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A deterministic and scalable array of single photon nonlinearities in the solid state holds great
potential for both fundamental physics and technological applications, but its realization has proved
extremely challenging. Despite significant advances, leading candidates such as quantum dots and
group III-V quantum wells have yet to overcome their respective bottlenecks in random positioning
and weak nonlinearity. Here we consider a hybrid light-matter platform, marrying an atomically
thin two-dimensional material to a photonic crystal cavity, and analyze its second-order coherence
function. We identify several mechanisms for photon antibunching under different system parame-
ters, including one characterized by large dissipation and weak nonlinearity. Finally, we show that
by patterning the two-dimensional material into different sizes, we can drive our system dynamics
from a coherent state into a regime of strong antibunching with second-order coherence function
g(2)(0) ∼ 10−3, opening a possible route to scalable, on-chip quantum simulations with correlated
photons.

I. INTRODUCTION

Quantum optical nonlinearities have received grow-
ing interest for their key role in quantum informa-
tion science1, quantum simulations2, and other quan-
tum technologies3. While nonlinear effects with indi-
vidual emitters have been demonstrated across a range
of platforms, including ultracold atoms4, superconduct-
ing qubits5, and semiconductor quantum dots6,7, real-
izing a deterministic and scalable array of such nonlin-
earities has proved a far more daunting task. For quan-
tum dots, which are particularly attractive due to their
versatility and on-chip compatibility8, random position-
ing and inhomogeneous broadening of the emitters have
long posed major challenges. Despite significant devel-
opment in possible solutions, including patterning a pho-
tonic crystal defect around a randomly grown quantum
dot9 and seeding nucleation centers for site-controlled
growth of quantum dots10, the central goal of building
a scalable, deterministic network of single photon non-
linearities remains elusive11–14. For example, so far all
demonstrations of strong coupling and photon blockade
of quantum dots and cavities involved randomly grown
self-assembled quantum dots15–17.

An alternative solid-state candidate for quantum non-
linear optics is the exciton-polariton, a quasiparticle
made of a semiconductor exciton strongly coupled to
a microcavity photon. Inheriting strong interactions
from the matter component and fast dynamics and state
observability from the photonic component, exciton-
polaritons are particularly well-suited as building blocks
for photonic quantum simulators, for studying, for in-
stance, quantum phase transitions18–20. Already, a
host of many-body correlated phenomena with exciton-
polaritons have been observed, including Bose-Einstein
condensation21 and polariton lasing22. Nevertheless,
there has been no report of a strong polariton-polariton
interaction at a single quantum level. To increase the in-

teraction strength, several researchers tried shrinking the
size of the polariton wavefunction. Besga et al. decreased
the cavity mode volume by employing a fiber-tip cavity23,
and recently Muñoz-Matutano et al., using a similar
setup, reported a weak nonlinearity24. Researchers have
also tried decreasing the effective size of group III-V
quantum wells, albeit with limited success25–27.

Recent advances in transition-metal dichalcogenides
(TMDCs) point to a new potential platform for scal-
able quantum optical nonlinearities. TMDCs have
exceptionally large exciton binding energy28, leading
to room temperature operation, and strong photon
absorption29,30. In addition, as atomically thin two-
dimensional materials, they possess an unprecedented
ability to be fabricated and transferred onto other
photonic structures31. TMDCs embedded in micro-
cavities have exhibited optically pumped lasing32,33,
cavity-enhanced electroluminescence34, second harmonic
generation35, and strong coupling36,37. Finally, Wei et al.
showed that TMDCs patterned via electron beam lithog-
raphy into circular nanodots with radii down to 15 nm
could still host long-lived excitons38.

In this paper, we analyze the quantum optical nonlin-
earity of a 2D-material monolayer coupled to a low mode-
volume photonic crystal defect cavity. We identify dif-
ferent mechanisms that give rise to non-classical photon
distributions and arrive at a robust regime, characterized
by large dissipation and weak nonlinearity, whose second-
order coherence function at zero time delay, g(2)(0), is
much less than unity. Finally, we consider the effect
of the size of the monolayer on the system parameters.
We numerically show that by physically patterning the
monolayer into different sizes, it is possible to drive its dy-
namics from a coherent state into a non-classical regime
with g(2)(0) ∼ 10−3. An observation of such strong pho-
ton antibunching in this hybrid platform would open the
door to further experiments in coupled nonlinear cavities
and scalable quantum simulators.
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FIG. 1. (Color online) Patterned 2D material-
embedded cavity. (a) Schematic illustration of the pro-
posed experimental platform. A patterned 2D-material (tung-
sten diselenide, WSe2) monolayer is placed on top of a pho-
tonic crystal nanobeam cavity. The radius of the monolayer
is on the order of tens of nanometers, and the cavity peri-
odicity is 240 nm. The top view of the cavity with a simu-
lated field profile of the fundamental mode is shown below.
The calculated mode volume is about 2.5(λ/n)3. (b) Energy
level diagram. The dressed states are labeled by the number
of energy quanta, or Fock manifold, followed by a symbol:
|1,−〉 and |1,+〉 are the first-manifold states representing the
lower and upper polaritons; |2, e1〉, |2, e2〉, and |2, e3〉 are the
second-manifold states. The solid lines represent the eigenen-
ergies of the Hamiltonian with nonzero nonlinearity, whereas
the dotted lines represent the eigenenergies with zero nonlin-
earity. The arrows represent the pump laser frequency that is
resonant with either |1,+〉 (blue) or |2, e3〉 (red). (c) Eigenen-
ergies as a function of the nonlinearity U, calculated via exact
matrix diagonalization. All parameters are normalized by the
exciton-photon coupling strength g.

II. SYSTEM DESCRIPTION

Our system consists of a patterned 2D-material mono-
layer placed on top of a photonic crystal nanobeam cav-
ity (see Fig. 1a)39. The choice of a nanobeam has been
motivated by its small cavity mode volume. The simu-
lated field profile of the fundamental mode of the cav-
ity is shown below the schematic. Unlike the conven-
tional semiconductor-embedded distributed Bragg reflec-
tor cavity, whose excitons couple to a continuum of in-
plane momenta, the monolayer-embedded photonic crys-
tal cavity only supports a narrow band in the momen-
tum space. Thus, in our model we consider only those
excitons whose momenta match that of the fundamental
cavity mode given by the spatial Fourier transform24.

In a frame rotating at the frequency of an exter-
nal pump laser, the Hamiltonian of a strongly coupled
exciton-polariton system is given by (setting ~ = 1)

H = (ωc − ωpump) a†a+ (ωe − ωpump) b†b

+ g
(
a†b+ ab†

)
+ Ub†b†bb+ E(a† + a) (II.1)

where a†(a) and b†(b) are the creation (annihilation) op-
erators for the cavity photon and the monolayer exciton,
respectively; ωc, ωe, and ωpump are the frequencies of
the cavity resonance, the excitonic transition, and the
pump laser, respectively; g is the exciton-photon cou-
pling strength; U is the on-site Kerr nonlinearity repre-
senting the exciton-exciton repulsion40; and E denotes
the strength of the pump laser. The system dynamics is
given by the evolution of the density matrix according to
the master equation41:

dρ

dt
=− i [H, ρ] +

κ

2

(
2aρa† − a†aρ− ρa†a

)
+

Γ

2

(
2bρb† − b†bρ− ρb†b

)
(II.2)

where κ and Γ are the cavity photon and the exciton
decay rates, respectively.

The energy level diagram of the system containing up
to two energy quanta is shown in Fig. 1b, where we
have taken ωc = ωe. The degeneracy of the bare states
is lifted by the exciton-photon coupling. The dressed
states |1,−〉 and |1,+〉, containing one energy quan-
tum and collectively known as the first Fock manifold of
the Hamiltonian, represent the lower and upper polari-
tons, respectively. Similarly, the second-manifold states,
|2, e1〉, |2, e2〉, |2, e3〉, containing two energy quanta, be-
come nondegenerate. For zero exciton-exciton repulsion
(U = 0), their eigenenergies are −2g, 0, and 2g (dotted
lines), forming a harmonic energy ladder for two coupled
oscillators. For U > 0, however, the eigenenergies shift
(solid lines). The eigenenergies of the first (blue) and the
second (red) manifold as a function of U are plotted in
the rotating frame in Fig. 1c.

The shifting of the second-manifold eigenenergies due
to the exciton-exciton repulsion is the source of the quan-
tum optical nonlinearity. Consider tuning the pump laser
so that it resonantly excites the upper polariton |1,+〉
(blue arrows in Fig. 1b). Whereas the first photon from
the laser drives the system from |0〉 to |1,+〉, a second
photon cannot subsequently drive the system from |1,+〉
to |2, e3〉 because the eigenenergy of |2, e3〉 has shifted
out of resonance. On the other hand, if the pump laser
is tuned to half the energy of |2, e3〉 (red arrows), it can
no longer excite |1,+〉, while at the same time, it can
excite |2, e3〉 via two-photon resonance. Thus, by mea-
suring the photonic content of the state of the system,
we can determine the strength of the nonlinearity.

The photonic content, in turn, can be measured by
detecting the light that leaks out of the cavity and ana-
lyzing its temporal distribution. If the photons arriving
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FIG. 2. (Color online) g(2)(0) vs. pump laser frequency for different U. (a) A 2D plot of g(2)(0) versus pump laser
frequency (x-axis) relative to the exciton resonance for different values of U (y-axis). The color corresponds to the base-10

logarithm of g(2)(0). Four strong bunching peaks (red) are observed, three of which come from the second-manifold eigenstates.
The remaining bunching peak at ωpump = 0 is due to photon-induced tunneling7. Also observed are three strong antibunching
dips (blue): the first-manifold eigenstates (lower and upper polaritons) and a quantum-interference dip. The other parameters
are ωc = ωe and κ = Γ = 0.01g. (b) Horizontal cross-sections of (a) for U/g = 0.3, 0.67, and 1.5. When U/g is near 2/3, the
location of the quantum interference dip overlaps with that of the upper polariton at ωpump = g, yielding an extremely strong
antibunching with g(2)(0) ∼ 10−7.

FIG. 3. (Color online) g(2)(0) vs pump laser frequency for different Γ and U. (a-c) Γ/g = 0.1, 0.5, and 1.0, with
U/g ranging from 0.1 to 0.5. The pump laser frequency is relative to the exciton resonance, and ωc = ωe. (a) For small Γ,

g(2)(0) resembles that in Fig. 2b, with the strong quantum interference-induced antibunching appearing near ωpump = g. (b)
For intermediate Γ, the antibunching dip at ωpump = g becomes shallow while a new antibunching dip appears at a slightly
negative ωpump. (c) This new antibunching dip, also due to the destructive quantum interference, can be significantly large

with g(2)(0) ∼ 10−2.

at the detector are more antibunched in time compared
to their Poissonian average, it points to the presence of a
strong polariton-polariton interaction. The second-order
coherence function g(2)(τ) yields the ratio of the detec-
tion rate of photon pairs separated by a delay τ to that
of single photons:

g(2)(τ) =
〈a†(0)a†(τ)a(τ)a(0)〉
〈a†(0)a(0)〉2

(II.3)

In particular, for zero time delay, g(2)(0) = 1 indicates a
Poissonian distribution typical of coherent light, whereas

g(2)(0) < 1 is a sub-Poissonian distribution and an exper-
imental smoking gun of a distinctly quantum process. In
the following section, we will investigate g(2)(0) in various
parameter spaces.

III. PARAMETER STUDY OF g(2)(0)

We first consider g(2)(0) for Γ � g � U. We assume
κ is equal to Γ. The second-manifold eigenenergies ap-
proach ±

√
2g and 2U, the former pair resembling the

well-known anharmonic Jaynes-Cummings ladder for a
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FIG. 4. (Color online) Minimum g(2)(0) for different Γ

and U. A 2D plot of the minimum value of the g(2)(0) that
appears at negative ωpump (see Fig. 3) versus U (x-axis) and Γ

(y-axis). The color represents the base-10 logarithm of g(2)(0).
For a given value of Γ, strong antibunching is observed for a
range of U. As Γ increases, the optimal value of U as well as its
width increases. White dashed lines mark where g(2)(0) = 0.1.
For this simulation, κ is set at 0.5g. The dotted appearance
for strong antibunching is a numerical artifact.

two-level qubit. The observation of photon antibunching
dips (g(2)(0) < 1) at the polariton resonances as well as
the bunching peaks (g(2)(0) > 1) at the energies of the
two second-manifold states has been extensively explored
in atomic42 and solid-state systems7.

When U becomes comparable to g, there appears an-
other energy, separate from the polaritons, that produces
antibunching. As explained by Bamba et al.43, this anti-
bunching dip is a result of destructive quantum interfer-
ence between the first and the second manifolds, and its
energy is given by

2ω′3 + 2Uω′2 + g2U = 0 (III.1)

where ω′ = ω − iΓ
2 .

Figure 2 shows a plot of g(2)(0) versus the pump
laser frequency relative to the exciton resonance at
multiple values of U. In addition to the first and the
second-manifold eigenenergies plotted in Fig. 1c, the
interference-induced antibunching is clearly observed in
Fig. 2a (the color represents the base-10 logarithm of
g(2)(0)). As U increases, the interference dip passes
through the upper polariton dip at ωpump = g. Figure.
2b shows the cross-sections of Fig. 2a for U/g = 0.3, 0.67,
and 1.5. For U/g = 0.67 (shown in green), the interfer-
ence dip coincides with the upper polariton dip, yielding
an extremely strong antibunching (g(2)(0) ∼ 10−7).

Having explored Γ � g ∼ U , we increase the dissi-
pation in our system until it becomes comparable to g,

FIG. 5. (Color online) g(2)(0) vs pump laser frequency

for different R. A plot of g(2)(0) versus pump laser frequency
relative to the exciton resonance for different monolayer areas,
with radius R ranging from 30 nm to 60 nm. The strong
antibunching appears for R = 42 nm. (inset) A plot of g(2)(τ)
vs τ for R = 42 nm. The rise time to unity is on the order of
one picosecond.

which is more representative of typical solid-state envi-
ronments. In Fig. 3, we explore three separate values
of Γ/g: 0.1, 0.5, and 1.0. For each one, we plot g(2)(0)
versus the pump laser frequency for a range of U val-
ues. As Γ increases, previously sharp features become
rounded, and what used to be a strong antibunching dip
at ωpump = g becomes gradually shallower (Fig. 3a).

For large Γ, on the other hand, an additional anti-
bunching dip appears. As seen in Fig. 3b and c, this
dip only appears for U < Γ, and the value of U at which
it appears depends on how close Γ/g is to unity. The
origin of this antibunching is once again the destructive
quantum interference43, which has been extensively in-
vestigated by others44–46. For a given Γ, Eq. III.1 gives
the optimum U and ω that produce the smallest g(2)(0).

Figure 4 displays a two-dimensional color plot of min-
imum g(2)(0) as a function of Γ and U. Here we set
κ = 0.5g. The color represents the base-10 logarithm of
g(2)(0), ranging from red (g(2)(0) ≈ 1) to blue (g(2)(0) ≈
10−6). We have indicated on the plot with white dotted
lines where g(2)(0) = 0.1, showing that the domain of U
that produces strong antibunching increases with Γ.

IV. PROPOSED EXPERIMENTAL DESIGN

To observe the strong, interference-induced antibunch-
ing, we propose to pattern a 2D-material monolayer into
a circular island with radius R and place it on a thin pho-
tonic crystal cavity (see Fig. 1a). We assume that the
area of the patterned monolayer is much smaller than
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FIG. 6. (Color online) g(2)(0) vs ωe and ωc. A 2D plot of

g(2)(0) versus the exciton resonance (x-axis) and the cavity
resonance (y-axis) relative to the pump laser frequency for
monolayer radius R = 42 nm. The color represents the base-
10 logarithm of g(2)(0). As can be seen, the antibunching is
robust against the change in the cavity frequency.

that of the cavity mode, i.e., R � Rmode. We also as-
sume that the monolayer is free of any defect such that
the excitons are delocalized over the entire monolayer
area. Hence, the spatial extent of the exciton wavefunc-
tion is equal to the physical size of the monolayer.

Both the exciton-photon coupling g and the nonlinear-
ity U depend on the size of the monolayer. The former
is given by47

~g =
dcv|φ(0)|

√
~ωc√

2ε0Lc

√
πR2

πR2
mode

(IV.1)

where dcv is the interband dipole matrix element,
|φ(0)| =

√
2/(πaB)2 is the amplitude of the exciton

wavefunction (aB is the exciton Bohr radius), ωc is
the cavity resonance frequency, ε0 is the permittivity
of free space, and Lc is the effective length of the cav-
ity mode. The nonlinear interaction strength is given
by U = 6Eba

2
B/(πR

2), where Eb is the exciton binding
energy48,49.

Thus, g ∼ R and U ∼ 1/R2, allowing us to tune the
system dynamics by patterning the monolayer into dif-
ferent areas via, for instance, electron beam lithography.
For a WSe2 monolayer with R = 5 nm coupled to a SiN
nanobeam cavity with Rmode = 1 µm, g ≈ 2π× 700 GHz
and U ≈ 2π × 30 GHz47.

While the cavity loss for a typical nanobeam is fixed
(κ = 2π×150 GHz)39, the exact dependence of Γ on R is
unknown and remains an open problem. It has been re-
ported that patterned monolayers on the order of tens of

nanometers in radii can suffer from linewidth broadening
due to the presence of edge states. Since the length of the
edge scales linearly with R and the loss has been seen to
increase for smaller monolayers, for our simulations, we
have chosen to fix Γ = 2π × 300 GHz at R = 50 nm, an
experimentally measured value, and vary it as 1/R39.

Figure 5 shows the effect of changing R on g(2)(0). As
R increases from 30 nm to 60 nm, an antibunching dip ap-
pears, becomes sharper, and then recedes. The strongest
antibunching occurs at R = 42 nm with g(2)(0) ∼ 10−3.
In addition to the zero time delay, the inset shows g(2)(τ)
for the parameters corresponding to R = 42 nm. The rise
time to unity is on the order of one picosecond, which is
expected since the time scale of the dynamics is set by the
loss rates that are on the order of hundreds of gigahertz.
A direct experimental measurement of this correlation
would require a fast pulsed laser source50. The width
of the pulse is limited by that of the antibunching dip.
For g(2)(0) < 0.5, the width of the dip in the frequency
domain is about ∼ 600 GHz (Fig. 5); thus, the pulse
width of the pump laser is limited to 1.7 ps. A further
trade-off, for R = 30 nm, would allow the measurement
of g(2)(0) ∼ 0.8 using a sub-picosecond pulse width.

Finally, we explore the robustness of the antibunching
dip for unequal cavity and exciton detunings, i.e., ωc 6=
ωe. Figure 6 shows a plot of g(2)(0) as a function of
ωc and ωe relative to the pump laser frequency for the
optimal parameters (R = 42 nm, g = 2π × 560 GHz,
Γ = 2π × 360 GHz, κ = 2π × 150 GHz, U = 2π × 40
GHz), where the color represents the base-10 logarithm
of g(2)(0). While the antibunching behavior is observed
only for a narrow range of the exciton detuning (x-axis),
it survives for a much larger range of the cavity detuning
(y-axis), giving us substantial leeway in the fabrication
precision of the nanobeam cavity.

V. CONCLUSION

We have explored the second-order coherence of a 2D-
material monolayer embedded in a photonic crystal cav-
ity and identified a range of system parameters that yield
strong photon antibunching. We have shown that by pat-
terning the monolayer into different sizes, we can tune
the system dynamics, driving it from a weak to a strong
photon antibunching regime. The successful implemen-
tation of the experimental design opens the door to a
new regime of quantum interference-based quantum sim-
ulations on a scalable, on-chip platform19.
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