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We study the dynamics of systems quenched through topological quantum phase transitions and
investigate the behavior of the bulk and edge excitation with various quench rates. Specifically, we
consider Haldane model and checkerboard model in slow quench processes with distinct band touching
structures leading to topology changes. The generation of bulk excitations is found to obey the
power-law relation Kibblle-Zurek and Landau-Zener theories predict. However, an anti-Kibble-Zurek
behavior is observed in the edge excitations. The mechanism of excitation generation on edge states
is revealed, which explains the anti-Kibble-Zurek behavior.

I. INTRODUCTION

The non-equilibrium dynamics of systems undergoing
phase transitions is an important subject in statistical
physics. In particular, quench dynamics through both
classical and quantum second-order phase transitions in-
volving symmetry breaking has been of great interest.
Kibble-Zurek (KZ) mechanism, a theory originally devel-
oped in the study of formation of the topological defects in
the early universe1,2, was applied to quench dynamics near
symmetry breaking second-order phase transitions3–5, and
provided a fairly accurate prediction of a power-law rela-
tion between the topological defect density and the quench
rate6. In the meanwhile, Landau-Zener (LZ) theory7 de-
scribing a two-level transition was also applied to the
study of dynamics of quantum phase transitions where
applicable, yielding results8,9 consistent with KZ theory.
Some systems under inhomogeneous quench10 and non-
linear quench11,12 out of the scope of KZ mechanism have
been investigated as well.

In the contrary, non-equilibrium dynamics across topo-
logical phase transitions that do not involve symmetry
breaking has been studied much less. Topological phases
of matter are of tremendous importance and current
interest13. Some fundamental questions about the dy-
namics of topological phase transitions naturally arise.
First, since there is no symmetry breaking in such phase
transitions, can KZ theory effectively describe their dy-
namics? Second, what is the mechanism of topological
defect generation, and how is it related to the symmetry
breaking case? Among many unique properties of topo-
logical states, of particular importance is the presence of
robust edge states that often give rise to dissipationless
and quantized transport; they have been proposed to
be the building blocks of electronic devices with low or
even zero dissipation14,15. Operating such devices often
involves switching between topologically trivial (the in-
sulating or off) state and non-trivial (conducting or on)
states. Thus understanding quench dynamics across topo-
logical phase transitions, especially its impact on edge
states, is of both fundamental and practical importance.
While there exist some reports on such studies16–28, a com-
prehensive understanding has yet to emerge, especially

when edge states are involved.

In this work, we study quench dynamics across topo-
logical quantum phase transitions (TQPTs) in the sim-
plest setting of free fermion systems. Since in ultra-cold
atom field Haldane model can be realized through opti-
cal traps29, which enables people to explore and access
the phase diagram of Haldane model, some study about
the sudden quench dynamics through various topological
phase transitions on Haldane model has been demon-
strated in ultra-cold atom experiments.23 We believe the
slow quench process on Haldane model is feasible be-
cause sudden quench is just a limit of a general quench
process. Thus, here we specifically consider two models:
Haldane model30 and checkerboard model31,32 with linear
and quadratic band dispersions at the gap closing points
(where the TQPTs occur) respectively. The TQPTs result
in changes of band Chern numbers by one and two respec-
tively, and appearance of edges states in the former, and
reverse of edge state chirality in the latter. We numeri-
cally follow the time evolutions of the systems (initially in
the ground states) under quenches that move the systems
across the phase boundaries, and monitor the generation
of excitations both in bulk and at the edge. We argue
the bulk excitations are analogous to the topological de-
fects in the case of symmetry-breaking phase transitions,
and obtain results consistent with the prediction of KZ
and LZ theories. Appearance of edge excitations, on the
other hand, is unique to TQPTs and has no analogue
in symmetry-breaking phase transitions. A particularly
interesting finding that we report here is an anti-KZ be-
havior, namely the number of edge excitations depends
on quench rate non-monotonically. We will provide an
explanation of this counter-intuitive result.

The rest of this paper is organized as follows: in Sec. II,
we introduce the two models, Haldane model and checker-
board model, studied in this work. In Sec. III, we briefly
describe the concepts of Kibble-Zurek theory and Landau-
Zener theory, derive the power-law relation between the
(bulk) excitation density and the quench rate based on
each theory, and use the results for our models. Before
showing the results, in Sec. IV we describe the numerical
methods of studying slow quench problems with edges
and calculating bulk and edge excitations. We show our
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results and have some discussions in Sec. V, in which the
discussion and comparison with theoretical predictions
of the bulk excitations are made in Sec. V A and the
discussion of edge excitation and the mechanism of the
excitation generation are included in Sec. V B. In Sec. VI
we end the paper by offering some concluding remarks.

II. MODELS

In this section we introduce the models we study and
their phase diagrams.

A. Haldane Model

Haldane model describes spinless fermions hopping on
a honeycomb lattice with a real nearest neighbor (NN)
hopping, a complex next nearest neighbor (NNN) hopping
and an energy offset with a sign difference on the two
sublattices. The Hamiltonian can be written as

H =−
∑
〈i,j〉

(
C†A,iCB,j + h.c.

)
+ η

∑
〈〈i,j〉〉

[
eivijφ

(
C†A,iCA,j − C

†
B,iCB,j

)
+ h.c.

]

+ m
∑
i

(
C†A,iCA,i − C

†
B,iCB,i

)
,

(1)

where C†σ,i (Cσ,i) is the fermion creation (annihilation)

operator, 〈i, j〉 and 〈〈i, j〉〉 represent summing over the
NNs and the NNNs, respectively, and A and B label the

two sublattices. vij ≡ ẑ ·
(
d̂j × d̂i

)
with ẑ the unit vector

perpendicular to the two dimensional (2D) plane and {d̂i}
the unit vector along the bond connecting two nearest
sites as shown in Fig. 1(a). The complex hopping with
a phase eivijφ in the second term due to the staggered
magnetic field breaks time reversal symmetry and the last
term breaks spatial inversion symmetry.

As shown in the phase diagram30 Fig. 1(c), we can
access different topological phases by tuning parameters
m, η and φ. In this study, we quench the system from the
topologically trivial phase with Chern number C = 0 to
the topologically non-trivial phase with C = −1 along the
path (vertical dashed arrow) in Fig. 1(c), setting η = 1

3

and φ = π
2 (|η| ≤ 1

3 prevents band overlap)30, by varying

m from 3 to 0 linearly with time, namely, m = 3− t
τ with

1
τ the quench rate. When m =

√
3, the system reaches the

phase boundary, and the energy gap in the bulk closes at
the highly symmetric point (K or K ′) resulting in linear
dispersion. Figs. 2(a) to (c) show the dispersions of H (t)
of Haldane model with zigzag edges in the x direction at
the initial time, critical time and final time corresponding
to no edge states, band touching and edge states popping
up, respectively.

B. Checkerboard Model

Motivated by the Refs.31,32, we consider a simplified
checkerboard model with two sublattices (A and B) hav-
ing a real and isotropic NN hopping, two kinds of non-
trivial NNN hoppings and a complex NN hopping which
leads to a quantum anomalous Hall (QAH) phase. The
Hamiltonian is given by

H = −
∑
~r,~δ

C†A,~r CB,~r+~δ + iV
∑
~δ

Dδ C
†
A,~r CB,~r+~δ

− ξ′
∑
~r

(
C†A,~rCA,~r±~a1

+ C†B,~rCB,~r±~a2

)
− ξ′′

∑
~r

(
C†A,~r CA,~r±~a2

+ C†B,~r CB,~r±~a1

)
+H.c.,

(2)

where ~a1 = ± (0, a), ~a2 = ± (a, 0), D~δ = +1 if ~δ =

± (a/2, a/2) and D~δ = −1 if ~δ = ± (a/2,−a/2) with

a/
√

2 the lattice spacing. The first term represents the
isotropic NN hopping. The second term is a purely imagi-
nary NN hopping which is positive if hopping along arrows
in Fig. 1(b) and picks up a minus sign otherwise, inducing
QAH phase with non-trivial topology C = ±1. The last
two terms correspond to the NNN hoppings along the red
and the black cross lines [in Fig. 1(b)] with strengths ξ′

and ξ′′ respectively, which break C4 symmetry if ξ′ 6= ξ′′.
A phase diagram of checkerboard model with only one

relevant parameter V is provided in Fig. 1(d). In this
model, we change the complex hopping strength V from
1 to -1 linearly, V = 1 − t

τ , so that the Chern number
C changes sign (from -1 to 1) indicated by the dashed
arrow in Fig. 1(d) with ξ′ = −ξ′′ = 0.5. At V = 0,
the gap in the bulk closes at (kx, ky) = (π, π) with a
quadratic dispersion as shown in Fig. 2(e). During the
quench process, the dispersions of H (t) with edges in
the x direction at the initial, critical and final times are
shown in Figs. 2(d) to (f). Since the system is quenched
from one topologically non-trivial phase to another, edge
states always exist during the whole process but their
chirality is reversed. Note that one can also change the
Chern number by two in Haldane model following the
horizontal dotted path in Fig. 1(c). However, the gap
closing will occur at two Dirac points K and K ′ instead
of one, resulting in critical behavior distinct from the case
in checkerboard model but similar to what happens when
the gap closes at a single Dirac point discussed earlier.

III. THEORIES

In preparation for later comparisons, in this section we
review the basics of Kibble-Zurek (KZ) and Landau-Zener
(LZ) theories, and in particular discuss the relevance of
the KZ theory to the topological phase transitions we
study.



3

FIG. 1. ( Color online ) (a) Haldane model on honeycomb
lattice. (b) Checkerboard model. The NNN hoppings along the
red and the black cross lines have the hopping strength ξ′ and
ξ′′; the imaginary strength of the NN hoppings following the
directions of the arrows is positive and is negative otherwise.
(c) Phase diagram of Haldane model. (d) Phase diagram of
checkerboard model with only one relevant parameter V .

FIG. 2. ( Color online ) (a)-(c) Dispersions of Haldane model
with zigzag edge at the initial time (C = 0), at the critical
time when m =

√
3 with gap closing (linear dispersion) and

at the final time (C = 1) having edge states (red curves).
(d)-(e) Dispersions of Checkerboard model at the initial time
(C = −1) having edge states on the left, at the critical time
when V = 0 with gap closing (quadratic dispersion) and at
the final time (C = +1) having edge states on the right. Edge
states are the red curves.

A. Kibble-Zurek (KZ) theory

For a quench process which involves a second order
phase transition from a high symmetry phase to a broken
symmetry phase with gap closing at the critical point, the
system can no longer evolve adiabatically due to the un-
reachable relaxation time which is inversely proportional
to the energy gap. KZ theory separates such a quench
process into two regimes: adiabatic regime and impulsive
regime as shown in Fig. 3. When the system enters the
impulsive (diabatic) regime, the information of the system
will be frozen because the relaxation time and the time
scale of the quench are comparable. In such a quench
process, (bulk) excitations (defects) are inevitable.

In the following, we derive the relation between the
(bulk) defect density and the quench rate based on a
linear quench assumption. For a second order phase
transition, the energy gap ∆ has a power-law relation
with the quench parameter µ (t) with the critical point
µc where the gap closes.

∆ ∼ |µ (t)

µc
− 1|zν (3)

where z is the dynamic critical exponent and ν is the
correlation length critical exponent. Moreover, the
correlation length ξ has a power-law relation with the
quench parameter as well and will blow up for infinite
systems or be comparable to the system size for finite
systems at the critical point.

ξ ∼ |µ (t)

µc
− 1|−ν (4)

Assume that the quench process starts at t = −∞,
terminates at t = ∞, and the gap closes at t = 0.
According to the linear quench assumption, we can define

ε (t) ≡ µ(t)
µc
− 1 ∼ |t|

τ with 1
τ the quench rate. While

the system enters the impulsive regime at the time −t̂
as shown in Fig. 3, the relaxation time η

(
−t̂
)

and the

quench time scale |t̂| are comparable, namely,

η
(
−t̂
)

=
~
∆
∼ t̂. (5)

From Eq.(5) we can express t̂ in terms of the quench rate
1
τ . From a high symmetry phase to a broken symmetry
phase, the excitation size could be estimated through the
correlation length as ξd in d-dimension space. Combining
Eq.(3)-(5), therefore, we get the power-law relation of the
excitation density ntopo, which is inversely proportional
to the size of an excitation, and the quench rate

ntopo ∼ τ
−dν
1+zν . (6)

The power-law relation in Eq.(6) has been shown with
very good agreement with the numerical result studying
the phase transitions associated with symmetry breaking.6

The topological phase transitions we are interested in
in this work are second order phase transitions. Since
there is no symmetry breaking in such transitions, it may
not be obvious that the KZ theory is relevant here at the
first glance. Those topological phases here are character-
ized by Chern numbers, and have one-to-one correspon-
dences to (integer) quantum Hall states. As reviewed in
Ref.33, quantum Hall states can be mapped onto super-
fluid states, in which composite bosons made of electrons
and appropriate amount of flux condense and develop
(quasi) long-range order. They are thus analogous to bro-
ken symmetry states. In particular, excitations (particles
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FIG. 3. ( Color online ) Schematic diagram for illustration
of Kibble-Zurek theory. The energy gap of two states ∆ is a
function of time t. Within t = −t̂ to t̂, the system are in the
impulsive regime in which the relaxation time is comparable
or much greater than the quench time scale so that the system
evolves diabatically.

in the conduction bands and holes in the valence bands)
in quantum Hall states are analogues to vortices and anti-
vortices in the superfluid in this mapping, which are the
topological defects of the ordered phase. In retrospect
this is rather natural as the topological characterization
is specific to the ground state; any excitation on top of
the ground state causes deviation from, say the perfectly
quantized Hall conductance of the ground state, and is
clearly a topological defect. Thus, the excitations induced
by the quenches through topological phase transitions are
analogues to the those in ordered phases. This allows us
to use the results of KZ theory (Eq. 3) on Haldane and
checkerboard models as we are turning to now.

Due to linear quench, the gap has a linear dependence
on the quench parameter in both Haldane and checker-
board models giving zν = 1 (according to ∆ ∼ |µ− µc|zν
where ∆ is the gap and µ is the quench parameter.) For
Haldane model which has d = 2 and z = 1 (linear dis-
persion) and ν = 1, the predicted power α is 1 from
KZ theory (ntopo ∼ τ−α); for checkerboard model whose
d = 2, z = 2 (quadratic dispersion) and ν = 1

2 , it gives
α = 0.5.

B. Landau-Zener (LZ) theory

LZ theory describes the dynamics of a two-level system
with a time-dependent Hamiltonian in which the energy
gap of the two states varies linearly with time. Note
that LZ theory can be applied to such a two-level system
regardless of the topology (trivial or non-trivial) of the
states. Suppose that the Hamiltonian evolves with time
t, from t = −∞ to t = +∞ in which the gap of the two
states has a minimum at t = 0 (one can always shift the
time such that the gap minimum occurs at t = 0) and
that initially (at t = −∞) one of the states is occupied
and the other is empty. The Hamiltonian with the basis
(ψ+, ψ−) can be written as

H =

(
ε1 ε12

ε21 ε2

)
(7)

where ψ+ and ψ− represent the two states with

ψ+ =

(
1
0

)
which is occupied and ψ− =

(
0
1

)
which is

empty at t = −∞; ε1 and ε2 are the energies of the two
states, and ε12 and ε21 correspond to the interaction
between the two states. According to the Ref7, the
transition probability from ψ+ to ψ− will be

Γ
(
~k
)
∼ e

−π
2~∆~k (8)

with ∆−1
~k

=
4ε212

| ddt (ε1−ε2)| . With the transition rate, the

excitation density can be estimated through the integral
of the probability over the first brillouin zone, namely,

ntopo ∼
∫

1BZ
dd ~k Γ

(
~k
)

.

For Haldane and checkerboard models we consider here,
two free fermion models, the many-body problems can be
reduced to one-body problems since the eigenstates of the
many-body Hamiltonian must be the Slater determinant
of the single-particle states. Besides, with full translation
symmetry, there are two good quantum numbers, namely

the two components of the 2D momentum ~k. Associated
with two sublattices, Haldane model and checkerboard
model, therefore, become collections of two-level systems

(one for each ~k) so the LZ theory, which considers a
transition of two levels, can be applied. As we mentioned
earlier, the particles in the conduction bands and holes in
the valence bands generated by the quench process are the
topological defects in our models thanks to the analogy
between the quantum Hall effect and superfluidity. In the
following, we will apply LZ theory on both Haldane and
checkerboard models and compare with the results of KZ
theory.

For Haldane model near K (or K ′) point where the
gap closes at critical time, the low-energy Hamiltonian
reduces to

HK

(
~k
)

=

(
m (t) + η̄ vf k e

−iφ

vf k e
iφ −m (t)− η̄

)
(9)

where m (t) = t
τ with 1

τ the quench rate, η̄ is a constant,
vf is the velocity of particles near K (or K ′) point and
~k = ke−iφ is the 2D momentum. Note that the linear
dependence of |~k| in the off-diagonal matrix elements
captures the property of the linear dispersion near K (or
K ′) point. As a result, the transition rate of the two

energy levels Γ
(
~k
)
∼ e

−πv2
f |
~k|2 τ

~ gives the topological

defect density ntopo ∼
∫
d~k Γ

(
~k
)
∼ h

v2
fτ
∝ τ−1, a power-

law relation with the same power as KZ theory predicts.
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For checkerboard model, setting ξ′ = −ξ′′ = 0.5
to simplify the calculation without loss of gener-
ality, the Hamiltonian near the gap-closing point
K̄ = (kx, ky) = (π, π), after a unitary transformation
such that it satisfies the initial condition LZ theory
requires, that one band is fully occupied and the other is
empty, can be expressed as

HK̄

(
~k
)

=

(
−V −i

4 k
2 e2iθ

i
4k

2 e−2iθ V

)
(10)

where ~k = k eiθ and V = t
τ . In this model, the off-

diagonal matrix elements have quadratic dependence of

|~k| due to the quadratic band structure near the band

touching point. Thus, the transition rate Γ
(
~k
)
∼ e−πτk

4

16~

and ntopo ∼ τ−0.5, which also agrees with the prediction
of KZ theory.

IV. QUENCH DYNAMICS WITH EDGES

The presence of edges breaks translation symmetry
at least in one direction, and we can no longer reduce
the problem to a collection of two-level systems anymore.
Instead we numerically study the slow quench process in
the two models by considering strips infinitely long in the
y direction having finite width in the x direction with
open boundary conditions (OBCs), keeping ky as a good
quantum number.

Initially, we prepare the system in the ground state
of the initial Hamiltonian H0 and consider the half-
filling case in which the lower bands are filled. Dur-
ing the slow quench process, we divide the whole pro-
cess into many time periods such that the Hamiltonian
H (t) barely changes during each period ∆t. From t
to t + ∆t, the eigenstate of H (t) evolve approximately

with a phase e−i
Eα(t)

~ ∆t where Eα is the correspond-
ing eigenenergy. Taking advantage of the simple evo-
lution of the instantaneous eigenstates, we expand the
wave function by the set of the instantaneous eigen-
states of H (t) so that the evolution of the wave function
from t to t + ∆t could be expressed as ψβ (t+ ∆t) =∑
α
e−iEα(t)∆t/~ |φα (t)〉〈φα (t) |ψβ (t)〉 where β labels the

β-th eigenstate of H0 and |φα (t)〉 and Eα (t) represent the
α-th eigenstate of H (t) and the corresponding eigenen-
ergy. At the end of the quench process, we count the
contribution of the initial states to each eigenstate of the
final Hamiltonian Hf .

V. NUMERICAL RESULTS

A. Bulk excitation

In order to test the numerical accuracy, we first follow
the quench evolution with periodic boundary conditions

FIG. 4. ( Color online ) Topological excitation density versus
quench rate in log-log plot in (a) Haldane model and (b)
checkerboard model. Considering strips infinitely long in the
y direction having L sites in the x direction with PBC (no
edge), our data and the results from Landau-Zener (LZ) theory
are shown for comparison. We perform finite-size scaling
on our data such that n′topo

(
τ−1 · Lβa

)
= Lγantopo

(
τ−1

)
is

size independent in the insets with βa and γa the scaling
parameters and a the model label (H for Haldane model
and C for checkerboard model.) According to LZ theory,
τ−1
a ∼ kβa ∼ L−βa with βH = 2 and βC = 4. Besides,
ntopo ∼ L−1, meaning γH = γC = 1. Our fitting scaling
parameters are βH = 1.9332, γH = 0.9701, βC = 4.2266 and
γC = 1.063 consistent with the scaling analysis. The black
lines are the fitting lines for the powers α. (a) In Haldane
model, α = 1.0000 in the (relatively) fast quench regime
(slope of the dashed line) and α = 0.5008 in the slow quench
regime (slope of the dotted line); (b) In checkerboard model,
α = 0.4925 in the fast quench regime and α = 0.2502 in the
other regime. In each model, five systems with L = 16, 20, 40,
60, and 80 are considered.

(PBCs) applied in the x direction, instead of OBCs. In
this case there is actually no edge and we can reduce the
problem to two-level systems as discussed earlier. This
allows us to compare our numerical results with those
of the LZ theory (taking discrete kx values for finite
strips). In Fig. 4(a) and Fig. 4(b), our data in both
models agree with LZ theory very well. Besides, we find
that the excitation density ntopo and the quench rate 1

τ
have power-law relations with different powers αs in the
(relatively) fast quench and slow quench regimes; α in
the fast quench regime agrees with the theoretical value
KZ and LZ theories predict, but it becomes half of the
expected value in the slow quench regime. In the inset of
Fig. 4(a) for Haldane model, α (slope) at fast quenches
is 1.0000 and becomes 0.5008 at slow quenches; in the
inset of Fig. 4(b) for checkerboard model, α is 0.4925 and
0.2502 in the fast and slow quench regimes, respectively.
The halved powers in the slow quench regime are due
to finite-size effect. For systems with finite width in
the x direction, the kx takes discrete values so that the
transition occurs dominantly at kx = 0 if we shift the
critical point to the origin; at other kx values far from the
origin, the dynamics is adiabatic. Therefore, the diabatic
dynamics becomes 1D (along ky at kx = 0) leading to an
exponent halved from that of the 2D system.
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FIG. 5. ( Color online ) Edge excitation vs quench rate in
log-log plot for (a) Haldane model with zigzag edges. (b)
Checkerboard model. System sizes: L = 16, 20, 40, 60 and 80
are considered.

FIG. 6. ( Color online ) Schematic diagrams for electron
occupation of one branch of edge states (a) at the critical time
and (b) after the critical time. The light gray curve is the
other edge state which could be ignored in the quasi-adiabatic
regime due to the lack of edge state mixing. kD and kF denote
the Fermi energy locations at the critical time and at some
moment after the critical time, respectively.

FIG. 7. ( Color online ) Electron occupation along k with
different quench rates for (a) Haldane model (b) checkerboard
model. The dotted lines mark kD or kQ (the Fermi level
location at the critical time for Haldane and checkerboard
models respectively) and the dashed curves represent the
electron occupation of the edge state in the ground state. The
insets show the edge excitation nedge corresponding to each
quench rate. The edge excitations in the shaded area are
particle excitations and are hole excitations otherwise.

B. Edge excitation and excitation generation
mechanism

Now turning to the cases with edges, we consider
strips with OBCs and zigzag edges for Haldane model.
Since now ky is the only good quantum number, we will
simplify the notation by using k for ky in the following.
In the presence of edges, a system will have edge states
in a topologically non-trivial phase. If the system were in

the ground state for half-filling case, the bands below the
fermi energy EF would be all occupied and the others
would be all empty. Since edge states cross the bulk gap,
the electron occupations on edge states in the ground
state take the form of a step function Θ (EF − E), where
Θ (x) = 1 for x > 0 and Θ (x) = 0 otherwise. Under
a quench process, however, the system can not evolve
adiabatically near the critical time and hence can not stay
in the ground state. Instead, excitations will be generated
both in the bulk and on the edge states. We can expand
the eigenstates of the final Hamiltonian Hf through
those of the initial Hamiltonian H0 (half-filling) at each

k as |ψ (k)〉(f)
α =

∑L
β=1 ωαβ (k) |ψ (k)〉(0)

β where |ψ (k)〉(f)
α

and |ψ (k)〉(0)
β denote the αth and βth eigenstates of Hf

and H0, respectively, with ωαβ (k) =
(0)
β〈ψ (k) |ψ (k)〉(f)

α ;

L is the width in the x direction (so there are L states.)
Assume the states have energies in ascendant order,

namely, E
(i)
1 < E

(i)
2 < · · · < E

(i)
L with i = f and 0. The

edge states of Hf are |ψ (k)〉(f)
L/2 and |ψ (k)〉(f)

L/2+1, and

the (total) edge excitations nedge can be defined as

nedge =

L/2+1∑
α=L/2

∫
dk [

L/2∑
β=1

|ωαβ (k) |2Θ ( E(f)
α (k)− E(f)

F )

+

L∑
β=L/2+1

|ωαβ (k) |2Θ ( E
(f)
F − E(f)

α (k) ) ] ,

(11)
the deviation of the electron occupations on edge states
from their ground state occupations at the end of the
quench. In Fig. 5(a) and Fig. 5(b), we investigate nedge
with various quench rates and find distinct behaviors in
three regimes of the quench rate. In regime I, nedge decays
with quench rate decreasing, consistent with the physical
intuition. In regime II, unexpectedly nedge increases as
quench rate decreases, displaying an anti-KZ behavior.
In regime III, it seems to obey KZ mechanism again.

To understand the behaviors of nedge especially the anti-
KZ behavior, we examine the formation and evolution of
the edge states, starting with the moment when the band
gap closes and edge states just begin to form in Haldane
model. At the critical time, conduction and valence bands
strongly mix near the band gap closing point (kD) and
form edge states. Except for the slowest quench rate that
we will comment on later, we can ignore the coupling
between states on opposite edges and focus on one branch
of the edge states, pretending the other edge does not
exist. We can schematically express the branch of edge
states of interest as ψedge (k) = a (k)ψc (k) + b (k)ψv (k)
where ψc and ψv denote the contributions from conduction
and valence bands before the gap closing, respectively,
and a (k) and b (k) represent the corresponding weights,
depending on k but not the quench rate, with a2 (k) +
b2 (k) = 1. As illustrated in Fig. 6(a), edge states with
k < kD are predominantly from valence bands, while
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those with k > kD are predominantly from conduction
bands. This feature is expected to persist as the gap
opens up, as illustrated in Fig. 6(b). We now introduce a
regime of “quasi-adiabatic” time-evolution after the gap
opens, namely the quench rate is small enough such that
there is no transition between edge states and bulk states,
but fast enough so that edge states remain at the same
edge, namely an edge state at one edge does not evolve
into the other at the opposite edge with the same k when
their energies cross. For sufficiently wide strips such a
regime is guaranteed to exist as the coupling between
the edges is exponentially suppressed. In this regime the
occupation number of an edge state is well-approximated
by b2 (k) at the point of gap closing, which is close to one
for k < kD and close to zero otherwise. With the gap
opening up, however, the Fermi wave vector kF increases
(see Fig. 6(b)), resulting in significant numbers of hole-
like edge excitations for kD < k < kF . On the opposite
edge we expect equal numbers of particle-like excitations.
Increasing the quench rate induces relaxations of the
edge excitations into the bulk, giving rise to the anti-
KZ behavior. Further increasing the quench rate, on the
other hand, induces additional edge excitations, especially
outside the range kD < k < kF . This brings us back to
the usual KZ behavior. Fig. 7(a) and Fig. 7(b) show
the electron occupation distribution of one edge state
along k in different quench regimes and the insets show
the dominance of hole excitations on this edge state,
supporting our argument.

Finally, the KZ behavior in regime III is due to essen-
tially true adiabatic evolution in which edge states on

opposite edges are mixed. This is a finite-size effect due
to the exponentially small coupling between the edges.
Consistent with this understanding, we find it is more
prominent in small systems as shown in Figs. 5. In the
thermodynamic limit, without the particle leaking from
edges, the edge excitation numbers will eventually satu-
rate in the slow quench, instead of going to zero as we
observed at finite strip width.

VI. CONCLUSION

We numerically study the dynamics of Haldane model
and checkerboard model in slow quench processes through
topological quantum phase transitions with ∆C = 1 and
2, respectively. We show the agreement of the power-
law relations of the bulk excitation and the quench rate
with the predictions of KZ and LZ theories. Besides, an
anti-KZ behavior of the edge excitation is found in both
models. We provide a physical picture for this counter-
intuitive feature which originates from the unrelaxable
nature of excitations on edge states since the edge states
form.
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