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Quantum criticality is a fundamental organizing principle for studying strongly correlated sys-
tems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major
challenge of condensed matter physics due to the intricate interplay between quantum and ther-
mal fluctuations. The recent experiments in the quantum spin dimer material TlCuCl3 provide an
unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero
temperature quantum critical spin dynamics by employing an effective O(N) field theory. The on-
shell mass and the damping rate of quantum critical spin excitations as functions of temperature
are calculated based on the renormalized coupling strength, which are in excellent agreements with
experiment observations. Their T lnT dependence is predicted to be dominant at very low temper-
atures, which is to be tested in future experiments. Our work provides confidence that quantum
criticality as a theoretical framework, being considered in so many different contexts of condensed
matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also
expected to motivate further experimental investigations on the applicability of the field theory to
related quantum critical systems.

PACS numbers: 71.10.Hf,73.43.Nq, 74.40.Kb

I. INTRODUCTION

Quantum and thermal fluctuations combine to deter-
mine the overall nonzero-temperature quantum dynam-
ics as well as thermodyanmics of strongly correlated
many-body systems. A quantum critical point occurs
at zero temperature when matter goes from one quan-
tum ground state to another upon tuning a non-thermal
parameter1,2. An illustration of a generic phase diagram
of quantum phase transition is presented in Fig. 1. Phys-
ical properties around quantum critical points are of ex-
tensive current interest. For instance, quantum critical-
ity gives rise to unusual spin dynamics in heavy fermion
metals3–5 and one-dimensional quantum magnets6,7, as
well as the non-Fermi liquid behavior and unconventional
superconductivity in a variety of strongly correlated elec-
tron systems1,8–10. The corresponding real-frequency dy-
namics is in general difficult to calculate, especially at
nonzero temperatures (T > 0). Indeed, even for quantum
systems in one spatial dimension, analytical understand-
ings of such dynamical properties are still limited7,11–14.

Recently, the neutron scattering experiments in the
three-dimensional quantum magnetic dimer compound
TlCuCl3 have provided an ideal testbed of quantum crit-
ical theory at an unprecedented level16–19. TlCuCl3 un-
dergoes a continuous quantum phase transition from the
quantum disordered phase to the Néel ordered one with
increasing pressure. At ambient pressure, the ground
state is a dimerized singlet paramagnet with the gapped
low-energy triplon (triplet state) excitations. Upon in-
creasing pressure, the triplon band bottom is lowered,
and, at a critical pressure, these excitations become gap-
less leading to a quantum phase transition into the Néel
ordered ground state. Correspondingly, the low-energy
phase is capatured by a generic 3 (space) + 1 (time) di-
mensional relativisitic O(3) quantum φ4 theory20,21 [Ap-

FIG. 1: Above figure depicts a generic phase diagram with a
second order quantum phase transition, which arises in broad
classes of systems5,9,10,15,16. The r and rc denote tuning pa-
rameter and quantum critical point respectively. Due to dif-
ferent correlation characters resulting from the competition
between thermal and quantum fluctuations, the whole dia-
gram has been de facto divided into different regions as it is
manifestly illustrated with different colors. The solid curve is
used to denote a second order classical phase transition while
the dot-dash curves illustrate crossover regions qualitatively.
The broken line on the top is used to denote the cutoff tem-
perature, T ∗, beyond which quantum criticality is negligible.
The dark blue arrow, flowing right upward from the QCP,
shows the region we study in the main text.

pendix A]. While a great deal of efforts, such as theo-
retical proposals for detection of the Higgs mode and the
ratio of gaps in disorder and order regimes, have been
made towards understanding the experiments22–27, the
dynamics in the quantum critical regime have not been
understood properly28.
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In this article, we study the critical dynamics of quan-
tum antiferromagetism at nonzero temperatures by em-
ploying a generic 3 (space)+1 (time) dimensional rela-
tivistic O(N)-invariant quantum φ4 theory. Both the
on-shell and off-shell quantum critical dynamics at T > 0
are calculated in a broad dynamical regime. Our on-shell
results for the mass and damping rate allow not only a
qualitative understanding of the experimental observa-
tion but also a quantitative description of their magni-
tudes, and the T lnT dominance is found at very low
temperatures. Moreover, the effective coupling of the
field theory appropriate to systems such as TlCuCl3 is
determined, which will be important for further experi-
mental means to test the applicability of the field theory
to these materials. Studying the material and the quan-
tum field theory serves as a means to explore the Higgs
physics in a tabletop setting29.

II. THE MODEL

We start with the following D-dimensional (D = d +
1) Euclidean relativistic Lagrangian with N -components
O(N) real field (φ1, φ2, · · · , φN ) [Appendix A],

L0 =
1

2

(

∂νφi(τ,
⇀

x)
)2

+
g2

4!
µ2εφ2

i (τ,
⇀

x)φ2
j (τ,

⇀

x), (1)

where the mass is set as zero at zero temperature corre-
sponding to the quantum critical point, ∂ν = (∂τ , ∂⇀

x
),

and µ is the energy scale parameter. In addition, g is the
dimensionless coupling constant at the energy scale of µ.
The ultraviolet (UV) divergent terms in the renormaliza-
tion process will be absorbed by counter terms order by
order in the framework of dimensional regularization (D-
Reg), and ε is taken as zero for comparing theoretical re-
sults with experimental measurements. At the quantum
critical point, the mass is renormalized to zero by defi-
nition. At nonzero temperatures, the mass only depends
on temperature, therefore, the region we shall investigate
is the one illustrated by the blue arrows in Fig. 1. The
counter terms are not displayed but will be determined
following the minimal-subtraction scheme30.
We study L0 for the dynamics at nonzero tempera-

tures within the Braaten-Pisarski resummation program,
which is a systematic calculation machinery taking ad-
vantages of D-Reg and resummation31–35. The rele-
vant diagrams up to 2-loop contributions are shown in
Figs. S1 (a–h) in Appendix B. The finite-temperature
renormalized theory at N = 1 was obtained previously
in Refs.36–40. We consider the field theory with a general
N , and the case of TlCuCl3 corresponds to N = 3. Start-
ing from L0, a 1-loop calculation for the self-energy or,
the thermal mass, is based on the diagram of Fig. S1(a)
in Appendix B, giving rise to

m2
T = −Σ0(q) = aNg2(µ)T 2 (2)

with aN = (N + 2)/72. By using the thermal mass, an

effective field theory is constructed

L2 =
1

2
[(∂µφi)

2 +m2
Tφ

2
i ] +

1

4!
g2µ2εφ2

iφ
2
j −m2

Tφ
2
i /2 (3)

with a new vertex − 1
2m

2
Tφ

2
i illustrated by

Fig. S1(b)(Appendix B). L2 naturally cures the in-
frared (IR) divergence, equivalent to resumming the
daisy diagrams (Fig. S2 in Appendix B based on L0

40.
This procedure leads to a non-analytic (in g2) 1-loop
renormalized mass,

m′2
T = mT

2 − 3m3
T /(πT ) +O(g4 ln g), (4)

showing the non-perturbative nature of the quantum φ4

theory37,40,41. In order to determine the quantum dy-
namics, we proceed to the 2-loop level. Recognizing the
1-loop correction for the interaction (Fig. S1(c) Appendix
B), a 1-loop zero-temperature interaction counter term
(Fig. S1(d) in Appendix B) is incorporated to obtain the
full 1-loop renormalized effective field theory L3,
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1
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2
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which serves as the starting point for further calculations
at the two-loop level.
From L3, via Figs. S1(a,b,e,f,g,h) (Appendix B), we

obtain the renormalized self-energy to the order of g4,
Σ2 = Σ′

2 + iΣ′′
2 . The detailed expressions of Σ′

2 and Σ′′
2

are presented in Appendix C. For the long-wavelength
physics, we fix the momenta for the external legs to be
zero in the sunset diagram (Fig.S1(h) in Appendix B).
The divergent terms associated with ε → 0 are absorbed
by counter terms for the wavefunction and momentum
renormalizations, respectively. The detailed renormalza-
tion calculation up to the two-loop level is given in Ap-
pendix C. The dynamical structure factor (DSF) is re-
lated to the self-energy through,

S(ω, ~p = 0) =
2Im[χ(ω, ~p = 0)]

1− e−βω
, (6)

where χ−1(ω, ~p = 0) = −ω2 + m
′2
T − Σ2(ω), then the

damping rate follows γ = Σ′′
2/(2ω). In the following we

will present the on-shell mass, and damping rates in three
different frequency regimes. The comparison with the
experiments on TlCuCl3 will be discussed.

III. ON-SHELL DYNAMICS AND THE
DAMPING RATE

A complex pole ω = M − iγ can be obtained from the
zeros of χ−1(ω, ~p = 0). Up to the two-loop level, the
on-shell mass M is determined as

M2(T ) = aNT 2g2(µ)
{

1 + bNg2(µ) ln(T/µ)+

+c1g(µ) + c2g
2(µ) ln g2(µ) + c3g

2(µ)
}

,(7)
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where bN = (N + 8)/(48π2), c1 = −3a
1

2

N/π, c2 =
1/(8π2), c3 = {−(bN/2) ln(4π)+ ln aN/(8π2)+ [ 32aNδ0+

δ1/(16π
2)]} with δ0 = 5.242, and δ1 = 3.644. In addi-

tion the lnT dependence in the big brackets arises from
the sunset diagram (Eq. (C3) in Appendix C), signaling
physics beyond scaling ansatz as will be discussed later.
Around the complex pole, the renormalized propagator
is well approximated by

χ−1(ω, ~p = 0) = −ω2 +M2 − iΣ′′
2(ω). (8)

Substituting the expression of Σ′′
2 in Appendix C, the

on-shell damping rate reads

γ(ω2 = M2, ~p = 0) = g2mT /(64π). (9)

In fact, the renormalized mass M2(T ) in Eq. (7) is in-
dependent on the choice of the energy scale µ. To verify
this at the two-loop level, we employ the µ-dependence
of coupling strength g(µ) by solving the one-loop renor-
malization group equation41–43,

g2(µ) =
g2(µ0)

1 + bNg2(µ0) ln(µ0/µ)
. (10)

µ0 is a reference energy scale, which for convenience is
set at µ0 = T throughout the rest part of the paper44.
From Eq. (10), to the order of g4, we arrive at

g2(µ0 = T ) = g2(µ)[1 + bNg2(µ) ln(T/µ)] +O(g6(µ)),
(11)

which apparently pushes the µ-dependence of the two-
loop mass Eq. (7) to the next order g5 ln g.
While our theoretical renormalization procedure is

general, the strategy for comparison with the experimen-
tal data is as follows. We start with a particular temper-
ature T = T1, set as µ0. The value of g(µ0 = T1) is fitted
by comparing the thermal mass Eq. (7) in which µ is set
as µ0 with the experimental data at T = T1. For data
measured at a different temperature, say, T2, Eq.(10) is
used to determine g(µ = T2), based on which, the mass
and damping rates at T2 are calculated and compared
with the experimental data. As will be clear later, excel-
lent agreements with experiemental results are achieved
for independent data points of masses and damping rates.
In principle, the temperature for any data point can

be served as a renormalization reference point. For
later convenience, we choose maximal temperature, T =
Tmax
exp ≈ 12K, at which the data was measured. Cor-

respondingly, based on Eq. (7), the initiative g(µ0 =
Tmax
exp ) ≈ 4.15 by substituting N = 3, and Fig. 2 illus-

trates the flow of g(µ) at different energy scales. The
advantage of this choice is that the coupling constant
g(µ) determined at lower energy scales becomes smaller,
which improves the accuracy of the perturbative calcu-
lation. In particular, the validity of the perturbation
theory can only be justified at µ far less than the scale
of Landau pole. Our calculation shows that the Landau
pole based on Eq. (10) is located at the energy scale about

FIG. 2: Coupling strength at different physical energy scale,
µ, following Eq. (10). Here, the reference coupling g(T ) =
4.146, and the Landau pole occurs at µL = 12.253T .

FIG. 3: Two-loop renormalized mass v.s. reduced tempera-
ture t. The blue curve is based on Eq. (7). It is approximated
by Eq. (12) and M(T ) = 0.91t illustrated by red and green
curves, respectively. The black and orange broken lines re-
spectively mark the minimal experimental temperature, and
the crossover temperature when the T lnT behavior starts to
become dominant. The inset figure zooms in the low tem-
perature region (t < 0.1), which clearly shows that the mass
behavior significantly deviates from the linear-T behavior.

µL = 12.25Tmax
exp , which is well beyond the temperature

scope measured.
Following this procedure, we plug the obtained cou-

pling constant at each temperature into Eq. (7) to ob-
tain the two-loop renormalized mass as plotted in Fig.
3. For later convenience, the calculated masses can be
approximated by (the mass here is reduced by Tmax

exp )

M(T ) = 1.00t/[1.00+ 0.30 ln(1/t)] (12)

with t = T/Tmax
exp . The linear-T behavior dominates at

relatively high temperature in which the experiment mea-
surements were performed. As lowering the temperature,
the T lnT correction becomes important and dominates
in the very low temperature region. This expression can
be understood as follows: By setting µ = T in Eq. (7),
the leading contribution to M(T ) ∼ Tg(µ = T ). The
deviation from the linear-T behavior of M(T ) is due to
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FIG. 4: Temperature dependence of the damping rate. Here,
our theoretical result FWHM = 0.16T (red line) is shown
along with the experimental result of Ref.16, which includes
the values (without error bars) at different temperatures
(black dots) and a fit of these values in terms of FWHM =
0.15T (blue line).

the weakening of g(µ = T ) as lowering T according to
the running coupling constant expression Eq. (10). The
corresponding crossover temperature scale can be deter-
mined as

Tcr ∼ µ0e
−1/[bNg2(µ0)] (13)

with µ0 = Tmax
exp . In our case, Tcr ≈ 1K corresponding to

t ≈ 0.08, which is about half-order smaller than the low-
est temperature in experiments. Therefore in the range
of experiment measurement temperatures Eq. (12) gives
a theoretical prediction of mass Mth ≈ 1.00T which ex-
cellently agrees with the experimental result Mexp = T
16. However, for the material of TlCuCl3, there exists a
small gap induced by anisotropy ∆ ≈ 0.38meV19, which
spoils the O(3) invariance. Since this temperature scale
(∆) is much larger than Tcr, we are not optimistic at the
experimental observation of the T lnT behavior in the
material of TlCuCl3. However, we expect that the T lnT
behavior should be observed for the material which can
be effectively described by the L0 [Eq. (1)] at low enough
temperatures.
We proceed to analyze the damping rates in the exper-

imental relevant region, namely, the linear-T -dominant
region in Fig. 3. After some calculations, we arrive
at γth(µ = T ) ≈ 0.08T for N = 3. Correspond-
ingly, the full width at half maximum (FWHM) scales as
FWHMth ≈ 0.16T which excellently agrees with the ex-
perimental observation of FWHMexp ≈ 0.15T 16 (Fig. 4).
Our calculation is exact at two-loop, g4. However, from
Eq. (9), it is observed that the mass at the one-loop level
(g2) has already resulted in the damping rate at the or-
der of g4 (two loops). Nevertheless, the mass will ex-
hibit the logarithmic dependence at low temperatures,
therefore, we still expect the linear-T behavior for the
on-shell damping rate will also be spoiled when temper-
ature is decreased further to the T lnT dominant region,
which should be verified when the field-theory approach
is pushed to the order of g6 (three loops).
The striking agreement between our theoretical results

FIG. 5: A schematic plot of the dynamical structure factor at
zero momentum, describing the behavior in different asymp-
totic regimes: on-shell (ω ∼ M) and off-shell at ω ≪ M and
ω ≫ M . The dash lines interpolate among these regimes.

and the experiment indicates that the 3 + 1 dimensional
O(3) relativistic quantum field theory takes an excel-
lent account of the underlying physics near the pressure-
induced quantum critical point of TlCuCl3. Further-
more, for the initiative g, we have g2/4! ≈ 0.7. This value
implies that the interaction among the critical modes is
significant but still moderate, allowing for a loop expan-
sion to extract semi-quantitative results for the pertinent
physical properties. Furthermore, one must proceed to at
least two loop (g4) to obtain a physical prediction of the
T lnT dominance. Following our two-loop renormaliza-
tion analysis we expect a clear T lnT -dominant behavior
for the mass at low temperatures, which goes well beyond
conventional scaling ansatz.

IV. OFF-SHELL DYNAMICS AT
FREQUENCIES FAR AWAY FROM M

We first determine the damping rate in the zero fre-
quency limit, ω ≪ M . The imaginary part of the self-
energy Σ

′′

2 (q = 0, ω) can be organized into the imaginary
part of G0, G1 and G2 as shown in Eqs. (S6-S9) in Ap-
pendix C, which arise from the contribution of of the
sunset diagram (Fig. S1(h) in Appendix B). In the low
frequency limit, due to the on-shell energy-momentum
conservations, there is no contribution from G0 because
of a three-particle threshold. The phase space that sat-
isfies the on-shell constraints lies in the large momentum
regime. Because of the Bose-distribution factor, the con-
tributions from G1 and G2 are exponentially suppressed.
Our calculation shows that

γ ∼ T 2 exp[−(mT /T )(mT/ω)]/(2ω)

∼ T exp[−g2T/ω)]/(2(ω/T )) → 0 (ω → 0). (14)

This exponentially small result is subleading compared
to the perturbative renormalized theory we carried out
at the order of g4. As a consequence of the suppressed
spectral weight in this regime, the analysis is beyond the
scope of the procedure outlined here.
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We next consider the damping rate in the large fre-
quency limit, ω ≫ M , for which the physical energy scale
should be set by µ = ω. On the other hand, the pertur-
bative framework stops working at the energy scale of
the Landau pole µL = exp

{

1/[bNg(T )2]
}

determined by
Eq. (10). Thus, we work in the range M(µ = ω) ≪ ω ≪
µL. In the large frequency limit, the dominant contribu-
tion to Σ′′

2 comes from ImG0. Evaluating the integration
for ImG0 exactly yields ImG0(ω

2, ~p = 0) ∼ g4(ω)ω2 (Ap-
pendix C), correspondingly, γ ∼ g4(ω)ω and S(ω, ~p =
0) ∼ ω−2. In this regime, the system is over-damped. A
logarithmic correction naturally arises from g2(ω) deter-
mined from Eq. (10), but is of the order g6. The overall
behavior of the DSF is shown in Fig. 5, which we ex-
pect to be experimentally observed in the near future in
proper strongly correlated systems.

V. DISCUSSIONS

We note that any physical observable should be cut-off
independent. Our results satisfy this requirement at the
two-loop level, while, in contrast, previous results along
these lines are cut-off independent only at the order of
one loop28. Improvement is significant and fundamental
rather than technical, since it brings qualitatively new
behavior of the mass as well as the dynamic information:
The T lnT behavior beyond the scaling ansatz emerges
only at the two-loop level; it cannot be accessed by the
method of [28], being correct at one loop only and ac-
curate up to the order of g3 (or α3/2 in the notations
of that study); accordingly, the two-loop RG invariant
mass as presented in Eq. (7) here does not obtain by the
method of [28]. There are also differences between our
study and that of [28] so far as the potential for guiding
experiments is concerned, and we believe that, also here,
there are considerable advantages in using our approach.
We now remark on a few points. First,the two-loop

calculation has incorporated all the pertinent terms at
the order of g4. There are an infinite number of other
diagrams which can contribute to the order of g4; for
example, if adding one more bubble in Figs. S1(e,f,h)
(Appendix B) or one more blob (two-point interaction
vertex) in the Fig. S1(h), their contribution is at the or-
der of g4. However, when summing over all of these kinds
of diagrams, their contributions at the order of g4 exactly
cancel with each other37, leaving a final contribution at
the three-loop level. The procedure can in principal be
carried out order by order, leading to any desired ac-
curacy for the (on-shell) quantum critical dynamics at
nonzero temperatures of the relativistic 3+1 dimensional
O(N) quantum φ4 theory35. In our study, the result at
the two-loop level is already in an excellent agreement
with the experiments. We have also demonstrated that
the effective coupling constant provides a justification for
the two-loop calculation.
Second, our analysis is asymptotically exact for D =

3 + 1 dimensions, where all the UV divergences are sys-

tematically absorbed by counter terms controlled by the
small quantity ε. These UV divergences associated with ε
yield proper wave-function and momentum renormaliza-
tions order by order in the form of counter terms37, which
in turn modify the next-leading-order behavior. In other
words, ε can only be taken to zero when, at each order,
the contributions from the previous-order counter-terms
have been incorporated. For lower-dimensional systems,
say, in two spatial dimensions, the corresponding problem
can be analyzed by setting ε = 1/2. We want to empha-
size the difficulty in removing the IR singularities. Not in
every field theory can one remove its IR singularities40.
It is fortunate that there is a systematic way to regularize
the 3 + 1 dimensional quantum φ4-theory However, the
resummation in the calculation paradigm is essentially
non-perturbative, which gives rise to non-analytical cor-
rections beyond the perturbation series, therefore, the
procedure can become very involved when one tried to
push to higher orders.
Third, the leading behavior we obtained for TlCuCl3

is expected, from the perturbation view point, to hold
when |m2(T = 0)| ≪ T (Fig. 1, also called as high-
T regime2). However, when one moves to the regime
|m2(T = 0)| ≫ T (also called as low-T regime2) the
non-critical background does become important. For ob-
taining a correct understanding one not only needs to
introduce new counter terms associated with the open
gap to cure newly appeared UV divergences, but also re-
quire new techniques beyond the current approach to ac-
cess the physics in the ordered regime especially near the
transition line45. These new must-introduced techniques
and the expected new physics compose a new challenging
goal worthy of further exploration.

VI. CONCLUSIONS

We have studied the quantum critical dynamics at
nonzero temperatures based on a generic 3+1 dimen-
sional relativistic quantum φ4 theory and compared the
results with the spin dynamics experiments on the in-
sulating antiferromagnet TlCuCl3. The theoretical cou-
pling constant is determined from the temperature de-
pendence of the thermal mass corresponding to the gap
value. The resulting mass and damping rate are consis-
tent with the experimental data. The logarithmic behav-
ior is predicted to be dominant at extremely low tempera-
ture which should be observable in a proper experimental
setup. At last, the damping behavior over a broad dy-
namical regime is also determined for comparison with
future experiments. In turn, our results provide concrete
evidence for the applicability of the underlying quantum
field theory to the description of the observed quantum
critical point. This, together with the quantitative de-
termination of the effective coupling constant, will allow
for the calculation of additional experimental observable
such as the nuclear magnetic resonance (NMR) relax-
ation rate. From a theoretical perspective, knowledge on
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the dynamical properties of generic quantum field the-
ory deepens our understandings on not only condensed
matter systems but also the dynamical processes in high-
energy and cosmology physics46. Our calculation repre-
sents progress in a theory that is grounded in a concrete
and prototype condensed matter system.
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Appendix A: A Brief Derivation for Eq. (1) in Main
Text

Each unit cell of TlCuCl3 consists of a dimer formed
by two magnetic spin- 12 Cu2+ ions, and the centers of the
dimers form a three-dimensional cubic lattice. The intra-
and inter-dimer antiferromagnetic exchange interactions
are modeled as

H = J
∑

r

Sr,1 · Sr,2 + λJ
∑

〈r,r′〉; l=1,2

Sr,l · Sr
′,l , (A1)

where r represents the central position of the dimer,
and l is the site index inside the dimer; Sr,1 are spin-
1
2 operators; 〈· · · 〉 denotes summation over the near-
est neighbours. In addition, J (> 0) and λJ (0 ≤
λ ≤ 1) denote the intra- and inter- dimer coupling
strengths respectively. The next-next-nearest neighbour
interactions47–50 are sub-leading and neglected. When
λ = 0 the ground state is a paramagnetic state with
separable singlet states; when λ = 1, H describes the
cubic lattice antiferromagnet with a long range Néel
order. Therefore, a quantum phase transition arises
when λ is tuned to a critical value λc. The observed
strong intra-dimer interaction47–50 indicates the domi-
nant low-lying excitations are spin triplets, therefore, it is
proper to introduce bond-operators s†(r) and t†α(r)(α =
x, y, z) for the dimer spin singlet and triplet states.

They satisfy s†(r) |0〉 = 1√
2
[|↑↓〉

r
− |↓↑〉

r
] , t†+(r) |0〉 =

− |↑↑〉
r
, t†z(r) |0〉 = 1√

2
[|↑↓〉

r
+ |↓↑〉

r
], and t†−(r) |0〉 =

|↓↓〉
r
with |0〉 being a reference vacuum state with t†± =

tx ± ity
51. In the continuum limit we express the tα-

field with tα(r) ∼ ad/2 [φα(r) + iπα(r)] (α = x, y, z)
where d is the spatial dimension and a is the lattice
constant. πα are conjugate momentum to φα satisfy-
ing [φα(r), πβ(r

′)] = iδ(r − r
′)δαβ . Taking advantage of

the condensation of the s-field, we integrate over the π-
field, leaving a Lagrangian density in the imaginary-time
formalism as a functional of the φ-field up to quartic
order52,

L = χ(∂τφα)
2 + ρs(∇φα)

2 +m2φ2
α + uφ2

αφ
2
β , (A2)

where the parameters are estimated as χ ≈ 1/J, ρs ≈
2za2λJ,m2 ≈ J(1 − 4zλ) and u ≈ 2zadλJ with z being

t

FIG. S1: (a) One-loop self energy diagram. (b) Two point
effective interaction in L2. (c) One-loop correction to the
four-point vertex. There are two additional crossed channels,
which are not shown. (d) UV vertex counter term for the
interaction. (e) Insertion of the finite two-point interaction in
L2 into the one-loop self-energy (bubble) diagram. (f) Two-
loop bubble diagram. (g) Self energy contribution from the
UV vertex counter term. (h) Sunset diagram.

FIG. S2: A typical daisy diagram with m dressing bubbles
for the L0 (Eq. (2) in main text).

the coordinate number, then the velocity of the field c20 =
ρs/χ ≈ 2zλa2J2. After normalizing L by ρs, setting c20 =
1, m2 = 0 and generalizing the field to N -components
O(N) field (φ1, φ2, · · · , φN ), we recover the Lagrangian
L0 Eq. (1) presented in the main text.

Appendix B: Relevant Feynman Diagrams up to
Two Loops and A Typical Daisy Diagram for L0 and

Resummation

Figs. S1(a–h) list relevant Feynman diagrams up to
two loops.

A typical (one-loop) daisy diagram with m dressing
bubbles for the L0 (Eq. (2) in the main text) is illus-
trated in Fig. (S2). The “resummation” of a series of
this kind of diagrams helps remove the IR divergence for
the L0. Higher order resummation diagrams can be simi-
larly generated when we proceed to multi-loop situations.
After adding proper UV counter terms and resummation
of all daisy diagrams at each order the Lagrangian can
then be updated to the next leading order. In this way
it provides a systematic way to renormalize the 3 + 1
dimensional quantum φ4 theory.
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Appendix C: Real and Imaginary Parts of Self
Energy to Two Loops

Up to two loops, the renormalized real part of the self-
energy gives,

Σ′
2(ω

2) = Σren + F1 + F2 +H (C1)

with

Σren =
3m3

T

πT
+

3m2
T

4π2

(mT

T

)2

ln
4πµ2

T 2
+

3m2
T

2π2

(mT

T

)2
(

2c1 −
5

2
− γE

2

)

(C2)

F1 =
N + 2

3

1

(4π)2
g4T 2

24

(

ln
4πµ2

m′2
T

+ 2− γE

)

(C3)

F2 =
N + 2

3

g4

8(2π)4

∫ ∞

0

knkdk

Ek

∫ ∞

0

dq

Eq

(

q ln

∣

∣

∣

∣

X+

X−

∣

∣

∣

∣

− 4k

)

(C4)

H =
N + 2

3

g4

8(2π)4

∫ ∞

0

knkdk

Ek

∫ ∞

0

qnqdq

Eq
ln

∣

∣

∣

∣

Y+

Y−

∣

∣

∣

∣

(C5)

where m′2
T = m2

T − 3m3
T /(πT ) + O(g4 ln g) and

Σren comes from the renormalized contribution of
Figs. S1(a,b,e,f,g). In addition F1, F2(ω

2) and H(ω2)
denote those from the real part of the sunset diagram
Fig. S1(h), in which c1 = (2γE − 2 ln(4π) − 1)/4, X± =
[ω2 − (Ek + Eq + Ek±q)

2][ω2 − (Eq − Ek + Ek±q)
2], and

Y± = X±[ω2−(Ek−Eq+Ek±q)
2][ω2−(Ek+Eq−Ek±q)

2]

with E2
l = l2 + m2

T , nl = 1/(eβEl − 1), l = k, q. (Here,
γE is the Euler constant.)
The imaginary part of the self energy gives,

Σ′′
2(ω

2) = Im(G0) + Im(G1) + Im(G2), (C6)

where

G0 = g4
∫

d[k, q]S(Ek, Eq, Er) (C7)

G1 = 3g4
∫

d[k, q]nk [S(Ek, Eq, Er) + S(−Ek, Eq, Er)] (C8)

G2 = 3g4
∫

d[k, q]nknq[S(Ek, Eq, Er) + S(−Ek, Eq, Er) + S(Ek,−Eq, Er)− S(Ek, Eq,−Er)]. (C9)

Here, S(Ek, Eq, Er) = 1/(iωn + Ek + Eq + Er) +
1/(−iωn + Ek + Eq + Er), EkEqErd[k, q] =
[(N + 2)/24](µ4ε/3!)[dD−1k/(2π)D−1][dD−1q/(2π)D−1],

and r = |
⇀

k +
⇀

q |. When N = 1, our results are
compatible to those of the scalar case37.

Appendix D: Imaginary Part of G0 in the Large
Frequency Limit

In the large frequency limit (M(µ = ω) ≪ ω ≪ µL),
the dominant contribution to Σ′′

2 comes from Im(G0)

(Eq. (C7)). Because of the on-shell energy-momentum
conservations, the ε can be simply set to 0 for calculat-
ing the imaginary part of the self energy with the mass
term replaced by a physical one. Evaluating the integra-
tion for Im(G0) yields
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ImG0(ω
2,

⇀

p = 0) (D1)

= Ag(ω)4πM2

[
∫ y1

0

y

Ey

(

√

f2
4 (y) + 1−

√

f2
2 (y) + 1

)

dy +

∫ y2

y1

y

Ey

(

√

f2
4 (y) + 1−

√

f2
3 (y) + 1

)

dy

]

where A = (N + 2)/(1152π4), x = k/M , y = q/M , y1 =
√

(z0 − 1)(z0 − 3)/2, y2 =
√

(z20 − 9)(z20 − 1)/(2z0) with
z0 = ω/M . In addition x = f3(y), f4(y) are two solutions

of z0 =
√
x2 + 1+

√

y2 + 1+
√

(x− y)2 + 1 with f2(y) =

−f3(y) and f3(y) < f4(y). In the large frequency limit we
consider, z0 ≫ 1, y1 ≈ z0/2 and y2 ≈ y1, then the second
integral is negligible. In addition, using y1 = z0/2 ≪ z0,

we find ImG0(ω
2,

⇀

p = 0) ∼ g(ω)4ω2.


