± can be realized with the aid of additional driving
fields [see Appendix C for more details] in the fashion
of zigzag optical lattices for cold atoms37,38. Here and
in the following, tc denotes spin-conserved next-nearest
neighbour coherent tunneling processes and t± describes
spin flip-assisted tunneling between adjacent lattice sites,
cf. Fig. 1(b). Another genuine prospect is the opera-
tion in a low-temperature, strong-interaction regime (at
dilution-fridge temperatures T ≈ (10 − 100) mK) where
the thermal energy is much smaller than the hopping pa-
rameters tc, t± which, in turn, are small compared to the
on-site interaction strength U , i.e., kBT � tc, t± < U .

As a starting point, we consider the single-particle
Hamiltonian H̃ within the adiabatic approximation [see
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Sec. IIA] which can be written as

H̃ ≈ p̂2

2m
+ h̃(ẑ) =

p̂2

2m
+ ε(ẑ)σ̃z, (3)

with σ̃z = |+〉〈+| − |−〉〈−|. In a next step, we now
consider an ensemble of electrons in a magnetic lattice.
At sufficiently low temperatures (kBT � ωHO) such that
the electrons are confined to the lowest Bloch band, we
find that the system is characterized by a Fermi-Hubbard
model of the form39

HFH = −tc
∑
〈〈i,j〉〉,s

(c†iscjs + h.c.)− ε
∑
is

(−1)inis

+
∑
i

µini +
∑
s,s′

∑
ijkl

Uijklc
†
is′c
†
jsclscks′ , (4)

where the fermionic operator c(†)is annihilates (creates) an
electron with spin s = +,− at lattice site i, nis = c†iscis
and ni = ni+ +ni− are the spin-resolved and total occu-
pation numbers, respectively. The summation over 〈〈·, ·〉〉
is performed for next-nearest neighbours (accordingly,
〈·, ·〉 in Eq. (5) denotes a summation over neighbouring
sites). Uijkl =

∫
dzdz′w∗i (z′)w∗j (z)UC(z, z′)wk(z)wl(z

′)
quantifies the inter-particle interaction strength (U =
Uiiii denotes the on-site interaction strength), where wi
is a Wannier basis function which is typically strongly
localized around the respective lattice i. Typically, it
is inversely proportional to the lattice constant a, de-
pends on the dielectric constant ε of the substrate and
can be reduced with the aid of an additional metal-
lic screening layer positioned at a distance dscr from
the 2DEG. The screened Coulomb interaction can be
written as UC = e2fs(z, z

′)/(4πε|z − z′|), where fs =

1−|z−z′|/
√

(z − z′)2 + 4d2
scr incorporates screening39,40.

In Eq. (4) the spin-dependent energy offset ∼ ε [see
Fig. 1] incorporates the remnant of the Zeeman split-
ting (in the rotating frame) and the AC Stark shifts.
Moreover, the site-dependent chemical potential µi can
take disorder effects into account17. In the tight-binding
limit where the potential is sufficiently deep, i.e., ER �
V0 (with the recoil energy ER = k2/2m), the hop-
ping parameter is approximately given by tc/ER ≈
(4/
√
π)(V0/ER)3/4 exp[−2

√
V0/ER]3. Realistic param-

eter values [see below for details] suggest that the low-
temperature, strong-interaction regime U ≈ 10tc � tc �
kBT ≈ 1µeV lies within reach with state-of-the-art exper-
imental techniques.

As illustrated in Fig. 1(b), the standing-wave field dis-
tribution, as described by Eq. (1), gives rise to spatially
separated traps for the different spin components. Hence,
adjacent potential minima host two different spin states
|+〉θ(ẑ) and |−〉θ(ẑ), respectively. As a consequence, spin-
flip assisted tunneling ∼ t± between neighbouring lattice
sites is strongly suppressed, whereas next-nearest neigh-
bours, occupying the same internal state, are coupled
much more strongly via direct tunneling∼ tc, as captured
by Eq. (4). In order to control these hopping matrix el-
ements independently, we consider the application of an

Figure 2: (color online). Overview of log trat as a function
of Ωdr/Ω0 and Ω0/∆. The contour lines depict parameter
constellations of equal trat: trat = 10 (dash-dotted), trat = 1
(solid), trat = 0.1 (dashed). Other parameters: nb = 1.

additional magnetic driving field at frequency ω2 6= ω
which effectively couples different spin states (at adja-
cent lattice sites), thus increasing the hopping parameter
t± and at the same time also the ratio trat := t±/tc. As
outlined in Appendix C, this introduces a second hop-
ping term to the Fermi-Hubbard model in Eq. (4) and
the resulting Hamiltonian can be written in a suitable
co-rotating frame as

HFH2 = −tc
∑
〈〈i,j〉〉,s

(c†iscjs + h.c.)− t±
∑
〈i,j〉,s

(c†iscjs̄ + h.c.)

+
∑
i

µini +
∑
s,s′

∑
ijkl

Uijklc
†
is′c
†
jsclscks′ , (5)

where s and s̄ denote opposite spins (i.e., s = +, s̄ = −
or vice versa).

The additional transverse driving field of strength ∼
Ωdr has to be sufficiently small in order to be consid-
ered a perturbation to the magnetic-lattice Hamiltonian
in Eq. (3); more precisely, we demand Ωdr � Ω0. In gen-
eral, the time-dependence and exact form of this spatially
homogeneous field can be derived and reverse-engineered
from the desired Hamiltonian in the adiabatic frame,
see Appendix C for further details. Since, in the tight-
binding regime, next-nearest neighbour hopping is ex-
ponentially suppressed, weak driving fields Ωdr/Ω0 � 1
are sufficient to reach situations where t± & tc and,
typically, for moderate driving strengths direct tunnel-
ing processes ∼ tc can be safely neglected29. In Fig. 2,
it is shown how the ratio trat is affected by sweeping
Ωdr/Ω0 and Ω0/∆, while keeping the number of bound
states nb ≈

√
V0/(4ER) at a constant value. Evidently,

smaller driving fields Ωdr lead to smaller t±. Moreover, at
small Ω0/∆� 1 (i.e. deep in the perturbative regime, see
Sec. IIA), trat tends to decrease with increasing Ω0/∆.
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By choosing adequate driving fields, the tunneling matrix
elements tc and t± can thereby be independently tuned
over a relatively wide range.
Spin-orbit interaction.—In the presence of strong spin-

orbit interaction (SOI), transitions between different spin
states at adjacent lattices sites can be induced (eventu-
ally, for strong enough SOI, without any external driving
field) such that the Hubbard model in Eq. (4) may con-
tain additional SOI-induced hopping terms. Specifically,
SOI-induced hopping parameters can be estimated as
tλ±/ER ≈ λ

√
V0ERπ

2/a exp
(
−π2/16

√
V0/ER

)
, where

λ = αR, βD denotes the Rashba and Dresselhaus cou-
pling strengths, respectively. For realistic parameter val-
ues, this may give rise to tλ±/tc & 1 such that nearest and
next-nearest neighbour hopping terms become compara-
ble, see Sec. IV for further details. Both the Rashba and
Dresselhaus SOI strengths depend on the orientation of
the lattice in the host material and can thereby induce
anisotropic hopping. This gives access to a wider class of
Hubbard models than those captured by Eq. (5).

III. IMPLEMENTATIONS

In the following, we propose two experimental setups
for the realization of our model. First, in Sec. IIIA, we
consider magnetic field gradients provided by a classical
current source as an example for a setup which can be
operated both in a static (ω = 0; compare Eq. (1)) or
dynamic (ω > 0) mode. Subsequently, we will discuss
a purely dynamic (i.e., always ω > 0) setup based on
surface acoustic waves in Sec. III B.

A. Superconducting circuit

As a first example for a realization of our model as
described by Eq. (1), we consider SC circuits operat-
ing at GHz frequencies. The electrons are confined in
a 2DEG at a distance d from a current-carrying wire,
which is located above the surface. For our purposes, SC
circuits and circuit resonators are attractive because of
their capability to generate AC magnetic fields by car-
rying relatively large currents and the possibility to in-
tegrate them in semiconductor nanostructures42,43. In
a simple toy model, we describe the circuit by a mean-
dering wire carrying an AC current ∼ I0 cos(ωt) through
parallel sections of the wire separated by a lattice con-
stant a, see Fig. 3(a) for an illustration of the setup. Note
that, in principle, this setup can also be operated in the
static regime (ω = 0) when DC currents and, thus, time-
independent fields are considered. The classical electric
current density J induces a magnetic field which is calcu-
lated using the Biot-Savart law, see Fig. 3(b) for an ex-
emplary field distribution as induced by a current source
at fixed positions r = (0 < x < a, y = 0, 23.5 < z/a <
26.5)45.

Here, we consider only one-dimensional trapping po-
tentials in which the electrons are confined to a one-
dimensional channel such that the y motional DOF is
frozen out. Furthermore, we assume that the spatial ex-
tension of the meandering wire exceeds the size of the
trapping region within the 2DEG, such that finite-size ef-
fects of the induced magnetic field can be neglected. This
simplifies the mathematical description and we obtain the
AC magnetic field distributionBAC(r, t) = Ω(r) cos(ωt)x̂
for a given wire geometry by summing up the induced
fields of all parallel wire segments, see Fig. 3 [for details,
cf. Appendix D]. In the presence of an additional static
homogeneous field Bext = Bextẑ, the resulting Hamilto-
nian, H(t) = p̂2/(2m) + γ(BAC(r̂, t) +Bext) ·σ, approxi-
mately coincides with our model in Eq. (1), where we can
identify ω0 = γBext and the amplitude Ω0 of the Rabi

2DEG

x

y z

I(t)

a

d

(a)

(b)

Figure 3: (color online). (a) Sketch of the meandering-wire
setup. A current provides a magnetic field as described by
the Biot-Savart law. At a distance x = d from the surface,
the two-dimensional electron gas is located (see text). (b)
Magnetic field distribution for an example of a meandering
nanowire that consists of N = 50 parallel wires which are
separated by the lattice constant a = 1 µm. The vector field
BAC(r, t = 0) is shown and its scalar field |BAC| is plotted
on a logarithmic scale. Magnetic field strenghts of the order
of B1 ∼ (10 − 50) mT are obtained in the proximity (x .
0.6a = 600 nm) of the wire. Other numerical parameters:
I0 = 70 mA at a current density Jc = 30 MA/cm244 and wire
dimensions of 480 nm x 480 nm.
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frequency is given by

Ω0 = γ
µ0I0d

πa2

∑
n∈N0

(−1)n

(n+ 1
2 )2 +

(
d
a

)2 . (6)

Eq. (6) becomes exact in the limit of an infinitely long
wire and it converges to the numerically exact result in
the limit of a long wire and in the center region below
the wire [see App. D for further details]; for all practi-
cal purposes, it yields sufficiently exact results for typ-
ical resonator geometries. The exact spatial pattern of
the Rabi frequency Ω(ẑ) depends on both the geometry
of the resonator and the ratio d/a. Neglecting finite-
size effects and for a perfectly periodic resonator geom-
etry, the Rabi frequency can be approximately written
as Ω(ẑ) = Ω0 cos(πẑ/a+ φ), see Appendix D for further
details.

Let us conclude the description of the proposed setup
with a few general remarks. Firstly, we note that the
calculation of the Hamiltonian results in an additional
time-dependent term ∝ σz which we have neglected
here and which is typically very small compared to the
time-independent contribution from Bext, see Appendix
D for more information. Secondly, the calculated RF
field strength B1 ≈ (10 − 50) mT [see Fig. 3(b)] at
a given distance d . 0.6a and given current intensity
I0 = 70 mA from the surface ranges from realistic to
very optimistic values. The highest given values can only
be obtained in close proximity to the surface. More-
over, the critical current density Jc = 30 MA/cm244

used in our calculations is optimistic because high (∼
GHz) frequencies and strong (∼ T) in-plane magnetic
fields might reduce this value. However, especially the
frequency dependence of Jc is still a current topic of re-
search and, as noted earlier, the proposed setup may also
be operated at ω = 0, i.e., with DC currents. For g-
factors ∼ 15 (e.g., in InAs-based quantum wells), the
given range of field strengths amounts to trap depths
V0 . (4− 22) µeV = kB · (46− 255) mK. An explicit case
study for specific material parameters follows in Sec. IV,
where we check when the requirements set by Eq. (2) can
be fulfilled. Finally, we stress that the relevant system
parameters from Eq. (2) do not depend on the material
choice (except for the g-factor of the quantum well) and
due to its simplicity, the setup can, in principle, readily
be implemented in an experiment. While the trap depth
V0 is tunable, the geometry is predefined in this setup,
and therefore the lattice constant a (thus also the ratio
d/a) is fixed. In the following, we will discuss an imple-
mentation which overcomes this limitation by construc-
tion, allowing for more widely tunable system parameters
and lattice geometries.

B. Surface acoustic waves

As a second implementation, we discuss time-
dependent (ω > 0) magnetic field gradients induced by

SAWs. In piezomagnetic materials which exhibit a sig-
nificant (inverse) magnetostrictive effect, mechanical and
magnetic DOFs are coupled which can be captured by the
constitutive relations for magnetostriction, cf. Appendix
E. Specifically, the magnization m of a sample with non-
zero magnetoelastic coupling changes due to mechanical
stress applied to the material, which is described by a
stress tensor T .

We consider a ferromagnetic film of thickness δ de-
posited on top of a SAW-carrying substrate, where the
surface waves generate RF strain fields which, in turn,
can induce magnetization dynamics in the ferromagnet
and may thus provide strong time-dependent magnetic
stray fields; for related experimental works, see Refs.20,46.
This setup is schematically shown in Fig. 4(a). Two
counter-propagating SAWs, which can be launched from
interdigital transducers (IDTs) patterned on top of the
material, generate a standing-wave pattern of both the
mechanical field and induced spin wave, introducing a pe-
riodicity which defines the lattice constant a = λ/2 where
λ is the SAW wavelength; the dispersion relation of the
SAW, ω = 2πf = kvs, yields λ = vs/f , where vs denotes
the speed of sound in the host material. This results
in a spatially and time-periodic magnetic field as needed
for the realization of Eq. (1). The coupled equations of
motion for the (i) mechanical and (ii) magnetic field dis-
tributions can be described by (i) ρüi = ∂Tij/∂zj , where
ρ and u(x, t) denote the mass density and the mechanical
displacement vector, respectively, with the displacement
ui along the coordinate ẑi (= x̂, ŷ, ẑ) and (ii) the Landau-
Lifshitz-Gilbert (LLG) equation, respectively. The latter
describes the motion of the unitless magnetization di-
rection m due to an effective magnetic field Heff and
reads47,48

∂m

∂t
= −γm× µ0Heff + αm× ∂m

∂t
, (7)

where µ0 and α denote the magnetic constant and phe-
nomenological Gilbert damping parameter, respectively,
and Heff accounts for the SAW-induced magnetic field.

Given the effective magnetic field Heff at the ferro-
magnetic film (x = 0) which is calculated from Eq. (7),
we estimate the stray field at the 2DEG, see Appendix
E for details. The accessible range of field strenghts
B1 strongly depends on the specific material-dependent
parameters, i.e., the saturation magnetization ms, the
damping parameter α, the g-factor gs,FM and magnetoe-
lastic constant h of the film and, moreover, the ampli-
tude of the SAW-induced strain field. The latter is tech-
nically limited due to undesired heating effects at too
large amplitudes. Fig. 4(b) shows the RF field strength
B1 as a function of distance x from the ferromagnetic
film and SAW frequency f . The numerical parameters
are chosen such that they can be implemented in state-
of-the-art experiments [see caption of Fig. 4]; note that
even much higher strain amplitudes51, magnetoelastic
constants46 and lower damping constants52 have been re-
alized in experiment, which renders our chosen set of pa-
rameters very realistic. As a result, we obtain strong
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Figure 4: (a) Sketch of the SAW-based setup with a fer-
romagnetic film above the surface. Two counter-propagating
SAWs generate standing-wave mechanical and magnetic field
distributions. (b) Magnetic field strength B1 as a func-
tion of distance x from the ferromagnetic film and SAW
frequency f . The contour lines indicate the regions where
kBT = 1µeV� γB1/2� 2πf [see Eq. (2)] can be fulfilled for
different g-factors: gs = 2 (dash-dotted lines), gs = 15 (solid
lines), gs = 70 (dashed lines). Other numerical parameters:
Speed of sound vs = 3500 m/s, film thickness δ = 25 nm,
saturation magnetization µ0|ms| = 1.8 T , strain amplitude
εxx = 2 · 10−4, damping constant α = 0.01, magnetoelas-
tic constant h = 10 T , g-factor of the ferromagnetic film
gs,FM = 2.1.

driving fields B1 ≈ (10 − 100) mT at given distance
x = (0.1 − 0.5)a from the film which amounts to trap
depths V0 . (4 − 43) µeV at gs ∼ 15. However, for in-
creasing frequencies f ∼ (10−50) GHz, the field strength
decreases at fixed distance x. Hence, the lattice constant
cannot be made arbitrarily small. In Sec. IV, we provide
an overview of realistic parameter regimes (specifically,
with a focus on Eq. (2)) based on the derived driving
fields.
Strain-induced acoustic traps.—So far, we have

neglected strain-induced deformation potentials and
electric-field components generated in a piezoelectric host
material. In principle, these electric fields couple to the
motional DOF of a charged particle and thereby induced
time-dependent electric potentials can either constitute

stable traps or, if the driving amplitude of the electric
field becomes too large, destabilize the motion of the
electron17. In order to take both the electric and mag-
netic field-induced couplings to the external and internal
DOFs into account, we extend our previous analysis to
the more general model

Hhyb =
p̂2

2m
+ VSAW cos(kẑ) cos(ωt)

+
ω0

2
σz +

Ω0

2
cos(kẑ) cos(ωt)σx, (8)

which contains a kinetic term, a time-dependent strain-
induced potential of amplitude VSAW and the remain-
ing terms from the Hamiltonian in Eq. (1). Follow-
ing the procedure outlined in Refs.49,50, we derive an
effective time-independent Hamiltonian for the hybrid
(strain-induced and magnetic) lattice by performing a
high-frequency expansion of Eq. (8) in 1/ω. Starting
from Eq. (8), we obtain an effective model of the form

Heff
hyb =

p̂2

2m
+
|∆|
2
σ̃z +

[
V 2
SAW
8ES

− Ω2
0

4|∆| σ̃
z

]
sin2(kẑ), (9)

with ES = mv2
s/2. This result can be self-consistently

verified in the limit Ω0/|∆|, V 2
SAW/(8E

2
S) � 1. The sec-

ond term in Eq. (9) describes a spin-dependent energy
offset [compare Fig. 1] and the third term is a spin-
dependent effective potential.

From Eq. (9), by projecting onto the adiabatic
eigenstates |+〉θ(ẑ) and |−〉θ(ẑ), respectively, we obtain
the spin-dependent potential amplitudes, i.e., V −0 =
Ω2

0/(4|∆|) + V 2
SAW/(8ES) and V +

0 = |Ω2
0/(4|∆|) −

V 2
SAW/(8ES)|. We can deduce that strain-induced and

magnetic potentials add up constructively (destructively)
for the |−〉θ(ẑ) (|+〉θ(ẑ)) adiabatic potential. In Fig. 5 the
effective trap depths for both spin components are shown
as a function of Ω0 and VSAW. Since the strain-induced
deformation potential is typically very weak6,53,54, we
consider the strain-induced potential ∼ VSAW to become
important only in piezoelectric materials. However, since
the magnetic traps operate at relatively high strain am-
plitudes [see Sec. III B], in piezoelectric materials this
contribution will typically not be negligible and also de-
pends on the orientation of the magnetic lattice with re-
spect to the crystalline structure of the piezoelectric host
medium. More details on the derivation of Eq. (9) and a
stability analysis of the time-dependent model Hamilto-
nian given in Eq. (8) can be found in Appendix E.

IV. CASE STUDIES

Faithful implementation of magnetic traps.—As out-
lined above, a faithful implementation of magnetic traps
is only possible if Eq. (2) can be fulfilled. This can be
achieved in state-of-the-art experiments, e.g., in the se-
tups discussed in Sec. III, as we outline in the following:
(i) The spontaneous phonon emission rate can be as low
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(a) (b)

Figure 5: Spin-dependent trap depth of effective potential
as given by Eq. (9) plotted as a function of Rabi frequency
Ω0 and strain-induced potential amplitude VSAW for fixed
Ω0/|∆| = 0.3 and VSAW/ES = 0.3. (a) Effective trap depth of
hybrid trap for the s = − spin component. The magnetic and
strain-induced potentials add up and the effective potential
becomes deeper if either the magnetic or strain contribution
is increased. (b) Effective trap depth of hybrid trap for the
s = + spin component. The magnetic and strain-induced
potentials have different signs. At VSAW = 2Ω0, the two po-
tentials cancel each other.

host material |gs| Ωwire
0 [µeV] ΩSAW

0 [µeV]

GaAs 0.44 ∼ (0.3− 1.3) ∼ (1.3− 2.5)

InAs 14.9 ∼ (8.6− 43) ∼ (43− 86)

InSb ∼ 70 ∼ (41− 200) ∼ (200− 410)

DMS ∼ (102 − 103) ∼ (58− 2900) ∼ (290− 5800)

MoS2 2.21 ∼ (1.3− 6.4) ∼ (6.4− 13)

WS2 2.84 ∼ (1.6− 8.2) ∼ (8.2− 16)

Table I: Estimates for achievable Rabi frequencies in both the
nanowire and SAW setups. The table shows Rabi frequen-
cies based on both state-of-the-art (Bwire

1 = 10mT, BSAW
1 =

50mT) and more optimistic (Bwire
1 = 50mT, BSAW

1 = 100mT)
maximum driving field strengths [compare Figs. 3 and 4].

as γ ∼ 0.3 µeV in InAs-based setups55 and similar val-
ues are expected for InSb-based setups56. Even for much
higher emission rates, the regime γ � ωHO can still be
reached and, typically, kBT ≈ (1 − 10) µeV � ωHO im-
poses a stronger constraint on the minmum energy ωHO.
(ii) Based on the results shown in Figs. 3 and 4, Table I
gives an overview of realistic Rabi frequencies Ω0 in both
described setups for different host materials57. Since the
trap depth V0 . Ω0/2 is limited from above by half of
the Rabi frequency Ω0, it is evident that relatively low-gs
materials, like, e.g., GaAs, do not prove to be promising
candidates for magnetic trapping as described in Sec. II
since, in particular, the condition kBT � V0 . Ω0/2
from Eq. (2) cannot be fulfilled easily. Assuming ther-
mal energies kBT ≈ (1 − 10) µeV, a comparison with
the data shown in Table I suggests that a faithful im-
plementation of magnetic traps should be feasible with
state-of-the-art experiments using materials with mod-
erate (e.g., TMDs like MoS2 or WS2) to relatively high
g-factors |gs| & 15 (as can be found, e.g., in III-V semi-
conductors like InAs or InSb). Only then, thermal sta-

bility as required by Eq. (2) can be guaranteed. (iii)
Given that trap depths of the order of V0 ∼ 100 µeV
may be reached in SAW-based setups at |gs| & 15, the
requirements kBT � ωHO . V0 < ω/2 can be fulfilled at
oscillator frequencies ωHO & 5 µeV (& 7.5 GHz). In
this parameter regime, accordingly, the trap can sup-
port a couple of bound states nb ≈ 1 − 5. (iv) More-
over, as discussed in detail in Sec. II A, high driving
frequencies f = ω/(2π) & 10 GHz are another impor-
tant bottleneck towards the experimental realization of
reliable magnetic traps; these can be provided by both
the proposed nanowire and SAW-based setups, as has
been experimentally demonstrated, reaching ultra-high
frequencies f ≈ 25 GHz (ω ≈ 103 µeV)58. Using ex-
isting technology, as indicated, e.g., by the solid lines
in Fig. 4, experiments could therefore be operated in a
regime where Ω0 . ω (and even the more demanding
requirement (within RWA) Ω0 � ω) is clearly fulfilled.
(v) 2DEGs in InAs-based quantum wells can have a long
mean-free path of the order of a few µm59,60 which is
much larger than a lattice spacing of a few hundred nm.
This provides optimism that disorder may not become
too large in some of the high g-factor materials consid-
ered here, cf. also Ref.17 for a more detailed discussion
on the role of disorder in related systems.
Parameter regimes for Fermi-Hubbard physics in mag-

netic lattices.—Typical tunneling rates tc in magnetic lat-
tices (as described in Sec. II B) can reach values of a cou-
ple of µeV as discussed below. By sufficiently screening
the Coulomb interaction, e.g., with the aid of a metal-
lic screening layer39, we may enter a parameter regime
where both tc � kBT and U ≈ 10tc can be reached si-
multaneously which itself is interesting for studying phe-
nomena of quantum magnetism3. Furthermore, we intro-
duced in Sec. II B the possibility to enrich the standard
Fermi-Hubbard model, typically including only tunneling
processes between adjacent lattice sites, by the applica-
tion of additional driving fields [see also Appendix C],
thus allowing for independent tuneability of the hopping
parameters tc and t±. Weak driving fields Ωdr � Ω0

already give access to all the different regimes t± � tc,
t± ≈ tc and t± � tc.

For SOI-induced hopping process ∼ tλ±, we estimate
that tλ± ∼ 50 µeV can be reached at lattice spacings of a
few 100 nm in InAlAs/InGaAs quantum wells where the
Dresselhaus SOI is mostly negligible61 and the Rashba
parameter is given by αR ≈ 104 m/s62. Note that this
value depends very strongly on the host material and,
naturally, in some materials both the Rashba and Dres-
selhaus couplings become important which can induce
significant anisotropies6. Most notably, this shows that
the parameter regime tλ± & tc is accessible and the next-
nearest neighbour tunneling processes may become im-
portant even without the application of any additional
driving fields.

Within our tight-binding model where we consider the
limit V0 � ER, ωHO is typically of the order of a few
recoil energies3. Considering, e.g., InAs or InSb as host
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materials, the effective electron mass becomes relatively
small, i.e., mInAs = 0.023m0 and mInSb = 0.014m0,
both expressed in terms of the electron’s rest mass m0

63.
Then, only relatively large lattice spacings a & 1 µm
give rise to small recoil energies ER � V0. In turn,
much smaller lattice spacings a & 300 nm can be self-
consistently achieved in TMD-based setups, where, e.g.,
mMoSe2 = 0.67m0.
Spin relaxation and dephasing.—The specific value for

the spin relaxation time T1 is material-dependent. Gener-
ically, however, T1 can be very long (T1 ∼ 10 ms), as is
well known from spin relaxation measurements in quan-
tum dots64,65. Therefore, on the relevant timescales con-
sidered here, spin relaxation can be largely neglected, al-
lowing for the faithful realization of spinful (two-species)
magnetic lattices. Only in the presence of very strong
magnetic fields, care must be taken to avoid too fast
spin relaxation, since 1/T1 ∼ B5

0
66. Conversely, spin de-

phasing times ∼ T ?2 tend to be much shorter than T1.
In InAs67 and InSb68, e.g., values of T ?2 ∼ 10 ns have
been reported. While spin dephasing should not affect
our ability to magnetically trap single electrons, the ob-
servation of coherent (many-body) spin physics may be
severely limited by electron spin decoherence, since the
many-body wavefunction of N electrons will dephase on
a timescale set by ∼ T ?2 /N .
Specific examples: InAs and InSb.—Finally, we dis-

cuss the full set of relevant system parameters for two
specific material choices, i.e., InAs-based and InSb-based
setups. In the following, we assume dilution-fridge tem-
peratures T = 10 mK, i.e., kBT ≈ 1 µeV. Hence, the
spontaneous phonon emission rate given above fulfills
γ ∼ 0.3 µeV < kBT , underlining that a low γ is expected
to set the smallest energy scale in Eq. (2) if thermal sta-
bility (kBT � ωHO, V0) is ensured. First, we consider
electrons in InAs with an effective mass m = 0.023m0.
For Ω0 = 86 µeV [compare Table I] and small detun-
ings |∆| � Ω0, we can reach trap depths V0 ≈ 43 µeV
which ensures thermal robustness of the trap at con-
sidered temperatures. Operating at a high frequency
f = 22 GHz, the highest energy scale in Eq. (2) is set
by ω ≈ 92 µeV at a lattice spacing a = 900 nm. For
self-consistency, we check that the recoil energy is given
by ER ≈ 20 µeV which means that we are not deep in
the tight-binding limit (ER � V0). Still, the tunnel-
ing parameter can be estimated as tc ≈ 5.2 µeV3. Note
that, in this setting (|∆| � Ω0), the harmonic approx-
imation around a local potential minimum is typically
not well justified. Secondly, we consider heavy holes
in InAs with an effective mass m = 0.836m0. For an
ambitious Rabi frequency Ω0 = 100 µeV and a large
detuning ∆ = 380 GHz = 250 µeV, we obtain a trap
depth V0 = |max

z
ε(ẑ) − min

z
ε(ẑ)| ≈ Ω0/10 = 10 µeV.

Operating at a high SAW frequency f = 25 GHz, we
obtain ω ≈ 103 µeV at a lattice spacing a = 500 nm
and vs = 25 km/s. Hence, the recoil energy is given by
ER ≈ 1.8 µeV which ensures the validity of the tight-
binding approximation. Since the harmonic approxima-

tion, ε(ẑ) ∝ Ω2(ẑ) ∝ ẑ2, is well justified in this case, we
estimate mω2

HOẑ
2/2 ≈ Ω(ẑ)2/(4|∆|), i.e.,

ωHO = 118 MHz×
√

(gs[g0])
2

m[m0]
× B1 [mT]

a [µm]
√
|∆[GHz]|

,

where g0 = 2 denotes the g-factor of the free electron.
Accordingly, we obtain ωHO = 5.4 µeV for heavy holes in
InAs, as considered here. Hence, all conditions imposed
by Eq. (2) are fulfilled. In this scenario, the tunneling
parameter amounts to only tc ≈ 0.2 µeV. However, the
second hopping parameter introduced in Sec. II B, t±,
can be significantly enhanced such that t± � tc with the
aid of additional driving fields, as discussed in more de-
tail in Appendix C. Thirdly, we consider heavy holes in
InSb with an effective massm = 0.627m0. For a Rabi fre-
quency Ω0 = 200 µeV [compare Table I] and a relatively
small detuning ∆ = 38 GHz = 25 µeV, we obtain a trap
depth V0 ≈ 90 µeV. Assuming a very high (SAW) fre-
quency f = 50 GHz, we obtain ω ≈ 207 µeV at a = 100
nm and (in the SAW implementation) vs = 10 km/s.
The recoil energy is then given by ER ≈ 60 µeV. The
tunneling parameter can be estimated as tc ≈ 18 µeV.

Altogether, these considerations clearly suggest that
thermally stable and well-performing magnetic traps may
be implemented with current technology; more specifi-
cally, fulfilling Eq. (2) should be possible in host materi-
als possessing high enough g-factors. Furthermore, note
that the values presented in Table I might be further
enhanced; in the SAW setup, the values calculated in
Sec. III B have been derived assuming a magnetoelastic
constant h = 10 T and strain amplitudes εxx = 2 · 10−4,
which both may be elevated further in experiment, yield-
ing even higher Rabi frequencies than the ones given in
Table I.

V. SUMMARY & OUTLOOK

To summarize, we have proposed magnetic traps and
scalable lattices for electrons in semiconductors. Firstly,
we have derived a general theoretical framework fit to
characterize the traps and parameter regimes in which
they can be operated under realistic experimental condi-
tions and at dilution-fridge temperatures. Secondly, we
have described two possible platforms suitable for an ex-
perimental demonstration of thermally stable magnetic
traps and, eventually, coherent lattice physics in scalable
arrays of magnetic traps. The developed model which
is based on a periodically modulated AC Stark shift in-
duced by magnetic RF fields is reminiscent of the working
principle of optical lattices; moreover, very much in anal-
ogy to experiments performed with ultracold atoms in
optical lattices, the SAW setup offers similarly attractive
features such as in-situ tunable system parameters and
favourable scaling properties. Furthermore, the applica-
bility of the derived results is not limited to electron traps
but is more general; in principle, all generalizations to
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quasiparticles with an internal level structure that can be
used to realize the model from Eq. (1) are candidates for
a realization of the proposed magnetic traps. Quantita-
tively, the projected trap depths should allow for the im-
plementation of thermally robust and low-loss magnetic
traps with state-of-the-art technology and high g-factor
materials such as InAs, InSb or dilute magnetic semi-
conductors. With the possibility to reach yet unexplored
parameter values, especially in the low-temperature and
strong-interaction regime of the Fermi-Hubbard model,
solid-state magnetic lattices may constitute a novel plat-
form for studying superfluidity, quantum magnetism and
strongly correlated electrons in periodic systems.

Finally, we discuss possible future research directions.
(i) By contrast with effectively one-dimensional systems
discussed in this work, two-dimensional lattices with
vastly different geometries might be studied. Due to
the flexibility of SAW-based setups, these lattice ge-
ometries could be altered during an experiment. By
dynamically modulating the lattice, this may allow for
the investigation of intricate band structures or resonant
coupling between different Bloch bands, akin to exper-
iments with shaken optical lattices69–72. (ii) Instead
of considering electrons with two Zeeman-split internal
spin states, quasiparticles with a richer internal energy-
level structure might be examined (e.g., spin-3/2 holes).
Here, one interesting prospect could be the realization of
tunable subwavelength potential barriers for quasiparti-
cles on the nanoscale, in close analogy to dark-state op-
tical lattices with subwavelength spatial structure73,74.
(iii) Apart from the two possible implementations stud-
ied in this work, other implementations may be consid-
ered, either as stand-alone alternatives or in combination
with, e.g., SAWs. Specifically, nanoengineered vortex
arrays have been considered in the past both for mag-
netic atom traps18 and strong magnetic modulations of
Bloch electrons in 2DEGs75. (iv) Since we have only
considered one-dimensional lattices, anisotropies of sys-

tem parameters were negligible so far. In contrast, in
two-dimensional systems, anisotropic effective electron
masses or g-factors can lead to strongly non-uniform
potential landscapes and anisotropic tunneling matrix
elements. Besides that, SOI can itself be a strongly
anisotropic interaction, thus modulating the SOI-induced
hopping amplitude tλ± (λ = αR, βD in the presence of
Rashba or Dresselhaus SOI, respectively) in a way that it
becomes anisotropic. In this way, the effect of anisotropic
hopping on the phase diagram of a (spin-dependent)
Fermi-Hubbard model might be studied, inheriting its
rich physics from a number of versatile material proper-
ties.
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Appendix A: Beyond the RWA

A fundamental limitation in the above discussion stems
from the condition Ω0 � ω necessary for the RWA to be
justified. Due to this restriction, Rabi frequencies, and
hence ultimately the trap depths, are limited to values
much smaller than the driving frequency ω. One way to
lift this built-in restriction is to drop the RWA, keeping
counter-rotating terms ∝ Ω(ẑ)σ±e±2iωt in the Hamilto-
nian Eq. (1) which can be written in a rotating frame
as

H = ∆σz+
Ω(ẑ)

2
σx+

Ω(ẑ)

2

(
σ+e2iωt + σ−e−2iωt

)
. (A1)

If we now consider the corresponding time-evolution op-
erator evaluated at stroboscopic times tn = t0 + nT/2
with T = 2π/ω,

U(tn) = T← exp

(
i

∫ tn

t0

dτH(τ)

)
, (A2)

a Magnus expansion76 up to second order in 1/ω yields

U(tn, t0) = exp (−iHF [t0]nT/2) , (A3)

with the stroboscopic Floquet Hamiltonian HF given by

HF = H
(0)
F +H

(1)
F +H

(2)
F + ..., (A4)

with the three lowest-order contributions

H
(0)
F =

∆

2
σz +

Ω(ẑ)

2
σx, (A5)

H
(1)
F =

Ω(ẑ)

16ω
(2∆σx − Ω(ẑ)σz) , (A6)

H
(2)
F = −Ω(ẑ)

64ω2

(
4∆2 + Ω2(ẑ)

)
σx. (A7)

Numerical results of the dynamics generated by the
zeroth- and second-order results are compared with the
dynamics generated by the full time-dependent Hamil-
tonian [the internal Hamiltonian h in Eq. (1), without
RWA] in Fig. 6. From the numerical results we conclude
that the (stroboscopic) characterization of the system dy-
namics by HF works well only if Ω0 . ω. In this regime,
even at higher orders we still obtain a time-independent
periodic Hamiltonian which allows for the implementa-
tion of magnetic (super-)lattices.

Appendix B: Spin-flip transitions in magnetic traps
and lattices

Based on Ref.35, we investigate undesired spin-flip
losses from a magnetic trap. We consider the model

H =
p̂2

2m
+ ω0σ

z + Ω(ẑ) cos(ωt)σx, (B1)
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Figure 6: (color online). Numerical simulation of the dynam-
ics generated by the time-dependent (i.e., without any RWA)
Hamiltonian (1) for Ω(ẑ) = Ω0 = 0.1ω (blue solid line) and
Ω0 = 0.5ω (black solid line), respectively. The corresponding
dashed (dotted) lines refer to the dynamics generated by the
time-independent zeroth-order (second-order) Floquet Hamil-
tonian HF , with dots highlighting the results according to the
second-order Floquet Hamiltonian HF at stroboscopic times
tn = nT/2. The initial state has been set as |Ψ〉0 = |↓〉. Other
numerical parameters: ∆/ω = 0.2.

which, in a rotating frame and within a rotating-wave
approximation, can be written as

H =
p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx = T̂ + h(ẑ), (B2)

where T̂ = p̂2/(2m) and

h(ẑ) =
1

2

(
∆ Ω(ẑ)

Ω(ẑ) −∆

)
. (B3)

We introduce a unitary operator U(ẑ) = exp(−i θ(ẑ)2 σy)
acting on the internal states such that

|+〉θ = U(ẑ)| ↑〉, (B4)
|−〉θ = U(ẑ)| ↓〉.

Note that U†(ẑ) rotates the effective magnetic field to be
parallel to the z axis. The transformed Hamiltonian H̃
takes the form

H̃ = U†(ẑ)HU(ẑ) (B5)

= T̂ +
[
U†(ẑ)T̂U(ẑ)− T̂

]
+ U†(ẑ) [h(ẑ)]U(ẑ)

= T̂ + ∆T + ε(ẑ)σ̃z,

where ∆T =
[
U†(x)T̂U(x)− T̂

]
, ε(ẑ) = 1

2

√
∆2 + Ω2(ẑ)

and σ̃z = |+〉〈+| − |−〉〈−|. The adiabatic approximation
amounts to neglecting the contribution which stems from
∆T 35. This is justified provided that χ = ωHO/|∆| � 1,
i.e., that the potentials defined by ε and −ε are suffi-
ciently separated in energy.
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Appendix C: Spin-flip assisted tunneling processes
in magnetic lattices

In Eq. (5) in the main text, we present an extended
Hubbard model which includes both next-nearest (spin-
conserving) neighbour hopping (∼ tc, compare with
Eq. (4)) and nearest neighbour (spin-flip assisted) hop-
ping (∼ t±) processes. In the following, we show how
this Hamiltonian and, more specifically, the additional
hopping term ∼ t± can be constructed with the aid of
additional RF driving fields.

Starting from Eq. (1), we consider two auxiliary time-
dependent fields in addition to the field B(r, ωt): (i) The
driving field Bdr(t) = Bdr cos(ω2t)x̂, a second rapidly
oscillating transverse field, is weaker than the RF field
B⊥(r, ωt) which provides the lattice and detuned from
it so as to be resonant with the energy difference be-
tween the two local spin directions. (ii) The third time-
dependent field B3 = B3 cos(ω3t)ẑ is slowly varying and
parallel to the constant field B|| which provides the Zee-
man splitting; its purpose is to (partially) compensate the
longitudinal components that Bdr acquires in the adia-
batic frame.

In the presence of these additional fields, two new
terms appear in the model of Eq. (1),

Hdr =
p̂2

2m
+ ω0σ

z + Ω(ẑ) cos(ωt)σx (C1)

+ Ωdr cos(ω2t)σ
x + Ω3 cos(ω3t)σ

z,

where Ωdr = γBdr and Ω3 = γB3. In the following, we
require ω, ω2 � |ω − ω2| ≡ δ ≈ ω3 as well as |Ω0| �
|Ωdr|, |Ω3|.

Defining a rotating frame by |ψrot
t 〉 = Ut |ψt〉 (where

|ψt〉 denotes a solution of the Schrödinger equation in the
lab frame) with Ut = exp(itωσz), we obtain the Hamil-
tonian in the rotating frame as

Hrot
dr =

p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx +

Ω(ẑ)

2

[
|↑〉〈↓| ei2ωt + h.c.

]
+

Ωdr
2

[
|↑〉〈↓| (eiδt + ei(ω+ω2)t) + h.c.

]
+ Ω3 cos(ω3t)σ

z. (C2)

Within a RWA, where we keep only the constant and
slowly oscillating terms, we obtain

Hrot
dr =

p̂2

2m
+ ∆σz +

Ω(ẑ)

2
σx +

Ωdr
2

[
eiδt |↑〉〈↓|+ h.c.

]
+ Ω3 cos(ω3t)σ

z. (C3)

Now, by employing the unitary transformation U(ẑ) in-
troduced in the main text, we can (locally) diagonal-
ize the constant contribution stemming from p̂2/(2m) +
hRWA(ẑ) [see Sec. II A]. Then, neglecting the non-
adiabatic correction due to ∆T and simplifying the re-

sulting expressions yields

H̃ =
p̂2

2m
+ ε(ẑ)σ̃z

+

[
Ωdr

2
cos2 ϑ cos(δt)− 2Ω3 sinϑ cosϑ cos(ω3t)

]
σ̃x

+
[
2Ωdr sinϑ cosϑ cos(δt) + Ω3(cos2 ϑ− sin2 ϑ) cos(ω3t)

]
σ̃z,

(C4)

where ϑ := θ(ẑ)/2 = arcsin[ Ω(ẑ)√
Ω2(ẑ)+∆2

]/2 and σ̃z =

|+〉〈+| − |−〉〈−|, σ̃x = |+〉〈−|+ |−〉〈+|. Clearly, in com-
parison with Eq. (3), we get additional contributions due
to the additional time-dependent fields.

We now use the fact that the newly introduced driv-
ing fields are relatively weak compared to the fields
considered in the main text and treat these terms as
a perturbation to the tight-binding model in Eq. (4).
Furthermore, from Eq. (C4), it becomes clear that the
third driving field B3 can be used to compensate for
undesired (time-dependent) on-site terms due to Bdr.
At the resonance ω3 = δ and within a rotating frame
U rot2
t = exp(itδσ̃z), the Hamiltonian (C4) can be fur-

ther simplified and a RWA with respect to 2δ can be
performed, given that the off-resonant spin-flip terms os-
cillate much faster than their strength. Eventually, we
obtain the extended Fermi-Hubbard model

HFH3 = −tc
∑
〈〈i,j〉〉,s

(c†iscjs + h.c.)− t±
∑
〈i,j〉,s

(c†iscjs̄ + h.c.)

+
∑
i,s

µisnis +
∑
s,s′

∑
ijkl

Uijklc
†
is′c
†
jsclscks′ , (C5)

which reduces to Eq. (5) at the resonance δ = ∆. Here,
the nearest-neighbour tunneling is characterized by t± =
〈wj |Ωdr

2 cos2 ϑ − 2Ω3 sinϑ cosϑ|wj+1〉 with the Wannier
function wj located at lattice site j.

Appendix D: Implementation I: Superconducting
circuit

In the following, we describe the magnetic field due
to an electric current density J by the Biot-Savart law.
Since we are dealing with AC fields, this description can
only be approximately valid. A more precise picture fol-
lows from the Jefimenkov equations77:

BAC(r, t) =
µ0

4π

∫
V

d3r′
(
J(r′, tret)×

r− r′

|r− r′|3

+
1

c

∂J(r′, tret)

∂t
× r− r′

|r− r′|2
)
. (D1)

where the right-hand side of the equation is evaluated at
the retarded time tret = t − |r − r′|/c and c denotes the
speed of light in the dielectric medium. However, since
the time-dependence of the current density J(r′, t) ∼
exp(iωt), the correction term in Eq. (D1) is expected to
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be of the order of |r− r′|ω/c ∼ dω/c with the distance d
between meandering wire and 2DEG. The wires are lo-
cated above the surface at x = 0. For typical distances
d ∼ (0.1 − 1) µm and frequencies ω ∼ (1 − 100)GHz,
the correction term in Eq. (D1) may be neglected and
the Biot-Savart law is recovered which then accurately
describes the induced magnetic field due the electric cur-
rent density J,

BAC(r, t) =
µ0

4π

∫
V

d3r′ J(r′, t)× r− r′

|r− r′|3 . (D2)

In the following, we assume the spatial extension of the
meandering wire to exceed the relevant size of the 2DEG,
i.e., the trapping region. This assumption guarantees the
absence of finite-size effects at the turning points of the
meandering wire, i.e., we model each parallel line in the
meandering wire as an infinite wire which induces a mag-
netic field on its own. Also, we neglect boundary effects
from the border of the 2DEG. In the case of an infinitely
long wire which runs parallel to the y axis (cf. Fig. 3),
the Biot-Savart law simplifies to77

BAC(r = (ρ, φ, y), t) =
µ0I(t)

2πρ
eφ, (D3)

where I(t) denotes the current in a single wire. In the
presence of many parallel wires (whose current flow al-
ternates between the +y and −y directions), which is the
situation that accurately describes the setup sketched in
Fig. 3, the magnetic field at point r is given by

BAC(r = (x, y, z)) = −
N∑
n

µ0In(t)

2π
× rn

r2
n

(D4)

=
µ0I0 cos(ωt)

2π

N∑
n

(−1)n

(z − na)2 + x2

 x

0

z − na

 ,

with the center of the wires positioned at x = 0 and given
a time-dependent current amplitude I(t) = I0 cos(ωt) in
each wire and the position vectors rn which denote the
position at which the field is evaluated relative to the
nth wire. An exemplary field distribution BAC(r, t = 0)
is shown in Fig. 3(b). Due to the translational symmetry
along the axis parallel to the wires, Eq. (D4) enables
us to write the spin Hamiltonian, in the presence of an
additional external magnetic field, as

H = γBAC(r̂, t) · σ + γBextσ
z (D5)

=
γµ0I0

2π

N∑
n=1

(−1)nx

ẑ2 − 2naẑ + n2a2 + x2
σx cos(ωt)

+
γµ0I0

2π

N∑
m=1

(−1)m(ẑ −ma)

ẑ2 − 2maẑ +m2a2 + x2
σz cos(ωt)

+γBextσ
z.

The induced electric field due to a time-dependent
magnetic field is described by Faraday’s law, ∇ × E =

−∂B/∂t. By (anti-)symmetries of the straight long wire
and its magnetic field — translations along the y axis,
rotations about y axis, and the reflection y → −y —the
induced electric field points in a direction parallel to the
wire, i.e., along y. Hence, the induced electric field should
not affect the magnetic lattice along z. The motional
DOF along y could experimentally be frozen out, e.g.,
via the implementation of an etched channel.

We define ω0 = gsµBBext and rewrite (D5) as

H = [ω0 + Ωz0(ẑ) cos(ωt)]σz + Ωx0(ẑ) cos(ωt)σx (D6)

Next, we take a closer look at the spatial profiles of
the Rabi frequencies Ωz0(ẑ) and Ωx0(ẑ) in Eq. (D6). The
time-dependent field amplitudes in Eq. (D6) can be ex-
actly expressed via the Digamma function z (logarithmic
derivative of the Γ function;78,79). Denoting the two sums
appearing there as bx and bz, respectively, setting a = 1
and using ξ = −z + ix, it holds that

bz + ibx =− 1

2
z (ξ/2 + b(N − 1)/2c+ 1) +

1

2
z(ξ/2)

+
1

2
z ([ξ + 1]/2 + bN/2c)− 1

2
z([ξ + 1]/2)

N→∞
=

1

2
(z(ξ/2)−z([ξ + 1]/2)) . (D7)

For N � z � 1 the real and imaginary parts of this func-
tion are (approximately) periodic with period 1 and have
zeros at integer (half-integer) values of z, respectively.
For an odd number of wires, the z (x) field components
are antisymmetric (symmetric) with respect to the axis
z = zs ≡ (N − 1)/2; (for even N , Bz is symmetric and
Bx antisymmetric). The fields are well approximated by
bz + ibx ∝ exp(−iπz), with errors less than 0.1% but not
approaching zero as N � z → ∞. Using properties of
the Digamma function, we can write

bz + ibx =
1

2

bN/2c−1∑
l=0

1

l + (ξ + 1)/2
(D8)

− 1

2

b(N−1)/2c∑
l=0

1

l + ξ/2
.

As shown in Fig. 7, the spatial dependence of Ωx0(ẑ)
and Ωz0(x) (not shown) can (depending on the choice of
parameters) be well-described by a sine function. Hence,
we can approximately write

H =
[
ω0 + Ωz0 sin(

π

a
ẑ + ϕ) cos(ωt)

]
σz (D9)

+Ωx0 sin(
π

a
ẑ) cos(ωt) σx,

where ϕ denotes a phase shift between Ωx0(ẑ) and Ωz0(ẑ).



16

Figure 7: (color online). Spatial pattern of Rabi frequency (at
given time), compare Λ(x) in Sec. II. Black (solid): calculated
from Eq. (D5), green (dashed): sin-fit. At the ends of the
meandering wire, i.e. at the edges of the lattice, finite-size
effects become apparent, but in the center of the lattice Λ(ẑ)
is well-described by the sinusoidal fitting curve. Parameters:
d = a and N = 50 wires.

In the center region, where finite-size effects are negligi-
ble, the Rabi frequencies Ωx0 and Ωz0 are approximately
given by

Ωz0 = γ
µ0I0
πa

∑
n=0,1,..

(−1)n (n+ 1/2)

(n+ 1/2)2 + (d/a)2
, (D10)

Ωx0 = γ
d

a

µ0I0
πa

∑
n=0,1,..

(−1)n

(n+ 1/2)2 + (d/a)2
. (D11)

The expressions (D10) and (D11) become exact in the
limit of infinitely many wires, N →∞. For all practical
purposes considered in this work, Ωz0 is very small such
that Ωz0 � ω0 and it may be safely neglected.

Appendix E: Implementation II: Surface acoustic
waves

1. Magnetization dynamics and effective magnetic
field

Constitutive relations for magnetoelastic cou-
plings.—The governing constitutive relations for
magnetostriction80 read

Tij = cijklukl − hkijHk, (E1)
Bdr,i = hijkuik + µijHj , (E2)

where T , Bdr, H and h denote the stress tensor, the
magnetic induction, the magnetic field (intensity vec-
tor) generated by a magnetoelastic wave and the effec-
tive piezomagnetic tensor, respectively. µ is the magnetic

permeability and the strain field is defined as ukl(x) =
(∂uk/∂xl + ∂ul/∂xk) /2.

Given Eq. (E2), we provide an estimate for the effective
driving field in the ferromagnet,

Bdr,1 ≈ hkU = 2πh
U

λ
, (E3)

where h denotes the magnetoelastic constant, k is the
wavevector and U denotes the amplitude of the displace-
ment field. For small strain-field amplitudes kU ≈ 10−6

and a magnetoelastic constant h = 10 T, this magnitude
can be estimated as Bdr,1 ≈ 25 µT46.

At ferromagnetic resonance, the effective magnetic
field can be significantly enhanced. The response of a
ferromagnet to small time-varying magnetic fields can be
described with the aid of Eq. (7). The resulting dynam-
ical component of the magnetization m is given by

µ0|ms|m = χ̄Bdr, (E4)

where χ̄ denotes the Polder susceptibility which describes
the magnetic response of a ferromagnet to small time-
varying magnetic fields perpendicular to the magneti-
zation equilibrium direction46. In practical terms this
means that the resulting effective magentic field can be
enhanced by about two orders of magnitude.

In a next step, the field at the 2DEG is then calculated
from the field distribution at the ferromagnetic thin film
by discretizing the field distribution at the film and sum-
ming up the dipole fields of these volume elements. At
high strain amplitudes kU ∼ 10−4 − 10−3 and a magne-
toelastic constant h = (10−25) T, the relevant magnitude
of the field at the 2DEG can be numerically estimated as
B1 ∼ (10 − 100) mT. In our numerical calculations, the
amplitude of the displacement field, the magnetoelastic
coupling constant and the wavevector are input parame-
ters which determine the microwave field strength at the
ferromagnetic layer.

2. Strain-induced potentials

Starting from Eq. (8) and in a suitable rotating frame,
we obtain

Hrot
hyb =

p̂2

2m
+ VSAW cos(kẑ) cos(ωt) (E5)

+
ω0

2
σz +

Ω(ẑ)

2

(
σx + e2iωtσ+ + e−2iωtσ−

)
,

with σ+ = |↑〉 〈↓| and σ− = |↓〉 〈↑|. Following the proce-
dure outlined in Refs.49,50 and using results from17, we
derive an effective time-independent Hamiltonian up to
second order in 1/ω which reads

Heff
hyb =

p̂2

2m
+ ε̃(ẑ)σ̃z +

(
q2

8
ES +

r

4
|∆|
)

sin2(kẑ), (E6)

with ε̃(ẑ) = 1
2

√
Ω2(ẑ) + ∆̃2, ∆̃ = |∆| + Ω2

0/(8ES), q =

VSAW/ES and r = Ω2
0/(4ES∆). For typical parameter
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values r � 1, q2/8 � 1 and Ω0 � |∆|, we obtain the
simplified form

Heff
hyb ≈

p̂2

2m
+
|∆|
2
σ̃z+

[
V 2
SAW
8ES

− Ω2
0

4|∆| σ̃
z

]
sin2(kẑ), (E7)

which coincides with the result given in Eq. (9). Writ-
ing Eq. (E7) in the form Heff

hyb = p̂2/2m + |∆|/2σ̃z +

Vhyb sin2(kẑ), we find that the spin-dependent potential
amplitudes read

〈+|Vhyb|+〉 ≈
Ω2

0

4|∆| −
q2

8
ES,

〈−|Vhyb|−〉 ≈ −
Ω2

0

4|∆| −
q2

8
ES. (E8)

The resulting trap depths are depicted in Fig. 5.

3. Stability analysis of hybrid magnetic and
strain-induced traps

The discussion in this section completes the discus-
sion of hybrid magnetic and strain-induced traps and is
devoted to the stability analysis of such traps, mean-
ing whether or not electrons can be trapped in time-
dependent trapping potentials of the kind of those fea-
tured in Eq. (8).

Starting from Eq. (8), we would like to predict whether
a given set of parameters {m, ω, ω0, VSAW, Ω0} gives
rise to a stable (hybrid strain-induced and magnetic)
trap or not. To this end, we first derive the coupled
Heisenberg equations of motion for the set of observables
{〈z〉 , 〈p〉 , 〈σx〉 , 〈σy〉 , 〈σz〉} within a RWA.
Equations of motion.—In order to determine the

EOMs of interest, we consider the time evolution (τ =
ωt/2) of the operators z̃ := kẑ, p̃ := dz̃/dτ, σx, σy, σz

which is given by the Heisenberg EOMs,

〈 ˙̃z〉 = 〈p̃〉,

〈 ˙̃p〉 =
2Ω0

ES
〈sin(z̃)〉 cos(2τ) +

VSAW
2ES

〈sin(z̃)〉〈σx〉,

〈σ̇x〉 = −2
∆

ω
〈σy〉,

〈σ̇y〉 = 2
∆

ω
〈σx〉 − VSAW

ω
〈cos(z̃)〉〈σz〉,

〈σ̇z〉 =
VSAW
ω
〈cos(z̃)〉〈σy〉,

with ES = m(ω/k)2/2 and assuming that there exists
no significant correlation between external and internal
DOFs, i.e., decorrelated expressions such as, e.g., 〈sin(z̃+
ϕ)σi〉 ≈ 〈sin(z̃ + ϕ)〉〈σi〉.
Two limiting cases.—We consider the two limiting

cases (i) Ω0 = 0 and (ii) VSAW = 0: (i) At Ω0 = 0,
we recover a Hamiltonian which is discussed in great de-
tail in Ref.17; in the limit z̃ � 1, the Heisenberg EOMs
yield a Mathieu equation81 whose stability diagram in

Figure 8: Stability diagram of Eq. (E9) with stability
paramters q = VSAW/ES and r = Ω2

0/(4ES∆). Red ar-
eas denote regions of stable trapping, i.e. stable solutions of
Eq. (E9), and white areas, in turn, denote unstable areas.
On the r = 0 axis, the standard Mathieu equation is recov-
ered which, for a purely time-dependent drive, yields stable
trajectories in the region 0 ≤ q . 0.908. Other numerical
parameters: η = 0.1.

terms of VSAW and ES = mv2
s/2 is well-known, where vs

denotes the speed of sound. (ii) For VSAW = 0 and in the
large-detuning regime Ω0 � |∆|, an EOM can be derived
which corresponds for a given spin state to a Hamiltonian
of the form H = p̂2/(2m) + Ω2

0/(4|∆|) sin2(kẑ). Intu-
itively, these results agree very well with our expectation,
since the case (i) coincides with a result known from the
physics of trapped ions; this is not surprising since only
the electric field contributes. On the other hand, case
(ii) reproduces an effective Hamiltonian which is very fa-
miliar from optical lattices for cold (neutral) atoms1; this
finding, in turn, underlines the close relation between the
proposed magnetic traps and optical dipole traps which
are both based on the AC Stark effect. In general, i.e.,
VSAW,Ω0 6= 0, the EOM leads to more involved dynam-
ics. By adiabatic elimination of the internal DOFs, we ob-
tain [corresponding to the constructive case in Eq. (E8)]
an EOM of the form

¨̃z + [r + 2q cos(2τ)− r cos(2ητ)]z̃ = 0, (E9)

with stability parameters r = Ω2
0/(4ES|∆|) and q =

VSAW/ES and dimensionless quantities x̃ = kx and
τ = ωt/2. The ratio η = |∆|/ω is typically small in the
RWA regime. Based on Eq. (E9), we extract stability di-
agrams (to predict the stability of solutions to Eq. (E9))
in terms of q, r and η. These diagrams can have an in-
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tricate structure, see also Ref.82,83. Here, we are mainly
interested in the prediction of parameter constellations
that give rise to stable solutions of Eq. (E9). A proto-
typical stability diagram is shown in Fig. 8 for η = 0.1.
It can be seen that a r = 0 cut in Fig. 8 reproduces the
well-known result that stable behaviour of solutions to
the Mathieu equation occurs at 0 < q . 0.908 for r = 0.
At r > 0, the stability properties can be rather sensitive
to slight changes in q. An operation in the stable regime

therefore requires a balanced choice of these parameters.
However, Fig. 8 shows that several values r > 0 support
a range of stable values q which indicates that operation
in a stable regime is possible for a significant range of
parameters. Moreover, the numerical parameters used in
Fig. 4 give rise to q � 1 which allows for stable trajecto-
ries for many different r. We conclude that, even in the
presence of induced electric fields, stable magnetic traps
can be operated.
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