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The charge transport mechanism in a solid is often inferred by observing very simple features like
the temperature dependency of electrical conductivity or resistivity. However, comparing compli-
cated physical models to such simple signatures leaves much ambiguity. Because models generally
have more parameters than the types of measurements available, inconsistencies can long go unrec-
ognized until the interrelation between different measurements is closely examined. We show that
a simple investigation of the thermopower-conductivity relation allows one to phenomenologically
characterize transport from experiments; the phenomenologically determined transport function can
be compared to physical models to distinguish transport mechanisms and straightforwardly point
out inconsistencies in literature models. We highlight two example cases, ceria and strontium ti-
tanate, to show that our analysis method can clarify whether the transport mechanism is through
hopping or delocalized states. We question previous suggestions about the scattering mechanism in
SrTiO3 and suggest deformation potential scattering on elongated Fermi surfaces as the origin of
high temperature T 2 resistivity.

I. INTRODUCTION

Physically interpreting low and thermally activated
electronic conductivity in crystalline semiconductors
(which is often the case for metal oxides) is challeng-
ing. Viewing charge transport as a hopping process
through localized states [1; 2] or propagating Bloch waves
[3] has been contentious since the earliest studies [4].
Even in popular materials, such as perovskite oxides,
it is still not unusual to find a lack of wide consensus
on the charge transport mechanisms. For example, in
SrCoO3-based derivatives, features of both band conduc-
tion [5; 6] and small polaron conduction [7] are found
in the direct-current (DC) conductivity, inviting further
investigation. A reliable analysis method for determin-
ing the relevant conduction mechanism is not straight-
forwardly established in the literature. Typically, anal-
ysis is centered on the temperature dependence of con-
ductivity; however, it is challenging to deconvolute and
distinguish various physical processes that are thermally
activated by only studying conductivity. Here, we pro-
pose that the thermopower-conductivity relation could
be used as a simple but powerful means to study trans-
port mechanisms. Thermopower and conductivity are
properties that are determined by an identical underlying
transport function, each sampled with different spectral
weighting. Using the transport function determined by
the interrelation of two different measured properties is
extremely useful for testing models. We demonstrate how
this method can be applied to identify n-type SrTiO3 as
a band conductor and oxygen deficient CeO2 as a small
polaron conductor.

II. AMBIGUITY IN INTERPRETING THE
TEMPERATURE DEPENDENCY OF

CONDUCTIVITY

The biggest reason why the temperature dependence
of DC conductivity σ(T ), by itself, does not provide an
unambiguous mechanistic signature is because different
physical processes exhibit similar features. The most
common example of this ambiguity is thermal activation;
although small polaron hopping and band conduction are
completely different physical descriptions, they give rise
to similar thermal activation behavior. As a simple ex-
ample, contrast transport from a non-degenerate band
conductor, where the Fermi-level EF is more than a few
kBT away from the band edge (Fig.1a), and a polaron
hopping conductor (Fig.1b). In a non-degenerate band

conductor, exponential thermal activation exp
(
EF−Et

kBT

)
is observed due to the temperature dependence of the
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FIG. 1. Contributions to thermally activated conduction. (a)
Band conductor. Thermally activated behavior results from
the Fermi-level being away from the band states. (b) Hopping
conductor. The transport process between localized states,
by itself, is also a thermally activated process. It is often
not straightforward to distinguish the two origins by simply
analyzing the temperature dependence of conductivity.
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carrier concentration (in the terminology of the Drude
model). In this case, the band edge plays the role of
a phenomenological “transport edge Et.” In a polaron
hopping conductor, transport occurs through localized
states, which are different than band states, but serve as
a phenomenologically identical transport edge Et. Thus,

exp
(
EF−Et

kBT

)
behavior is observed in this case as well, de-

spite the transport mechanism being different. Addition-
ally, transport between localized states is also thermally
activated, which is typically referred to as “activated mo-

bility” such as µ ∝ 1
T exp

(
− Ea

kBT

)
, where Ea is an acti-

vation energy. Hopping conductivity would be observed
with a combined contribution from the two processes.

In the general case for hopping, the carrier activation
and mobility activation could be more convoluted than
the simple example above. Carrier activation in heav-
ily doped materials requires use of the Fermi-Dirac dis-
tribution rather than an exponential function. Mobil-
ity does not necessary follow an exponential dependency
either [1; 8]; in both percolation models and variable
range hopping models [1], the temperature dependency

is C(T ) · exp
[(
−Ea,γ

kBT

)γ]
, where γ is an exponent that is

generally associated with dimensionality. The prefactor
C(T ) also depends on temperature, although weakly in
comparison to the exponential term.

An additional source of thermal activation in trans-
port is the grain boundary effect [9]. Although avoiding
such complications from the perspective of understand-
ing the intrinsic charge transport mechanism is desirable,
grain boundary effects more than often dominate the be-
havior of σ(T ). Dominance of the grain boundaries is, in
a sense, inevitable in polycrystalline materials, especially
in dielectrics where space charges cannot be screened very
well by charges [10]. Single crystals, if available, are ad-
vantageous in ruling out such extrinsic effects.

Optical measurements sometimes help disentangle the
various causes of thermal activation behavior, but ana-
lyzing these measurements present additional challenges.
For example, signatures in optical measurements could
be associated with the presence of polarons [2; 11–13],
although with challenges in the interpretation. However,
the mere presence of polarons, or their contribution to
optical conductivity, does not warrant that they signifi-
cantly contribute to the DC charge transport behavior.

Ambiguity in σ(T ) is an issue not only for thermal
activation. For example, when determining scattering
mechanisms in band conductors, σ(T ) can be different
than model predictions due to a temperature-dependent
EF (which can be significant even for a fixed carrier con-
centration because of thermal broadening, especially at
intermediate doping levels). Even for a well-resolved tem-
perature dependency such as σ ∝ Tn, n could correspond
to multiple physical mechanisms that are indistinguish-
able with σ itself. Similar issues are encountered in the
analysis of any type of mobility.

III. ANALYSIS METHOD USING THE
THERMOPOWER-CONDUCTIVITY RELATION

The basic idea underlying thermopower-conductivity
analysis is to determine a general and phenomenologi-
cal transport function that does not depend on a par-
ticular physical model. The thermopower-conductivity
relation found from experiments allows one to identify
the phenomenological transport function, which can then
be compared to mechanistic transport functions derived
from physical models.

The transport function σE(E) is an energy-dependent
function that yields conductivity when integrated over
energy while taking into account the Fermi-Dirac distri-
bution f :

σ =

∫
σE(E)

(
− df

dE

)
dE. (1)

Here, −df/dE is a peak function centered at EF, tak-
ing care of the fact that fermions need empty states in
order to be transported. In terms of a physical inter-
pretation, σE(E) can be understood as the capability to
conduct at each energy level. Use of f indicates that,
when electon interactions are non-negligible, σE(E) is an
effective quasiparticle description (analogous to, for ex-
ample, renormalized band structures of heavy fermion
systems). When σE(E) represents only one type of car-
rier, the Seebeck coefficient is:

S =

(
kB
q

)
1

σ

∫
σE(E)

(
E − EF

kBT

)(
− df

dE

)
dE, (2)

where, q is the charge of the carrier (−e for electrons). It
is seen that σE(E) determines both σ and S for a given
EF. Therefore, by finding the S−σ relation by changing
EF, one can deduce the functional form of σE(E) that
governs charge transport.

The S − σ relation can be largely divided into two
cases: when charge is transported through a very nar-
row energy channel or through a dispersive spectrum.
We show that these cases are easily distinguishable by
studying the log |S| − log σ plot.

A. Narrow Transport Function

When the energy distribution of states participating in
transport is narrow relative to kBT , the transport func-
tion can be approximated as a Dirac delta function:

σE(E) = At · δ(E − Et), (3)

where At is an energy-independent coefficient. Narrow
transport is typically associated with transport through
localized states (no dispersion) such as small polarons
[14]. Hopping transport models [1; 15; 16] that use the so-
called transport energy (an energy level statistically rep-
resenting the overall transport [17]) are mathematically
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equivalent to using a narrow transport function. Even
in variable range hopping models that envision hopping
through states of varied energy levels, calculating trans-
port for a single transport energy level makes the model
equivalent to using a narrow transport function.

By using Eqs. 1 and 2, and by setting c = f(Et −EF)
and σE0 = At/kBT ,

σ = σE0 · c(1− c), (4)

and

S =
Et − EF

qT
=
kB
q
· ln
(

1− c
c

)
. (5)

Here, σE0 , is a transport coefficient in the units of con-
ductivity that determines the magnitude of conductivity
for a given EF, and c is the occupancy of the transport
states. Eqs. 4 and 5 are referred to as the Heikes equa-
tions in the literature, but here it is derived without as-
suming the absence of spin nor an infinite temperature
(to neglect kinetic terms) [18; 19]. Mathematically, the
infinite temperature assumption used in [18; 19] is equiv-
alent to a narrow transport function assumption; for in-
terpreting experimental data at a given temperature, it
is more relevant to understand the assumption in terms
of the width of the transport function relative to kBT .

If one defines c′ as site occupancy (instead of trans-
port state occupancy) and considers that each site can
accommodate both spin up and down, then c′ = 2f = 2c.
Conductivity and the Seebeck coefficient become:

σ = σE0 ·
c′

2

(
1− c′

2

)
, (6)

and

S =
kB
q
· ln
(

2− c′

c′

)
. (7)

In the literature, Eq. 7 has been suggested as a necessary
modification in the Heikes equation to take into account
spins [4; 18; 19]. This distinction could be important
when estimating c or c′ based on other quantities like
vacancy concentration; however, the distinction does not
affect the S − σ relation.

The S − σ relation for narrow transport is found by
eliminating c in Eqs. 4 and 5:

σ

σE0

[
1 + exp

(
S

kB/q

)][
1 + exp

(
−S
kB/q

)]
= 1. (8)

This relation is identically found from Eqs. 6 and 5. It is
seen that the S−σ relation is fixed for narrow transport
except for a scaling factor σE0

.
Temperature dependence of the Seebeck coefficient can

be used to support the conclusion of a narrow transport
function. When the number of charge carriers is extrinsi-
cally fixed in a material (e.g. a fixed defect concentration
while having no bipolar excitations), thermopower be-
comes temperature independent for a narrow density of

states, as suggested by Eq. 5. This independence results
from the Fermi-level self-adjusting with temperature in
a way that gives a constant reduced Fermi-level. Sup-
pose that the number of electrons provided by defects or
dopants is fixed at n0. Then, the Fermi-level would be
determined by:

n0 =

∫
g(E)f

(
E − EF

kBT

)
dE, (9)

where g(E) is the density of states. When the density of
states is a narrow function around Et, g(E) ≈ N · δ(Et).
As a result:

n0 ≈ N · f
(
Et − EF

kBT

)
= N · f(−η). (10)

Therefore, when c = n0/N is fixed with respect to tem-
perature, η is also fixed (i.e. EF shifts in a way that
keeps η constant), making S temperature-independent.
Note that when the narrow band states are the dominant
conductive states but are not the only states controlling
η (e.g. non-conductive states below the narrow band), a
weakly temperature-dependent S could be observed de-
spite transport being governed by a narrow band.

B. Dispersive Transport Function

When the states that participate in transport are dis-
persive in energy, the transport function is often well-
described with a power law above a transport edge:

σE(E) = σE0
·
(
E − Et

kBT

)s
(E ≥ Et)

= 0. (E < Et)

(11)

The exponent s depends on the particular transport
mechanism and σE0

is again used as a transport coef-
ficient in the units of conductivity. Dispersive transport
is typically associated with transport through delocal-
ized band states (with possible exceptions [20]). Most
archetype band transport models for σ and S are equiva-
lent to Eq. 11 with σE0

and s corresponding to particular
physical parameters of the model and the overall energy
exponent, respectively.

By using Eqs. 1 and 2:

σ = σE0 · sFs−1(η), (12)

and

S =

(
kB
q

)[
(s+ 1)Fs(η)

sFs−1(η)
− η
]
. (13)

Here, η = (EF −Et)/kBT is the reduced Fermi-level and

Fi(η) =
∫∞
0

ti

exp(t−η)+1dt is the complete Fermi integral.

Extracting the S − σ relation requires numerical in-
tegration of Eqs. 12 and 13, parameterized by η. The
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relation is fixed for a given s except for a scaling factor
σE0

, allowing one to deduce s from the relation. In the
limit where η � 1, the S−σ relation can be be obtained
analytically using the Sommerfeld expansion:

S =
kB
q

π2

3
s

(
σ

σE0

)−1/s
. (14)

It is seen that a log |S| − log σ plot is most useful in
distinguishing s because the linear slope converges to
−1/s as η increases. In the opposite limit (η � −1),
all mechanisms (even the narrow transport case) become
an identical form of S ∝ log σ + constant, making them
indistinguishable by only using the S − σ relation [20].

Next, we note how different scattering models for band
transport can be mapped to the phenomenological expo-
nent s. For semiclassical band conduction [3], σE(E)
from a particular band is:

σE(E) = q2 · v2(E)τ(E)g(E), (15)

where v is the velocity and τ is the relaxation time of
charge carriers. For deformation potential scattering
models including acoustic phonon scattering [21], non-
polar optical phonon scattering [22], and intervalley scat-
tering [23], τ(E) ∝ g−1(E); thus, v2(E) determines s in
this case, giving s = 1 for free electron-like behavior.

Through similar arguments, polar-optical phonon scat-
tering corresponds to s = 2 [22] and ionized impurity
scattering corresponds to s = 3 [24]. Point defect scat-
tering is another case that gives s = 1 [25]. These dif-
ferences result from additional energy dependencies in τ
calculated from each scattering model, from which the
leading order energy term is taken.

When band complexity is involved, such as secondary
bands contributing to transport [26], the σE(E) also be-
comes more complex than a simple power law. Such com-
plexity is analogous to effective mass becoming a more
complex function than a constant. See Ref.[27] for a more
detailed discussion.

IV. APPLICATION TO MATERIALS

A. Polaron hopping in CeO2-x

Ceria is a material widely used for its promising oxy-
gen redox properties [29; 30]. The strong electronic con-
tribution to conductivity in ceria makes it especially ad-
vantageous for electrocatalysis [31]. The mechanism by
which charge is transported has been described as small
polaron conduction [28; 32], but the analysis depended
on assumptions about polaron state occupancy [28; 32]
or debatable data corrections [32]. In this section, it
is shown that the identical conclusion can be reached
through a more straightforward route of analyzing the
S − σ relation at a given temperature.

The log |S| − log σ relation observed in single crystal
CeO2-x at 1273 K follows that predicted by a narrow
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FIG. 2. (a) Analysis of the log |S| − log σ relation at 1273 K
in single crystal n-type CeO2-x reduced to different composi-
tions by atmosphere control, using data from Ref.[28]. The
data indicate that a narrow transport function is governing
the transport in this material. To find the Seebeck coefficient
corresponding to each conductivity measurement, the Seebeck
coefficient versus composition data were fitted to find an em-
pirical relation. (b) Temperature dependency of the Seebeck
coefficient as compiled in the same reference. The dashed lines
are guides to the eye showing the average value with respect
to temperature.

transport function (Eq. 3), which is significantly differ-
ent than what is predicted by band transport (Fig. 2a).
A narrow transport function is consistent with hopping
conduction through small polarons. Since this analysis
is done at a fixed temperature, concerns with the com-
plicated phase diagram of CeO2-x is avoided by simply
picking a temperature at which CeO2-x is a single phase
(fluorite) over a wide off-stoichiometry range.

We note that estimations of polaron occupancy (c for
Eqs. 4-5 or c′ for Eqs. 6-7), or even composition, is not
explicitly required for the analysis in Fig. 2a. It is more
reliable to not explicitly use c (or c′), as in analyzing S(c)
or σ(c), because of the ambiguity or uncertainty of how
c corresponds to a particular composition. As long as it
is experimentally established how a particular S corre-



5

sponds to a particular σ, the transport function can be
inferred from S − σ without further assumptions about,
for example, polaron states. This advantage of analyzing
S−σ is analogous to not requiring information about the
carrier concentration when studying band conductors.

From the temperature dependency of thermopower, it
can be inferred that the narrow transport function de-
scription persists at temperatures other than 1273 K (at
which log |S| − log σ was analyzed). In Fig. 2b, it is seen
that the thermopower of CeO2-x (fixed x) is insensitive
to temperature. In this measurement, the composition of
CeO2-x was fixed by equilibrating with a predetermined
reducing atmosphere and then quenching to lower tem-
peratures. Since the electrons are provided by the oxy-
gen vacancies in CeO2-x, fixing the composition is equiv-
alent to fixing c. Therefore S(T ) is consistent with the
log |S|−log σ relation found at 1273 K. In such situations
where the log |S|−log σ relation cannot be fully examined
at some temperatures (in ceria it is due to the limited
range of off-stoichiometry at lower temperatures), tem-
perature dependency is a useful way to see whether the
transport function description found at one temperature
could be a reasonable description at other temperatures.

B. Band conduction in SrTiO3

Strontium titanate (SrTiO3) is one of the most widely
studied perovskites for its electronic properties [35–37].
SrTiO3 has been widely recognized as a band conduc-
tor in the literature [33; 34; 38–42], with only a num-
ber of reports citing hopping conduction from the ac-
tivated conductivity in polycrystals [43–46]. Neverthe-
less, precisely how band conduction should be justified
and what models should be used to quantitatively ana-
lyze transport measurements are topics with not much
consensus; found in the literature are mixed assessments
on the scattering mechanisms including ionized impurity
scattering [33; 38], deformation potential scattering [34],
and polar optical phonon scattering [34]. Here, we show
through a Seebeck-conductivity analysis that doped n-
type SrTiO3, at 120 K and above, phenomenologically
follows the s = 1 dispersive transport model curve, which
is consistent with band conduction through deformation
potential scattering.

The experimental log |S| − log σ relation in n-type
doped SrTiO3 agrees very well with the s = 1 curve
(Fig. 3). By contrast, the curve predicted for a nar-
row transport function shows a steeper decrease in ther-
mopower when |S| < 300 µV/K. This analysis allows us
to unambiguously conclude that the energy dependency
of the transport function is σE ∝ E above the transport
edge, rejecting the claim of polaron mediated transport
in this material.

Identification of the s = 1 relation allows us to also ex-
clude polar-optical phonons or ionized impurities as the
dominant scattering mechanism for band conduction at
> 120 K. Ionized impurity scattering has previously been
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FIG. 3. Analysis of the log |S|− log σ relation in single crystal
n-type SrTiO3 doped with either La (circles) or Nb (squares):
(a) 120 K; (b) 450 K; (c) 1050 K. Best fit is found with s = 1
at 120 and 450 K, compared with other exponents correspond-
ing to previous suggestions found in the literature. At 1050 K,
the large thermopower of the given data makes it difficult to
distinguish between different cases. Data are from Ref.[33]
and [34] for (a) and (b-c), respectively. The open marker
indicates that conductivity was interpolated from adjacent
compositions.
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suggested as the low temperature scattering mechanism
[33; 38], which, however, would have to appear with a
s = 3 relation that is not in agreement with measure-
ments at 120 K (Fig. 3a). Polar-optical phonon scatter-
ing, which would be s = 2, has been suggested for above
room temperature [34]; however, at 450 K (Fig. 3b) the
s = 2 relation does not explain the measurements.

The reason why examining the S-σ relation allows one
to easily exclude other mechanisms that have been sug-
gested through different analysis routes is because it is
less dependent on assumptions, only requiring a simple
scaling behavior of the transport function with respect
to energy. For example, in the analysis that has led to
suggesting polar-optical phonon scattering using the S-
n relation [34] (n is carrier concentration), the Fermi-
level was inferred from estimations of n in a way that
assumes a particular Fermi surface (one that is reducible
to an energy-independent effective mass for the density
of states). However, the peculiar shape of the conduction
band Fermi surface of SrTiO3 upsets that approach. For
charge transport, on the other hand, only the carriers
with a light inertial mass contribute meaningfully; even
for a complicated Fermi surface, the carriers dominating
transport are often simply described as v2 ∝ E, as is the
case for SrTiO3.

Another reason is because one naturally arrives at a
phenomenological description that is consistent for both
S and σ by examining the S-σ relation. Without directly
studying the S-σ relation, the inconsistency between S
and σ in a model is easily missed, as exemplified in the
SrTiO3 literature.

Two questions still remain from the analysis in Fig. 3.
First, whether it is reasonable to consider 1050 K to be
s = 1, where models lines are indistinguishable due to
the increased thermopower at high temperature (Fig. 3c).
Second, whether the deformation potential scattering
model, which is what s = 1 would typically indicate, is
consistent with the temperature dependency of transport
observed in SrTiO3. These questions can be addressed
by extracting the temperature dependent relaxation time
of charge carriers.

Converting σE0 , the phenomenological transport coef-
ficient which determined only the magnitude of conduc-
tivity in Fig. 3, into a carrier relaxation time τ requires
a physical model. Here, we use a semiclassical band con-
duction model that takes into account the 2D-like Fermi
surface features of n-type SrTiO3. From the model de-
rived in the Appendix, the mechanistic transport func-
tion for SrTiO3 can be specified in terms of band con-
duction parameters:

σE(E) =
2e2kBT

aπ~2
τl(T ) · E − Et

kBT
, (E ≥ Et) (16)

where −e is the charge of an electron, a is the lattice con-
stant, and τl(T ) is the relaxation time of the light car-
riers, which dominate transport, and dependent on tem-
perature but not energy. The extracted relaxation time
plotted in Fig. 4 shows that samples with different levels
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FIG. 4. The temperature dependent relaxation time of
the carriers dominating transport in n-type single crystal
SrTiO3, extracted from thermopower and conductivity using
the model Eq. 16. A dashed line representing T−2 is drawn for
comparison. The inset shows the original conductivity data
used for extracting the relaxation times. The collapse of dif-
ferent conductivity curves onto a single relaxation time curve
indicates the energy independence of τl, which is consistent
with the 2D character of transport. High and low temperature
data are from Ref.[34] and Ref.[33], respectively. The lattice
constant was fixed at a = 3.905 Å [48] for the calculation.

of doping collapse onto a single curve, indicating that the
energy independent relaxation time characteristic of a 2D
density of states is indeed a reasonable description for the
dominant charge carriers in SrTiO3. This description is
also consistent with experiments where τ was observed
to be independent of carrier concentration [47].

The relaxation time in Fig. 4 does not show notable
signs of a crossover in the temperature dependency above
450 K. This monotonic behavior indicates that the s = 1
relation found at 120-450 K is most likely applicable
also at higher temperatures; for a change in s, the tem-
perature dependency would also change. We note that
although the quantification of τ relies on the physical
model (Eq. 16), the absence of a crossover is a phe-
nomenological feature (i.e. model-independent).

Next, we explain why the physical origin of s = 1 could
be attributed to deformation potential scattering in n-
type SrTiO3. In Fig. 4, τ converges to T−2 at high tem-
perature. This dependency might seem different than
the typical τ ∝ T−1 expected for deformation potential
scattering at high temperatures [21; 49]. However, as
has been studied for the case of Bi, a cylinder-like Fermi
surface (elongated Fermi surface) results in τ ∝ T−2 in a
temperature range where the phonon wave vectors exceed
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the diameter of the cylindrical Fermi surface (T > TD)
while still being smaller than the length of the cylin-
der (T < TL) [49; 50]. n-type SrTiO3 fits well into this
criteria. The SrTiO3 Fermi-surface can be decomposed
into three elongated ellipsoids, and we can consider the
T−2 regime of each ellipsoid. The lower temperature
bound increases with EF; for the highest doping sample
(S ≈ 40 µV/K sample at 120 K in Fig. 3), TD ≈ 180 K for
acoustic phonons (speed of sound of vs = 7900 m/s and
m∗l = 1.1me assumed for this estimation). The cylinder
length (or long axis of the ellipsoid) of the Fermi-surface
in n-type SrTiO3 is similar to the Brillouin zone itself, so
the upper temperature TL for acoustic phonons is limited
by the Debye temperature along that direction (485 K us-
ing vs = 7900 m/s). On the other hand, the dispersive
optical phonon branches in SrTiO3 [51] will play a simi-
lar role (optical deformation potential due to long range
optical phonons), but with a much higher TL and lower
TD. Thus, continuation of T−2 at T > 485 K could in-
dicate contribution from optical deformation potentials.
Overall, deformation potential scattering offers a good
explanation for the τ ∝ T−2 found in the heavily doped
n-type SrTiO3 samples (Fig. 4). Both the temperature
dependency (τ ∝ T−2) and energy dependency (s = 1) of
the transport function being consistent with deformation
potential scattering strongly suggests that the physical
description is proper.

We note that many transition metal perovskite oxides
have Fermi surfaces similarly elongated along three axes;
indeed, many literature examples such as PrNiO3 [52],
KTaO3 [53], SrNbO3 [54], and SrMoO3 [55] are found
with a resistivity ∝ T 2 at temperatures not very low.
The relation between deformation potential scattering on
elongated Fermi surfaces and the T 2 resistivity has not
yet been considered previously in those materials.

A mechanism that is commonly associated with the
τ ∝ T−2 is electron-electron scattering emerging from
Fermi-liquid behavior, which has been discussed for
SrTiO3 at low temperatures < 100 K [56]. It is unclear
whether electron-electron scattering is consistent with
s = 1. Above all, it is questionable whether electron-
electron scattering should dominate over deformation po-
tential scattering at temperatures as high as 1000 K.
Difficulties in Fermi-liquid theory for explaining the high
temperature conduction in a number of metal oxide per-
ovskites have also been discussed in [47].

Overall, the observed s = 1 relation in single crystals
concludes the transport mechanism in n-type SrTiO3 to
be band conduction as opposed to polaron hopping. The
band conduction mechanism is found to be consistent
with deformation potential scattering if one takes into
account the shape of the Fermi surface elongated along
each axis. The thermally activated conduction behavior
observed in some polycrystalline samples [43–46] should
be attributed to grain boundary effects rather than an
intrinsic conduction mechanism of SrTiO3. Finally, it
should be noted that in pure and stoichiometric SrTiO3,
where the extrinsic or self-doping level is extremely low,

the conductivity due to band conduction could be low
enough to make polaron hopping conduction possibly the
dominant transport mechanism [57; 58].

V. COMPARISON WITH OTHER ANALYSIS
METHODS

A. Use of the Temperature Dependency of the
Seebeck coefficient

The temperature dependency of S, on its own, only
provides limited information about the transport mecha-
nism because it is more related to the statistical shift
of the Fermi-level. For example, in conductors with
a dispersive transport function in the degenerate limit,

S = kB
q
π2

3
s
η ∝ T regardless of the exponent s.

The temperature-independent S of the narrow trans-
port case does provide a clearer indication. However, any
additional states that do not participate in transport but
still affect the statistical shift of the Fermi-level will give
rise to weak temperature dependency.

B. Use of Hall Measurements

Hall measurements, in contrary to the common belief,
mostly do not provide additional information in deter-
mining the transport function. This argument can be
understood by considering band conductors as an exam-
ple. The Hall coefficient from a particular band can be
expressed in terms of the transport function:

RH =
1

σ2

∫ ( qτ
m∗

)
σE(E)

(
− df

dE

)
dE. (17)

Here, m∗ is the effective mass of the particular band un-
der consideration. It is seen that RH requires knowl-
edge of the term qτ/m∗ (which is an energy-dependent
function), in addition to σE(E). For the determination
of σE(E), Hall measurements simply add one measur-
able and one unknown at the same time. In situations
where σE(E) is already known (transport mechanism al-
ready understood), RH provides information about the
electronic structure, which illustrates the rather different
purpose served by Hall measurements.

C. Jonker Analysis

Studying the S − σ relation on a S vs. log σ plot
(Jonker plots) is a useful way of extracting information
about the band gap and weighted mobilities [59]. How-
ever, the linear S (rather than logS) scale is more rel-
evant for investigation of the non-degenerate limit, in
which different transport mechanisms cannot be distin-
guished by only the S − σ relation. The idea to use
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the Jonker plot for distinguishing band and small po-
laron transport has been suggested previously [32], but
the model description for the degenerate limit was not
accurate.

VI. REMARKS ON ASSUMPTIONS

A. On the use of a homogeneous transport function

Decomposing conductivity in energy space using a sin-
gle transport function such as Eq. 1 is equivalent to treat-
ing the material as a homogeneous system. Although this
approach can still be used for some chemically inhomoge-
neous materials when the transport function is effectively
homogeneous, inhomogeneity can always be a potential
complication in general.

Transport in polycrystalline materials, in contrast to
single crystals, is the most common example where inho-
mogeneity due to the grain boundaries is a potential con-
cern. Grain boundaries inevitably have a different elec-
tronic structure than the grain, inducing charge transfer
that results in space charge regions that are spatially ex-
tended on a scale much larger than that of the grain
boundary itself [10]. In some metals, the grain boundary
effect is either small (non-significant charge transfer) or
screened well enough to be treated as a homogeneously
distributed scattering source (which is one assumption
behind using Matthiesen’s rule on scattering times like
τ−1 =

∑
τ−1i [60; 61]). This approach is equivalent to

using a homogeneous transport function. On the other
hand, in some semiconductors or insulators, the grain
boundary influence could be significant enough to make
it prohibitive for a homogeneous transport function to ac-
curately describe transport, as has been shown in Mg3Sb2

[9; 62]. In oxides, grain boundaries generally tend to
have a big impact on transport, but the effect can also
be mitigated through synthesis routes that produce grain
boundaries with a more conductive composition via at-
mosphere control [63–65]. When mitigated well enough,
polycrystalline samples can show S − σ relations resem-
bling that of a single crystal [64]. When grain boundaries
dominate the resistance of the material and chemical dop-
ing changes mostly the grain boundary resistance rather
than the Fermi-level, the resulting log |S| − log σ curve
would tend to be flattened out (which should not be at-
tributed to a high s exponent). This tendency is because
reduction of the grain boundary does not result in signif-
icant changes to the thermopower [9].

As an exceptional case, conducting polymers, which
have a highly inhomogeneous microstructure, apparently
exhibit transport like a homogeneous transport function
[20]. Because such a large variety of polymers with a wide
range of doping levels appear to follow an identical trans-
port function, it has speculated that the functional form
of the transport function might originate from the mi-
crostructural characteristics of the inhomogeneity itself,
such as percolation. It is also possible that the ordered

regions of the material simply dominate the energy de-
pendency of the transport function.

Overall, even for inhomogeneous systems, the log |S|−
log σ plot is still a useful means to understand the trans-
port in a material. However, whether the observed
behavior represents the inherent single crystal material
property is often not necessarily clear for polycrystalline
or inhomogeneously ordered materials.

B. On the rigid transport function assumption

Inferring the form of the transport function from a
log |S|−log σ plot requires multiple samples with different
Fermi-levels. In oxides, EF can be controlled either by
extrinsic doping or by oxygen off-stoichiometry control.
Whether such processes will keep the transport function
unchanged could be a challenging question to answer.
Largely two different cases should be considered when
rethinking the starting assumption of a “rigid” transport
function (the term “rigid” originates from the “rigid band
assumption” in electronic structure studies).

The first concern is whether the functional form of the
transport function is changing as the sample is tuned in
order to change EF . Since a change in the functional form
is indicative of a change or crossover in the dominant
transport mechanism, accompanying changes that signify
the crossover would be observed. For example, crossovers
in the temperature dependency of mobility, relaxation
time, or σE0

would indicate possible crossovers in the
transport mechanism.

Another concern is the transport coefficient σE0 being
systematically correlated to changes in the EF , like alloy-
ing effects exploited in band engineering [26; 66; 67]. A
common example would be a dopant—primarily intended
to change the EF , but not the band itself—also acting
as an alloying element to change the band effective mass,
such as the case of Fe-substituted SrTiO3 [39]. This type
of breakdown of the rigid transport function is harder to
notice because of its continuous and systematic depen-
dence of σE0

on the chemical substitution; a system with
a transport function of s = 1 could appear to have a sig-
nificantly different curve shape in the log |S| − log σ plot
due to a continuously changing σE0

. For band conduc-
tors, measurement of the Hall mobility could help notice
such changes, but only if Hall mobility can be straight-
forwardly converted to an η-independent transport pa-
rameter (e.g. σE0

or a mobility parameter such as µ0

[27]); Hall mobility itself is intrinsically η-dependent in
the heavily doped regime even for a rigid transport func-
tion. Comparing the effect of multiple types of dopants
(e.g. comparing Nb and La dopants in SrTiO3) is a useful
way to confirm the validity of a rigid transport function
assumption. Investigating the non-degenerate limit, in
which the Hall mobility is expected to be constant with
respect to EF for a rigid transport function, is another
way to check the rigidity assumption.

Additionally, electron interactions could be a cause for
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non-rigid behavior in the transport function [68], making
σE0

dependent on EF (recall that the transport function
was formulated in Eq. 1 using f).

VII. CONCLUSIONS

We have shown that investigation of the S−σ relation
provides a simple yet powerful means to study the sta-
tionary charge transport mechanism in materials. This
analysis complements the conventional means of simply
testing models with the temperature dependency of σ(T )
or S(T ). Since a given physical transport model almost
always predicts both a conductivity and a Seebeck coef-
ficient, testing the S − σ relation with experiments nat-
urally tests for a self-consistent model description.

The experimental S−σ relation provides a phenomeno-
logical transport function σE(E) that can be easily com-
pared to the mechanistic transport function of physical
models. While energy-dependent parameters in a physi-
cal model are not easily tested by individually investigat-
ing σ or S, σE(E) directly tests the energy-dependency.

Therefore, the S−σ relation should always be studied
in addition to conventional means when determining the
charge transport mechanism.

Appendix: Transport function for n-type SrTiO3

A simplified Fermi surface model for the conduction
band is useful for studying the transport with an ana-
lytical equation. The complex Fermi-surface of n-type
SrTiO3 originates from three interpenetrating prolate el-
lipsoids along three orthogonal axes that are symmet-
rically identical. The dispersion relation of one prolate
ellipsoid aligned along the z-axis is:

E =
~2(k2x + k2y)

2m∗l
+

~2k2z
2m∗h

, (A.1)

where ki is the Bloch wave number along the i axis. Due
to the order-of-magnitude difference between m∗l and m∗h
in SrTiO3, transport is dominated by the light carri-
ers with an effective mass of m∗l (low mobility, or low
v2τ , due to heavy effective mass outweighs any benefits
from a larger density of states). Therefore, in terms of
transport, the second term in Eq. A.1 is not significant,
and a cylindrical geometry becomes a good model Fermi-
surface for transport. Conductivity contributions from
the three orthogonal cylinders will be added, neglecting
avoided crossings for the sake of simplicity.

Conductivity along the x-direction in a cylindrical
Fermi-surface aligned with z can be calculated by using

the solution of the Boltzmann transport equation:

σx = q2
∫
v2x(E)τ(E)g(E)

(
−∂f
∂E

)
dE. (A.2)

By taking advantage of the rotational symmetry in the
x−y plane of a cylinder, v2x can be replaced with v2/2 =
E/m∗l (equipartition). g(E) can be derived from that of a
2D k-space (m∗/π~2) by multiplying it with the number
of k-points along the z-axis (1/a where a is the lattice
parameter in real space):

gcylinder =
m∗l
aπ~2

. (A.3)

Note that g is energy-independent as a result of the 2D
nature of density of states. The conductivity of a cylin-
drical Fermi-surface becomes:

σcylinder
x =

q2

aπ~2

∫ ∞
0

Eτ(E)

(
−∂f
∂E

)
dE. (A.4)

Here the transport edge (band edge) has been set to
Et = 0. In SrTiO3, two cylinders (aligned along z- and
y−axes) contribute to conduction in the x-direction such
that σx = 2σcylinder

x , which is also the bulk isotropic con-
ductivity.

Next, we recognize that τ should be energy-
independent in order to have a model consistent with
s = 1 that was phenomenologically found in Fig. 3. (Al-
though possible, we avoid establishing the energy inde-
pendency of τ using the deformation scattering model
here so that we can discuss τ on general grounds) There-
fore τ(E) is replaced with τl, with the subscript denoting
the idea that only the light carriers are being considered.
The conductivity in n-type SrTiO3 due to light carriers
becomes:

σSrTiO3 =
2e2τl
aπ~2

∫ ∞
0

E

(
−∂f
∂E

)
dE

=
2e2kBTτl
aπ~2

F0(η),

(A.5)

where the s = 1 relation is seen. For a full derivation,
one could integrate in k-space to obtain the identical re-
sult. The underlying transport function is found from
this Eq. A.5, as given in Eq. 16.

From Eq. 16, it is found that the tempera-
ture dependency of conductivity is determined by
σ(T ) ∝ Tτl(T )F0(η). In the degenerate limit, F0(η)→ η
and σ(T ) is determined by τ(T ). In the non-degenerate
limit, F0(η) → exp(η). When τ ∝ T−2, σ ∝ T−2 in the
degenerate limit for a given EF and σ(T ) ∝ 1

T exp( EF

kBT
)

in the non-degenerate limit .
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