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We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-
arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization.
This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi-
arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder
broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the
surface (i.e. they lose their purely surface spectral character). Thus, we provide strong numerical
evidence that the Weyl Fermi-arcs are not topologically protected from disorder. Nonetheless, the
surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way
to the Anderson-localized phase by forming localized current loops that live within the localization
length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of
disorder, but the surface chiral velocity is.

Weyl semimetals have recently been experimentally
discovered in weakly correlated zero gap semiconductors
such as TaAs1–3, NbAs4, and TaP5 as well as the strongly
correlated material Mn3Sn6. Thus, Weyl semimetals
(WSMs) are now included in the growing tapestry of
topological materials7,8. These gapless three-dimensional
materials have nodes in the momentum-space band struc-
ture which provide sources and sinks of Berry flux that
lead to a set of topological surface states, and the set of
these states at a given Fermi energy and restricted to a
single surface constitute a “Fermi arc.” Fermi arcs begin
and end at the projection of the bulk Fermi surface, as
seen in Fig. 1(a). However, with a gapless bulk spectrum,
it is not clear how robust these surface states are.

Surface states are a hallmark of topological
physics, the pure manifestation of the bulk-boundary
correspondence9. When the bulk possesses an energy
gap at the Fermi energy, topological edge modes are
robust to small perturbations10 and can seem to violate
various no-go theorems. In topological superconductors,
the edge can host bound Majorana fermions11,12, while
quantum Hall edge states host a single chirality13,14,
and three-dimensional topological insulators (TIs)
host an odd number of Dirac cones on each surface10.
The protection and anomalous properties of these
edge states make them ideal for high-performance
electronics15,16 and as the building blocks of a quantum
computer12,17–19. Since surface Fermi arcs represent the
bulk-boundary correspondence in WSMs, understanding
their robustness (or not) in the presence of disorder is
crucial.

However, topological protection is thrown into ques-
tion for WSMs. Effects of disorder in the bulk of
Weyl (and Dirac) semimetals has been well studied20–38.
Recently, approximate instanton calculations24 and ex-
act numerics32–35 conclusively find that non-perturbative

rare region effects drive WSMs into a diffusive metal
phase for any non-zero disorder despite earlier work,
based on mean field and perturbative RG theories, er-
roneously finding a phase transition from semimetal to
diffusive metal at finite disorder8,20,38. These rare region
effects, not accessible in mean field theory or perturbative
RG theories, round out the semimetal-to-metal transi-
tion into a cross-over dubbed an avoided quantum critical
point (AQCP)32. It is therefore a natural question, and
the subject of this article, to determine the robustness of
the surface states in the presence of disorder, given that
the bulk Weyl semimetal phase is destroyed by any finite
disorder. The consequences of disorder on WSM topol-
ogy and correspondingly on the Fermi arc surface states
is a matter of great importance from the dual perspec-
tives of fundamental principle and practical applications.

For weak TIs, disorder breaks the symmetry responsi-
ble for topological protection, but nonetheless the surface
states remain39, and when disorder closes the gap in a
strong TI, a remnant of the edge is still preserved40. Pre-
vious work on WSMs and Chern insulators has suggested
that a finite Hall conductivity28,30 and surface trans-
port29 persist for finite disorder even well into the metal-
lic phase. However, while both TIs and WSMs have non-
perturbative rare states, only the bulk WSM is destroyed
by them. In weakly disordered TIs, rare Lifshitz states
populate the bulk band gap41,42; they are exponentially
localized (with no level repulsion) and dilute enough to
not couple the surfaces, i.e. the bulk gap provides topo-
logical protection to disorder. On the other hand, in
WSMs the rare states are power-law quasi-localized (with
non-zero level repulsion) and “fill in” the pseudogap; this
gives the Weyl quasiparticles a finite lifetime24,34,37 and
a finite DC conductivity24,36. Therefore, In this sense, it
is unclear how the surface states in WSMs might survive
the presence of a (weak) random potential.
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FIG. 1. (a) Schematic of a Weyl semimetal with two cones in
the bulk and therefore a single Fermi arc. The chiral velocity
is defined perpendicular to the arc. (b) Schematically, how the
density of states and (log of) the surface chiral velocity change
in the phases and regimes this model exhibits (horizontal-
axis). Setting m = (3/2)t, both quantities are evaluated as
disorder averages at E = 0. The diffusive metal phase lies
within 0 < W < Wl and the Anderson insulator for W >
Wl. (c,d) For m = (3/2)t, we plot cuts of the dispersion
for Eq. (1) in the clean limit with open boundary conditions
displaying the bulk bands and the topological surface Fermi
arc states (red,blue) dispersing like E(ky, kz) = ±t sin(ky) in
the pseudogap. (c) shows E(ky, kz) versus ky with kz = 0,
and (d) is E(ky, kz) versus kz with ky = 0; Weyl points at
KW = (0, 0,±2π/3) can be seen.

After first principles band structure calculations sug-
gested the existence of WSMs43–45, the Weyl Fermi-
arc surface states were observed in photoemission1,2,4,5

and scanning tunneling microscopy3 experiments on rel-
atively clean materials. This makes our central question
important for the development of potential technological
applications of the surface states, e.g. as a “catalyst” in
solar cells46. Do the Weyl Fermi-arcs (or any remnant of
them) survive disorder?

In this work, we study the effects of short-ranged dis-
order on Weyl Fermi-arcs numerically in a cubic lat-
tice model that represents a time-reversal broken Weyl
semimetal. Using kernel polynomial method (KPM),
Lanczos, and exact diagonalization, we compute various
properties of the arcs. We establish that the surface only
localizes when the bulk becomes an Anderson insulator25.
We also establish that non-perturbative quasilocalized
rare bulk states hybridize with surface states, giving
the arcs spectral weight in the bulk, thereby concluding
that the Weyl Fermi-arcs are not topologically protected
against even weak disorder. Nonetheless, we show that
the surface chiral velocity persists deep into the diffusive
metal regime, which establishes one aspect of the Fermi
arcs displaying a remarkable stability. Thus, spectro-
scopic measurements will continue to see a Fermi arc even

in the presence of disorder although this is no longer a
protected surface state. Unexpectedly, the surface chiral
velocity survives even in the Anderson insulating phase
by inducing local current loops into the bulk that live
within the localization length of the surface but cannot
contribute to conductivity.

MODEL AND CLEAN SURFACE STATES

The tight-binding model used is35

H=
∑

r,ν̂

[
χ†rT̂νχr+ν̂ + h.c.

]
+
∑

r

χ†r[V (r)−mσz]χr (1)

where χr is a two-component spinor, T̂ν = tνσz + t′νσν is
the usual kinetic energy hopping operator with strengths
tν = t/2 for ν = x, y, z and t′ν = t′/2 for ν = x, y and
t′z = 0, m controls the existence and location of the Weyl
nodes, and V (r) is a random, on-site, potential (arising
from disorder) drawn from a Gaussian distribution with
zero mean and variance W 2

V (r) = 0, V (r)V (r′) = W 2δrr′ , (2)

where we denote disorder averaging by an over-line (· · · ).
This lattice model represents a time-reversal symmetry
broken Weyl semimetal with four Weyl nodes for |m| < t,
two Weyl nodes for t < |m| < 3t, and none (insulating)
for |m| > 3t. Without disorder, the dispersion is E0(k) =

±
√
t′2[sin(kx)2 + sin(ky)2] + [t

∑
ν cos(kν)−m]2, with

Weyl points at KW = [0, 0,± arccos(m/t − 2)]. We set
t = t′ and m = 3t/2 so that we have two Weyl points at
KW = (0, 0,±2π/3) with one surface Fermi arc, an open
boundary condition along x, and periodic boundary con-
ditions along y and z (unless otherwise specified).

We now first discuss the surface states in Eq. (1) with-
out disorder [V (r) ≡ 0] with a semi-infinite system x ≥ 1.
With ky and kz as good quantum numbers, the effec-
tive 1D Hamiltonian is H0 =

∑
x,ky,kz

H1D(x,k⊥) where

k⊥ = (ky, kz) and

H1D =
(
χ̃†xt̂χ̃x+1 + H.c

)
+ χ̃†xµ̂χ̃x (3)

where t̂ = (tσz + it′σx)/2 and µ̂ = [t(cos ky + cos kz −
m)σz−t′ sin kyσy)]. Considering only a semi-infinite slab
with x > 0, general theory47 can then be used to find the
surface states, which are usually written in terms of two
exponentials |ψ| ∼ λx1 − λx2 , but here we focus on the
simple case t = t′ where λ2 = 0. This simple case has
one solution exponentially decaying in x such that the
surface state wavefunction is given by

ψS(x, y, z) = ei(kyy+kzz)fS(x)φ/L, (4)

fS(x) =
√

1− λ2 λx−1, (5)

and has a surface dispersion

ES(k⊥) = t sin(ky), (6)
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FIG. 2. (a) Surface electronic dispersion curves (EDCs) where each value of AS(ky, kz, ω) for kz = 0 with k = ky is shifted by
(L/2π)k; blue is the top surface and bottom is red. (b) The spectral function versus ω on the surface at k⊥ = 0 for various
disorder strengths. We see a smooth broadening of the Fermi arc peak with disorder, as captured by the width of the spectral
function Γ(k⊥ = 0) shown in the inset. (c) The typical DOS on the surface for strong disorder and weak disorder (inset). As
the system size L increases, the typical DOS on the surface converges to the average surface DOS implying the arcs do not
localize for weak disorder; for strong disorder, we find the bulk and surface localization transitions agree. (d) Average spectral
weight for states of definite momentum on the surface to tunnel into the bulk for three representative surface momenta on the
arc: k⊥ = 0, at the Weyl node projection kW,S = (0, 2π/3), and off the arc k⊥ = (0, π), all computed at W = 0.5t and L = 30.
The finite value of the spectral weight in the middle of the sample indicates surface-bulk hybridization.

with a spinor φT = (1,−1)/
√

2, and λ = −([cos(ky) +
cos(kz)] −m/t). The other surface (if the sample is in-
stead finite along the x-direction) carries the opposite
chirality with a dispersion ES = −t sin(ky). Valid so-
lutions only exist for |λ| < 1, defining the Fermi arc.
In Fig. 1(c,d) we show some cuts through momentum
space where the edge states are clearly identified. The
states are chiral (the group velocity vg = ∂ES/∂k⊥ is
only nonzero along the y-direction). While these arcs are
straight lines, our results presented here are independent
of this feature (see Appendix A).

We first determine the bulk phase diagram at the Weyl
node energy (E = 0) as a function of disorder strength
(W ) by computing the average and typical density of
states (DOS) using KPM with periodic boundary con-
ditions in all directions. Following methods utilized in
Refs.25,32–35, we determine the location of the AQCP to
be Wc/t = 0.9 ± 0.025, and the bulk Anderson localiza-
tion transition at Wl/t ≈ 5.6−6.0. This gives us the bulk
phase diagram in Fig. 1(b). Details and a short review
of these methods are given in Appendix B.

SPECTRAL FEATURES OF THE ARC

For weak disorder, we can track the average arc states
in momentum k despite k not being a good quantum
number. To study the spectral features of the arc states
(as probed in ARPES) we compute the disorder-averaged

retarded Greens function on the surface G(ri, rj , ω);
we focus on the relative distance between ri and rj
and Fourier transform only on a surface S(x) for ri =
(x, yi, zi) to k⊥ = (ky, kz)

Gαβ(x, x′;k⊥, ω) = 〈x,k⊥;α| 1
ω−H+i0+ |x′,k⊥;β〉 (7)

with

|x,k⊥;α〉 =
1√
L2

∑

y,z

ei(kyy+kzz)χ†r,α |0〉 (8)

(for the spinor component α). Note that |x,k⊥;α〉 is
not an eigenstate of H in the clean limit. Focusing on
the surface x = x′ = 1, the surface Green function and
corresponding spectral function are given by

GS(k⊥, ω) ≡ G(1, 1;k⊥, ω), (9)

AS(k⊥, ω) = −ImGS(k⊥, ω)/π, (10)

which allow us to track properties of the arcs in momen-
tum space.

As shown in the electronic dispersion curves of
Fig. 2(a), the features in the clean limit survive weak dis-
order but are broadened smoothly with increasing disor-
der, forming Fermi arc peaks in the surface spectral func-
tion AS(k⊥, ω). We also find finite energy bulk bands
with weight on the surface that are well separated in en-
ergy from the surface states at weak disorder. Tracking
the zero energy Fermi arc peak as a function of disor-
der [Fig. 2(b)] shows that for weak disorder the Fermi
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arc peak at k⊥ = 0 remains sharp and separate from
the bulk states at finite energy. With increasing disor-
der, both the Fermi arc peaks and the bulk finite energy
states on the surface broaden, which leads to the peak
disappearing around W = 1.0t. This can be captured
quantitatively with the width of the spectral function
Γ(k⊥) ≡ Im1/GS(k⊥, ω = 0). As shown in the inset of
Fig. 2(b) (after converging in the KPM expansion order
NC and finite size L, see Appendix C), we find the Fermi
arc peaks to smoothly broaden with increasing disorder
and show no sign of the bulk crossover due to the AQCP.
Therefore, in momentum space disordered surface and
bulk are indistinguishable near the edge of the surface-
bulk band, so at moderate disorder strength, we must
investigate a different observable.

The chiral Fermi arc states propagate in one direction
on each surface, Fig. 1. Due to the absence of back-
scattering, we expect weak disorder to not localize the
surface states, but coupling to the bulk states compli-
cates this picture. To study the Anderson localization
properties on the surface, we compute the typical DOS
(i.e. the geometric mean of the local DOS) on the surface,
defined by

ρt,S(E) = exp


 1

As

As∑

i∈S(0)
log ρi(E)


 (11)

where As is a randomly chosen set of sites on the sur-
face. At weak disorder we find the surface typical DOS
approaching the average in the large-L limit as seen
in the inset to Fig. 2(c), and thus the surface states
are not localizing for small disorder, despite being two-
dimensional. Further, the localization transition at large
disorder (Wl) occurs in the bulk and on the surface si-
multaneously [see Fig. 2(c) and Appendix B].

SURFACE-BULK HYBRIDIZATION

Thus far, we have not shown if the Fermi arc hybridizes
with the bulk or if it is somehow “protected.” We first
address these features on average explicitly by consider-
ing how a zero energy quasiparticle on the arc tunnels
into the bulk. We will primarily focus on the spectral
weight associated with this process and therefore focus
on

A||(x, x
′,k⊥;ω) =

1

π
|ImG(x, x′;k⊥;ω)| (12)

(we take the symmetric sum over x and x′ and aver-
age the absolute value to suppress an average sign in the
bulk). In the clean limit ( W = 0) and along the arc, the
zero energy spectral function goes as A||(x, 0,k⊥;ω =
0) ∼ exp[−x/ξ(k⊥)] (with the effect of the opposite
surface being negligible), at the edge of the arc k⊥ =
(0,±2π/3), ξ → ∞ and at k⊥ = 0, ξ(k⊥) = ln(2). This
is shown in Fig. 2(d) for three representative surface mo-
menta on the arc k⊥ = 0, at the Weyl node projection

k⊥ = (0, 2π/3) and off the arc k⊥ = (0, π) at weak dis-
order W/t = 0.5. This shows that the two surfaces have
become coupled on and off the arc.

We now determine the contribution of individual eigen-
states to the average spectral function A||(x, x′,k⊥;ω).
To address this, we consider the low-energy properties us-
ing Lanczos on H2. Comparing with periodic boundary
conditions shows that surface states are filling in the soft
bulk gap, and twisting the boundary conditions reveals
their chiral dispersion. We first notice in Figs. 3(a,c) that
low-lying surface states hybridize weakly with bulk Weyl
states. However, the hybridization between arc and bulk
Weyl states vanishes at the Weyl energy in the limit of
large-L, basically just due to the perturbative vanishing
of the bulk DOS while the surface DOS remains nonzero.
Scattering to surface states near the Weyl nodes does
perturbatively produce power-law tails in the bulk for
the local DOS of the surface arc states at the Weyl en-
ergy31.

The surface arc states do hybridize with the non-
perturbative rare bulk states. In contrast to TIs where
the rare states are always exponentially bound in the
gap, and therefore, cannot couple the two surfaces at ar-
bitrary distances, these WSM rare states fall off as 1/r2

(see24,32,35 and Appendix D), and therefore a finite den-
sity of them couples the two surfaces at an arbitrary dis-
tance for any momenta. As shown in Fig. 3(b,d,e,f) we
take such a rare bulk state found with periodic boundary
conditions and then open the boundary well away from
the location of the rare state. We find that this rare bulk
state hybridizes with either surface (d,e) or even both sur-
faces (f) thus coupling the two surfaces and renormalizing
the velocity of the chiral surface state, strongly reducing
its magnitude [as ∂E/∂φy in (b) depicts]. Therefore, we
have shown that the arc states are not protected against
disorder-induced hybridization with bulk rare states. In-
deed, the rare states are spread out in momentum and
have nonzero bulk DOS, so this non-perturbative surface-
bulk hybridization occurs all along the arc and fully hy-
bridizes in the large-L limit with surface weight being
∼ 1/L. This non-zero density of the surface states deep
in the bulk can be seen in Fig. 2(d).

As we approach the cross-over to the metallic regime,
many states begin to populate E = 0 and will thus hy-
bridize with the surface states. It is therefore in the
semimetallic regime near E = 0 (where the number of
bulk Weyl states vanishes) that one might expect surface
states to survive, but as we’ve shown, the existence of
rare resonances within the bulk destroys even these.

CHIRAL VELOCITY

We find above that non-perturbative bulk rare states
renormalize the chiral velocity of surface states, so the
question arises: Can they drive the surface chiral veloc-
ity to zero? To quantify this, we can study the dis-
persion as computed by the surface Green’s function.
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However, bulk states become an issue at finite disorder,
filling in the pseudogap. Therefore, we turn to a local
measure of chiral velocity independent of the momen-
tum, using a twist to define a layer-dependent velocity
vc = TrS(x)(∂H/∂φy|φy=0), where TrS(x) is a trace over
the sheet at x; note that Jy = −e∂H/∂φy|φy=0 is the
current operator along the y-direction. Using KPM, we
project Jy onto the sheet DOS at each energy and then
divide by the sheet DOS to estimate the sum of matrix
elements that contribute at that energy which yields the
chiral velocity at energy E for sheet x

vc(x,E) =
TrS(x)(Jyδ(E−H))

TrS(x)(−eδ(E−H)) . (13)

We perform the trace stochastically after projecting onto
each sheet S(x). To study the zero energy average surface
velocity we compute vc,S = (vc(1, 0)− vc(L, 0))/2.

As shown in Fig. 4(a), we find a very small finite size
effect on the surface velocity, where on a linear scale vc,S
appears to approach zero near the Anderson localiza-
tion transition. However, when viewed on a log-scale
[Fig. 4(a) inset], the data for vc,S is smooth through
both the avoided transition and the localization transi-
tion; vc,S monotonically decreases for increasing W .

Additionally, the distribution of the chiral velocity be-
comes increasingly broad for increasing W . To under-
stand this, we can also characterize the statistics of this
object on a per-sample basis with its variation

σ[vc,S ]2 =
(

TrS(x)(Jyδ(E−H))

TrS(x)(−eδ(E−H)) − vc,S(x)
)2
. (14)

The broadness of Eq. (13) can be characterized with
σ[vc,S ]/vc,S as seen in Fig. 4(b). We find the distribution
becomes increasing broad as the model passes through
the localization transition; the data for σ[vc,S ]/vc,s has
two different power law regimes, for W . 1t we find
σ[vc,S ]/vc,s ∼ W 1.08 and for W > 1t it crosses over to
σ[vc,S ]/vc,s ∼ W 3.9 with a smooth evolution and no sig-
nature of the localization transition.

In Fig. 4(c) we show the velocity as a function of the
distance along the system from each surface. For in-
creasing disorder we find that the velocity in the middle
of the system becomes completely random (and averages
to zero) while the current on the two surfaces survives
up to large disorder. It is striking that we find a small
but non-zero chiral velocity on the surface even inside the
Anderson insulating phase.

To address these features, we look at typical wave func-
tions and the current along each bond in each of the
regimes of the model in Fig. 5. First, in Fig. 5(a) we
see that at W = 0.5t the surface state is largely intact
(though it is hybridized slightly with a rare state indi-
cated by the blue X), and the surface chiral velocity is
largely intact. As we increase disorder to be roughly at
the AQCP [Fig. 5(b)], the current is still largely flowing
in one chiral direction on the surface. The same situation
applies deep in the diffusive metal regime (W = 1.5t) as
seen in Fig. 5(c) with a state that is exclusively a bulk

state, but still hosts a chiral velocity on the surface. Last,
well beyond the localization transition (W = 15t) [see
Fig. 5(d)] we clearly see a localized state near the sur-
face, with a current loop with chiral velocity that resides
within the localization length. Thus, in this regime the
currents loops are localized and will not produce a finite
Hall conductivity, consistent with Refs.28,30. In this way,
the system can simultaneously be fully localized and still
have a preference for chiral velocity on the surface.

CONCLUSIONS

To conclude, we have investigated the non-
perturbative disorder effects on the surface states
of a Weyl semimetal. The surface quasi-particles acquire
finite lifetime and renormalized chiral velocity, but
become ill-defined at moderate disorder strengths. Our
results on the surface spectral function demonstrate
how the surface Fermi arcs can be observed in ARPES
experiments without being topologically protected. We
have established that rare non-perturbative bulk states
hybridize with the Weyl Fermi arcs making them no
longer bound to the surface even at aribtrarily weak
disorder. Nonetheless, we find that the surface chiral
velocity persists to quite large disorder strengths (inde-
pendent of the amount of curvature along the arc), even
past where the surface and bulk states Anderson-localize,
by forming localized current loops while retaining their
chiral nature on the surface. Strikingly, this feature
of the surface states persists despite the destruction of
the sharp distinction between surface and bulk states
and the disappearance of the WSM phase itself due to
disorder.

ACKNOWLEDGMENTS

Acknowledgments—We thank Pallab Goswami, Mehdi
Kargarian, Rahul Nandkishore, and Jay Sau for use-
ful discussions. This work was performed in part
at the Aspen Center for Physics (J. P. and G. R.),
which is supported by National Science Foundation
grant PHY-1607611. The authors are grateful for sup-
port from the Air Force Office for Scientific Research
(J. W.), the Laboratory for Physical Sciences (J. P.
and S. D.-S.), the Packard Foundation (G. R.), and the
IQIM an NSF-PFC (G. R.). The authors acknowledge
the University of Maryland supercomputing resources
(http://hpcc.umd.edu), the Beowulf cluster at the De-
partment of Physics and Astronomy of Rutgers Univer-
sity, The State University of New Jersey, and the Office of
Advanced Research Computing (OARC) at Rutgers, The
State University of New Jersey (http://oarc.rutgers.edu)
for providing access to the Amarel cluster and associated
research computing resources that have contributed to
the results reported here.



6

Appendix A: Effects of curvature to the chiral
velocity

To add curvature to the arc, we add in an additional
hopping term to the Hamiltonian

∆H =
t′′

2

∑

r

χ†rσyχr+ẑ + h.c., (A1)

which modifies our effective 1D Hamiltonian so that

∆H1D = t′′ cos kz σy. (A2)

The surface-localized wave functions are not affected by
this change, but the dispersion changes

ES(ky, kz) = t′ sin ky + t′′ cos kz. (A3)

The Fermi-arcs are no longer straight, but curved. To
test if this appreciably affects the results, we define the
chiral velocity as the velocity perpendicular to the line
intersecting the ends of the Fermi-arc (so it is still in the
y-direction). Then, testing on small system sizes (L =
10), we find, as seen in Fig. 6 that as disorder is increased,
the chiral surface velocity is relatively unaffected by t′′.

Appendix B: Phase Diagram

Using periodic BCs with the Hamiltonian (1), we es-
tablish the phase diagram for the bulk

1. Avoided Quantum Critical Point, Wc

To characterize the bulk phases we use the density of
states defined for a system of size L as

ρ(E) =
1

L3

∑

n

δ(E − En), (B1)

where En are the energies of the eigenstates of the sys-
tem, and the overline (· · · ) represents disorder averaging.

Using the KPM, which we refer the reader to the the
review48 and previous works32–35, we can numerically
calculate the density of states (and other quantities) for
large system sizes. This method introduces a new finite
size in the form of a series truncation, controlled by the
variable NC . Balancing NC and L are crucial to handling
finite size effects appropriately.

We are interested in the effects near E = 0 where the
semimetallic nature of the material is strongest. We show
ρ(0) vs. W in Fig. 7. Avoided critically is captured by
the maximum of ρ′′(0) where for each NC we saturate
ρ′′(0) in L before moving to larger NC . Iterating this, we
can converge a peak to ρ′′(0) as indicated in Fig. 7 and
obtain Wc/t = 0.900± 0.025.

2. Anderson Localization Critical Point, Wl

Using methods similar to25, we can roughly estimate
the location of the localization transition. To probe this,
we can look at the local density of states (for site i and
realization r)

ρi,r(E) =
∑

n

| 〈i|ψn,r〉 |2δ(E − En,r) (B2)

where En,r and ψn,r are respectively the energy and wave
function for the nth eigenstate of the rth realization.
From this, we can define the typical density of states
as the geometric average of this quantity

ρt(E) = exp

{
1

L3

∑

i

log[ρi,r(E)]

}
. (B3)

Instead of a sum over all sites, in practice we take a
random set of sites to average over. The vanishing of
this quantity is associated with the onset of localization.

With the KPM method though, the typical density
of states does not formally vanish since the series cut-
off NC smears out the wave functions. Therefore, the
typical density of states should begin to decrease with
increased NC around the localization transition25,35 as
we see around W ∼ 6.0t in Fig. 8.

To get an estimate of the localization transition, we
use the adjacent gap ratio on smaller system sizes

rn =
min(En+1 − En, En − En−1)

max(En+1 − En, En − En−1)
, (B4)

and we take the average of rn around a particular energy
to produce r = rn. Previous work shows that r = 0.60
for GUE (diffusive phase) and r = 0.386 for a Poisson
spectrum (localized phase)49. We see r change in Fig. 9
where we compare r(E = 0) (the value of r around E =
0) with periodic [left figure in Fig. 9] or open [right figure
in Fig. 9] boundary conditions. We use 5× Freedman-
Diaconis to bin eigenstates around E = 0 to determine
r(E = 0), and take 10-100 realizations. From this data,
we estimate that Wl ≈ 6.0t in rough agreement with
what we see in Fig. 8.

Appendix C: Convergence of the width of the
surface spectral function

In the main text, we present the converged width
of the surface spectral function defined as Γ(k⊥) =
1/ImGS(k⊥, ω = 0) for k⊥ = 0. This peak is asso-
ciated with zero energy Weyl Fermi arc surface states,
and the width Γ(k⊥) = 1/ImGS(k⊥, ω = 0) continu-
ously increases with increasing disorder strength. The
dependence of the peak width on finite system size L
and expansion order NC is shown in Fig. 10. To make
sure the peak is not artificially broadened we follow the
same procduer as in Ref.34. We first shift the random
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potential to sum to zero for each disorder sample (this
eliminates the leading finite size effect from perturba-
tive effects32). To eliminate finite size effects we work at
NC = 210 and vary L until the data is roughly L inde-
pendent at L = 120. We then fix L = 120 and vary NC
until the peak is independent of both L and NC . Apply-
ing this procedure we can converge the width of the peak
for disorder strengths W ≥ 0.1t.

Appendix D: Characterizing the rare state wave
function

To study the rare state’s effect on surface states, we
had to isolate a rare state with a system that has peri-
odic boundary conditions, then open them to see how it
hybridizes with surface states.

Working with L = 18, we first maximally move the
bulk Weyl states away from zero energy with a twist in
the boundary conditions. Running a number of realiza-

tions as shown in Fig. 11(a) we pick out a potential can-
didate for a rare state. Here it is realization r = 309. We
can then twist the boundary conditions to see that this
is indeed a rare state that does not respond appreciably
to the twisted boundary conditions [see Fig. 11(b,c)].

To determine how localized it is, we find the maxi-
mum of the wavefunction at rmax, then determine how
the wave function falls off as a function of radius r =
|r−rmax|. We bin the data using the Freedman-Diaconis
rule, and we then fit a power-law to the resulting binned
data (see Fig. 12). The result is a power law (red line on
the right figure of Fig. 12) of

|ψ(r)| ∼ 1

r1.83
, (D1)

which is consistent with the analytic prediction of a
power law of 1/r2. This state is found to hybridize wth
surface states as we see elaborate on in the main text.
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FIG. 3. (a) The low-energy eigenstates as a function of a twist in the z-direction for a disordered sample without any rare
states; total weight of the eigenstate on the x = 1 surface is indicated by the color-scale. The indicated state shown in (c)
represents hybridization between bulk Weyl states and surface states. Green represents the bulk states found with periodic
BCs. (b) The low energy eigenstates as a function of a twist in the y-direction for a sample with a rare bulk state; The weight
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strongly renormalizing the dispersion (b). The density plots are partially summed ρ(x, y) =

∑
z | 〈x, y, z|ψ〉 |

2, and all plots are
at weak disorder W/t = 0.5 and have L = 18.
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