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We use the determinant Quantum Monte Carlo method (DQMC) to study the interaction-
driven semimetal to antiferromagnetic insulator transition in a π-flux Hamiltonian with modulated
hoppings, a model which has two species of Dirac fermions. It is found that the critical interaction
strength Uc is decreased by reducing the velocity of the outer Dirac cone, while the inner cone
velocity fixes the band width. Although Uc is monotonic, at fixed inverse temperature β the
antiferromagnetic (AF) structure factor has a maximum as a function of the hopping modulation.
We also study the corresponding strong coupling (Heisenberg model) limit, where the sublattice
magnetization is enhanced by the alternation of the exchange couplings. The AF order is shown to
be non-monotonic, and maximal at an intermediate degree of anisotropy, in qualitative agreement
with the Hubbard model. These results quantify the effect of the velocities on the critical interaction
strength in Dirac fermion systems and enable an additional degree of control which will be useful
in studying strong correlation physics in ultracold atoms in optical lattices.

I. INTRODUCTION

Much recent progress has been made in studying
condensed matter emergent quasiparticles which have
close analogs in high-energy physics. A primary example
is the behavior of electrons on graphene’s honeycomb
lattice, which are described by two-dimensional Dirac
fermions, and whose unusual physical properties have
triggered great interest1. Other solutions of the Dirac
equation, Majorana fermions (neutral particles that are
their own antiparticle) and Weyl fermions, have also been
detected in condensed-matter systems2–4.

These three kinds of fermions have half-integer spin,
similar to their high energy analogs, but solid state
systems may also have other quasiparticles. Fermions
described by a simple k · S Hamiltonian with S the
spin operator (obeying the Lie algebra of SU(2)] of
spin-1 or spin-3/2 have been reported5–7. While these
studies focus on three spatial dimensions, realizations
similar to graphene in which fermionic quasiparticles
are constrained to move in two spatial dimensions,
have been considered. The low-energy excitations of
itinerate electrons on a Lieb lattice are described by a
2D k · S Hamiltonian with pseudospin 1, and have been
realized in photonic lattices8,9 and engineered atomic
lattices10–12. Generalizations to arbitrary spin S have
been obtained in stacked triangular lattices13 and 2D
optical superlattices14,15.

An important phenomenon exhibited by these fermions
is the interaction-driven metal-insulator transition
(MIT). Intense research has been carried out on 2D
spin-1/2 Dirac fermions in the Hubbard model on a
honeycomb lattice and π-flux square lattice, where the
simplest scenario of a direct and continuous transition
has been confirmed16–21. The quantum critical behavior
in the vicinity of the phase transition is universal and
is described in the continuous limit by the Gross-Neveu

model. Studies of spin-1 Dirac fermions have an even
longer history. The Lieb lattice hosts such fermions
and belongs to a class of bipartite geometries where a
rigorous theorem implies a ground state at half filling
with a nonzero spin and long-ranged ferromagnetic order
for U > 022,23.

It is natural to study the interaction effects in other 2D
spin-S Dirac systems. In this manuscript, we consider
the MIT and magnetic order in a system similar to
that of spin-3/2 Dirac fermions in which a birefringent
breakup of the doubly degenerate yields Dirac cones with
two different ‘speeds of light’24–26. The velocities of the
normal spin-3/2 Dirac fermions are fixed to the values
proportional to 3

2 ,
1
2 , but our realization can continuously

tune the velocities of the Dirac cones. The setup can be
realized in the π-flux model with modulated hoppings
which we solve using DQMC. It is found that the critical
interaction scales with the velocity of the outer Dirac
cone while the inner cone fixes the band width. The
present setup provides an ideal system to study the
critical interaction of Dirac fermions with continuously
tuned velocity. We also show that in the corresponding
Heisenberg model, which is the strong coupling limit of
the π-flux Hubbard model, the sublattice magnetization
shows a peak as the velocity is decreased, providing an
illustration of the interesting phenomenon of enhancing
quantum antiferromagnetism by weakening the bonds.

II. MODEL AND METHOD

We start from the π-flux Hubbard model,

Ĥ =
∑
〈ij〉σ

tije
iχijc†jσciσ (1)

+ U
∑
i

(ni↑ −
1

2
)(ni↓ −

1

2
).



2

DC

BA t+

t+-t-

t-

BA

t-t

DC

BA

t

(a) (b) (c)

FIG. 1. The energy spectra and lattice geometries considered in this paper. (a) The π-flux lattice has two identical single Dirac
cones. The solid (dashed) lines represent positive (negative) hoppings. (b) The unit cell is doubled by an alternation of the
hoppings t± = (1 ± α)t0, and, as a result, there are two Dirac cones with different velocities. (c) In the limit α = 1, one of the
four sites in one unit cell is completely depleted since the hoppings to it, t− = 0. The resulting geometry is a Lieb lattice ( 1

4
depleted square lattice).

The noninteracting part is a tight-binding Hamiltonian
on a square lattice with each plaquette threaded with

half a flux quantum, 1
2Φ0 = 1

2
hc
e

27,28. Here c†iσ and ciσ
are the creation and annihilation operators at site ri with
spin σ =↑, ↓; the hopping amplitude between the nearest-
neighbor sites i and j is tij . χij is the Peierls phase, given
by χi,i+x̂ = 0, χi,i+ŷ = π ix in the Landau gauge. The
resulting hopping pattern is shown in Fig. 1(a). When
tij is uniform, the lattice has a two-site unit cell (with
labels A,B) and in reciprocal space, with the reduced
Brillouin zone (|kx| ≤ π/2, |ky| ≤ π), the noninteracting
Hamiltonian can be written as

H0 =
∑
kσ

ψ†kσH0(k)ψkσ ψkσ =
(
cAσ cBσ

)T
H0(k) =

(
−2t cosky +2t coskx
+2t coskx +2t cosky

)
(2)

The energy spectrum Ek = ±
√

4t2(cos2 kx + cos2 ky)
describes a semi-metal with two inequivalent Dirac points
at K± = (π/2,±π/2).

Introducing tij with the pattern shown in Fig. 1(b),
the unit cell is also doubled along the y-direction. The
two Dirac points are folded to the same point (π/2, π/2)
in the reduced Brillouin zone. The Hamiltonian in
momentum space becomes,

H0 =
∑
kσ

ψ†kσH0(k)ψkσ ψkσ =
(
cAσ cBσ cCσ cDσ

)T

H0(k) =

 0 2t+ cos kx −2t− cos ky 0
0 0 2t+ cos ky

0 2t− cos kx
0

 (3)

where the lower triangle is filled so that the matrix
is Hermitian. Now the energy spectrum is Ek =
±2t±

√
cos2 kx + cos2 ky with t± = (1 ± α)t0 and t+ =

1 defines the energy scale. We obtain ‘birefringent’
fermionic Dirac species with distinct velocities 2t±.

When treated within mean field theory, AF order is
represented by an additional real-space term HAF =

m
∑
i(−1)l(c†i↑ci↑− c

†
i↓ci↓), where (−1)l = +1(−1) if site

l is on the two sublattices of the bipartite square lattice.
The spectrum E′k = ±2t±

√
cos2 kx + cos2 ky +m2 is

immediately gapped.

We will, instead, analyze the behavior within an exact
treatment of the correlations by simulating the π-flux
Hubbard model Eq. (1) using the DQMC method29–32.
To characterize the magnetic properties, we measure the
staggered structure factor, S(π, π) = 1

N

∑
i,j(−1)l〈Si ·

Sj〉. A physical quantity of central interest is the
sublattice magnetization, which is given by M2 =
S(π, π)/N . We also employ the stochastic series
expansion (SSE) QMC method with directed loop update
to simulate the corresponding Heisenberg model of the
Hamiltonian Eq.(1) in the strong coupling limit33. The
SSE QMC is performed using the ALPS libraries34.

III. DECREASED CRITICAL INTERACTION
AT THE SEMIMETAL TO AF INSULATOR

TRANSITION

Figure 2 shows SAF on a N = 8×8 lattice for different
U as a function of α. At the π−flux lattice point (α = 0),
it is known that long-ranged antiferromagnetic order
(LRAFO) exists when U exceeds Uc = 5.65± 0.0518. In
the α = 1 limit, the geometry is the Lieb Lattice, where
LRAFO (or, more precisely, ferrimagnetic order) exists
for all U > 0. The behavior of SAF is qualitatively similar
for different values of the interaction strength U : SAF
first increases at small α; quantum antiferromagnetism
is enhanced. However, after reaching a maximum at
intermediate 0 < α < 1, the structure factor falls off.
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FIG. 2. The AF structure factor SAF as a function of α for
different U at β = 10. The linear size L = 8 and the number
of sites N = 64. Data were acquired from 10 simulations of
1000 equilibration and 10000 measurement sweeps for each α.

Intuitively, the final decrease in spin-spin correlations as
α → 1 might be associated with the bonds are being
increasingly weakened, and indeed are finally completely
depleted from the lattice at α = 1.
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FIG. 3. The equal time spin-spin correlation function c(r) on
a 16 × 16 lattice at β = 10. Data are shown for various α at
U = 3, including α = 0.7 which has the largest SAF . (a), c(r)
between A site at (0, 0) and A,B,D sites along the triangular
path on the lattice shown in the inset. (b), c(r) between A
site at (0, 0) and C sites on the path of the inset. The green
dot denotes the A site at the origin (0, 0).

To gain additional insight into the behavior of SAF , it
is useful to examine the equal-time real space spin-spin
correlation function c(r) = 〈(nj+r↑ − nj+r↓)(nj↑ − nj↓)〉.
c(r) is spin-rotation invariant, and in our simulations we
average the z correlation above over all three directions

to provide an improved estimator35. Figure 3 shows
the spin-spin correlation function for U = 3 at α =
0.5, 0.7, 0.9 on a 16 × 16 lattice. The origin is placed on
the A site at (0, 0), and r runs along a triangle path. The
path in Fig. 3(a) contains A,B,D sites. The absolute
values of c(r) grow monotonically as α is increased,
reaching the Lieb lattice limit at α = 1. Their signs are
consistent with antiferromagnetic order. α = 0.5 is close
to the critical point, thus the value of the correlation
at large distance is relatively small at the temperature
considered. On the other hand, the correlation length
has become comparable to the system size for the cases
of α = 0.7, 0.9. c(r) has a robust persistence at large
distance, suggesting the existence of the LRAFO.

Along the path in Fig. 3(b), which only contains C
sites, the correlations are always negative since the sites
are on the opposite sublattice from the origin. The trend
in their amplitude with increasing α is initially the same
as that of Fig. 3(a): the correlations grow in size with α.
Crucially, however, after reaching a maximum at α ∼ 0.7
they rapidly decline. This is then the real-space origin of
the non-monotonicity of SAF with α.

The behavior of SAF is suggestive of the fact that
LRAFO may develop at a decreased critical interaction
in the presence of bond weakening in going from the π-
flux lattice to the Lieb lattice. We use finite size scaling
on lattices of sizes L = 8, 12, 16 to analyze quantitatively
the position of the critical point in the thermodynamic
limit. We calculate the structure factor as a function of
β, which is shown in Fig. 4(a). At low β, the correlation
length is short, and SAF is independent of L. At large
β, SAF first grows with L, then tends to a constant.
Therefore we use β = 20 to guarantee that the system is
in the ground state.

The square of the order parameter is given by SAF /N
in the limit 1/L → 0, for example, Fig.4 (b) shows such
extrapolation at α = 0.4. These extrapolated values are
shown in Fig. 5. As a function of t− = v/2 (v the velocity
of the outer Dirac cone), the critical interaction strength
is continuously decreased to zero. The quantum phase
transition between the semi-metal and antiferromagnetic
insulator is continuous. For π−flux Hubbard model,
the critical exponents have been calculated in Ref.18

and19. It is natural that the phase transition at different
anisotropic factors should belong to the same universality
class. With the data at hand, we estimate the critical
exponents β = 0.65(0.17) for α = 0.4. It is pointed
out in Ref.18 that the critical exponents for the π−flux
model have to be determined with very large lattice sites.
However our estimation roughly confirm that the critical
exponents do not depend on α within statistical error.
We also perform a mean-field analysis and the critical
interactions are underestimated. The same situation
happens for interacting Dirac fermions on honeycomb
lattice, where the mean-field gives Uc = 2.2336, compared
to Uc = 3.87 from DQMC17.

Recent studies of the honeycomb and π-flux Hubbard
models show that the critical interactions are different.
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But by rescaling Uc with the geometric average of the
velocities, it is obtained Uc√

νxνy
= 4.4(4.2) for honeycomb

Hubbard model (π−flux Hubbard model). Considering
the difference of the bandwidths, the scaled critical
interactions can be thought to be equal, thus it suggests
that the velocities of the Dirac fermions are the main
contribution to the renormalization of Uc

18,19. However,
the velocities in these models are not tunable if one
wants to keep the band widths fixed. In contrast, in
the system studied here, the velocities of one species of
Dirac fermions are continuously tuned, while the other
species fixes the band width. Thus one is able to make
a definitive statement concerning the evolution of Uc
measured in the meaningful limit of fixed bandwidth.
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FIG. 4. (a), The antiferromagnetic structure as a function of
β and different lattice sizes L at U/t = 4. (b), Extrapolation
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FIG. 6. The sublattice magnetization of the 2D spin-1/2
Heisenberg model in the thermodynamic limit, as a function
of the modulation strength α of the exchange constants. The
inverse temperature is β = 100, which is low enough to acquire
the ground state38. The dashed line is from the linear spin-
wave theory (see Appendix B for the details). The inset shows
the four-site unit cell with the modulated coupling J±. In
the simulations, J+ = 1 is fixed as the energy scale, and
J− = (1 − α)2/(1 + α)2 on the weakened bonds.

IV. 2D HEISENBERG MODEL WITH
WEAKENED BONDS

It is well known that the half-filled Hubbard model,
which describes itinerant magnetism, maps onto the
antiferromagnetic (localized spin-1/2) Heisenberg model

H = J
∑
〈i,j〉

Si · Sj (J > 0), (4)

as U/t → ∞. The relation J = 4t2/U gives the
exchange constant in terms of U and the hopping
amplitude. The 2D square lattice Heisenberg model
with uniform J has been studied intensely by means
of various theoretical and numerical techniques. There
is a general consensus that antiferromagnetic long-range
order exists in the ground state37. We consider here the
inhomogeneous variant corresponding to the Hamiltonian
Eq. (1) describing two species of Dirac fermions, in
which the antiferromagnetic coupling is modulated with
J± = (1± α)2J . (See inset to Fig. 6.)
M is calculated on L×L lattices with L up to 48, and

is extrapolated to the thermodynamic limit using fits to
polynomials in 1/L. Figure 6 shows the extrapolated
values as a function of α. At α = 0 we recover the
2D Heisenberg model, obtaining M = 0.3055 ± 0.0015,
which is consistent with previous QMC results39,40.
As the bonds are weakened, the antiferromagnetic
correlations are enhanced. The data shows a peak with
a maximum M = 0.399 at about α = 0.7. The order
parameter increases to about 80% of the classical limit,
emphasizing the reduction of quantum fluctuations. At
this maximum, the coupling J− = 0.0311. Beyond
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α ∼ 0.7, M decreases quickly. In the limit α = 1, where
J− = 0, the square lattice is depleted to Lieb lattice, and
the extrapolated value, M = 0.3842. We also calculate
the sublattice magnetization using the linear spin-wave
theory (see Fig. 6). In most cases, the magnetization M
is underestimated and the non-monotonic dependence on
α can not be obtained.

The enhancement of the sublattice magnetization can
also be explained by analyzing explicitly the details of
the real-space spin-spin correlation function, similar to
the fermionic case shown in Fig. 3. Figure 7 shows
c(l) (l the maximum distance on the finite lattice) in
the different channels. It is interesting to see that the
correlation with C site firstly rises rapidly and then
dives, in contrast to the slow rise or the small change
in the correlations between A,B,D sites. Thus the
behavior of the sublattice magnetization is dominated
by the correlations with the depleted C sites.
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FIG. 7. The spin-spin correlation function c(r) between the
two most distant points on a 48 × 48 lattice in the different
channels. AA and DD channels in (a) are degenerate, and
AC(AB) and DC(BD) channels in (b) are degenerate.

There are other ways to arrange weakened couplings,
generating anisotropic, dimerized and plaquette
Heisenberg models, which have been much studied
due to the relevance to the pinning effects of the
electronic liquid crystal in the under doped cuprate
superconductor YBa2Cu3O6.45, or being important
examples featuring a quantum phase transition41–44.
However in these cases, the sublattice magnetization
decreases monotonically as the bonds are weakened.
The quantum antiferromagnetic enhancement found
here is intriguing since it does not correspond to the
qualitative trends in this past work. Besides our explicit
explanation by analyzing spin-spin correlation function,
another fact should be noted that in the limit cases
the above spatially anisotropic models becomes 1D
Heisenberg model, or isolated dimers and plaquettes,
which have no long-ranged antiferromagnetism order.

V. CONCLUSIONS

The interaction-driven semimetal to antiferromagnetic
insulator transition of two coupled species of Dirac
fermions, realized by depleting the π−flux lattice to
the Lieb lattice, was studied using the DQMC method.
During the process of increasing the modulation of the
hopping, the quantum antiferromagnetism is enhanced,
resulting in a decreased critical interaction Uc at the
quantum phase transition. A related phenomenon of
increased sublattice magnetization in the corresponding
Heisenberg model was also confirmed. The Hamiltonian
studied provides a clean, idealized system in which to
explore the effect of velocity on the critical interaction
strength for magnetic ordering and MITs of Dirac
fermions.

Moreover, ultracold atoms in optical lattices provide
a platform to implement this system. Very recently,
the 2D Fermi-Hubbard model has been realized in a
series of experiments and spin correlations displaying
antiferromagnetic behavior have been observed directly
with Bragg scattering45 and fermionic microscopes46–49.
In addition, a scheme based on resonant modulations
was developed to engineer synthetic gauge fields and
a constant flux per plaquette throughout the optical
lattice50. This offers the possibility of ‘building’ the
modified π-flux Hubbard model whose physics was
explored here, and verifying experimentally our key
findings.

The enhancement of magnetic order with
inhomogeneous hopping patterns which we find is,
in fact, an intriguing feature of a number of strong
correlation phenomena. It has been proposed, for
example, that an ‘optimal inhomogeneity’ exists for
d-wave superconductivity in a Hubbard model which
builds a full 2D lattice from 2x2 plaquettes serving
as binding centers for d-wave pairs51–54. However,
a considerable degree of discussion has arisen from
different results obtained within complementary analytic
and numeric apporaches, both for the magnetic and
pairing responses55–57. We have shown that the idea
of optimal inhomogeneity extends further to Dirac
fermions, and also proposed a novel way to tune the
inhomogeneity so that the velocity can be used to adjust
the position of the quantum critical point between
paramagnetic metal and antiferromagnetic insulating
ground state phases.
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Appendix A: Mean-field approximation of the
Hubbard model

In the mean field approximation, the interaction term
in Eq.(1) is decoupled as,

ni↑ni↓ = 〈ni↓〉ni↑ + 〈ni↑〉ni↓ − 〈ni↓〉〈ni↑〉. (A1)

To incorporate the antiferromagnetism order, we write

〈ni↑,α〉 =
1

2
+ ρα, 〈ni↓,α〉 =

1

2
− ρα, (α = A,D)(A2)

〈ni↑,α〉 =
1

2
− ρα, 〈ni↓,α〉 =

1

2
+ ρα, (α = B,C).

Then the Hubbard term becomes,

U
∑
i

ni↑ni↓ = E0 + (A3)∑
i∈A

(−ρAni↑ + ρAni↓) +
∑
i∈B

(ρBni↑ − ρBni↓) +∑
i∈D

(−ρDni↑ + ρDni↓) +
∑
i∈C

(ρCni↑ − ρCni↓)

where E0 = 1
4NU + NU

4 (ρ2A + ρ2B + ρ2C + ρ2D) (N is the
total number of the sites). The Hamiltonian matrix in
the momentum space reads

H↑(↓)MF (k) =

 ∓ρA 2t+ cos kx −2t− cos ky 0
±ρB 0 2t+ cos ky

±ρC 2t− cos kx
∓ρD


(A4)

The dispersion Ek,σ can be obtained by diagonalizing
the above Hamiltonian. However the analytical result is
complex, and we do not show the result here. Then we
may calculate the free energy at zero temperature

F =
∑
k,σ

Ek,σ + E0, (A5)

where the summation is over the two lower branches,
which correspond to half filling. The ground state is
obtained by minimizing F with respect to the order
parameters ρα(α = A,B,C,D). This yields a set of self-
consistent equations and can be calculated numerically.

Appendix B: Linear spin-wave theory of the
Heisenberg model

Using Holstein-Primakoff transformation, the spin
operators are expressed in term of bosonic creation and
annihilation operators. The square lattice is a bipartite

one. The transformation on one sublattice (α = A,D) is
defined as

S+
a,i = (

√
2S − a†i,αai,α)ai,α, (B1)

S−a,i = a†i,α(
√

2S − a†i,αai,α)

Sza,i = S − a†i,αai,α.

On the other sublattice (α = B,C), the spin is in
the opposite direction for the antiferromagnetism order.
Thus the spin operators are defined as

S+
b,i = a†i,α(

√
2S − a†i,,αai,,α), (B2)

S−b,i = (
√

2S − a†i,αai,α)ai,,α

Szb,i = a†i,,αai,,α − S.

Expanding the square root in Eqs.(B1) and (B2) in
powers of 1/S, the zeroth order terms are kept in the
linear spin-wave theory. Then the spin-wave Hamiltonian
of Eq.(4) is directly obtained as

H = −4NtJ+S(S + 1)− 4NtJ−S(S + 1) (B3)

+

Nt∑
i=1

[2J+S(ai,Aa
†
i,A + a†i,Bai,B)

+ 2J−S(ai,Aa
†
i,A + a†i,Cai,C)

+ 2J+S(ai,Da
†
i,D + a†i,Bai,B)

+ 2J−S(ai,Da
†
i,D + a†i,Cai,C)

+ J+S(ai,Aai±x,B + a†i,Aa
†
i±x,B)

+ J−S(ai,Aai±y,C + a†i,Aa
†
i±y,C)

+ J+S(ai,Dai±y,B + a†i,Da
†
i±y,B)

+ J−S(ai,Dai±x,C + a†i,Da
†
i±x,C)],

where Nt is the number of unit cells. Perform a Fourier
transformation, the above Hamiltonian writes as H =∑

k Ψ†kH(k)Ψk, where Ψk = (ak,A, ak,D, a
†
−k,B , a

†
−k,C)T

is the basis and H(k) is the following matrix J+ + J− 0 J+ cos kx J− cos ky
0 J+ + J− J+ cos ky J− cos kx

J+ cos kx J+ cos ky 2J+ 0
J− cos ky J− cos kx 0 2J−

 (B4)

=

(
Ka ∆
∆T Kb

)
.

H(k) is also known as grand dynamical matrix and can
be diagonalized by a Bogoliubov transformation

αk,1
αk,2
β†k,1
β†k,2

 =

 u11 u12 v11 v12
u21 u22 v21 v22
w∗11 w∗12 x∗11 x∗12
w∗21 w∗22 x∗21 x∗22




ak,A
ak,D
a†−k,B
a†−k,C

(B5)
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The coefficient is determined by the following non-
Hermitian eigenproblem(

Ka −∆
∆T −Kb

)(
ū
v̄

)
= ωn

(
ū
v̄

)
, (B6)

(
Ka −∆
∆T −Kb

)(
w̄∗

x̄∗

)
= −ω′n

(
w̄∗

x̄∗

)
, (B7)

where ωn, ω
′
n > 0. The staggered magnetization is then

given by

M =
1

N

Nt∑
i=1

∑
α=A,B,C,D

〈Szi,α〉 (B8)

= S − 1

N

∑
k

∑
α=A,B,C,D

〈a†k,αak,α〉,

which can be calculated using the coefficients from the
inverse transformation of Eq.(B5).
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