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Floquet symmetry protected topological (FSPT) phases are non-equilibrium topological phases
enabled by time-periodic driving. FSPT phases of 1d chains of bosons, spins, or qubits host
dynamically protected edge states that can store quantum information without decoherence, making
them promising for use as quantum memories. While FSPT order cannot be detected by any local
measurement, here we construct non-local string order parameters that directly measure general 1d
FSPT order. We propose a superconducting-qubit array based realization of the simplest Ising-FSPT,
which can be implemented with existing quantum computing hardware. We devise an interferometric
scheme to directly measure the non-local string order using only simple one- and two- qubit operations
and single-qubit measurements.

Time-periodic (Floquet) driving enables fundamentally
new symmetry-protected topological (SPT) phases of mat-
ter with dynamical properties that could not occur in ther-
mal equilibrium1–11. Such Floquet SPT (FSPT) phases
exhibit protected edge modes that dynamically decouple
from bulk sources of decoherence7,12. In the presence of
many-body localization (MBL), the system is protected
against runaway heating and these edges can store quan-
tum information in a topologically protected manner,
without the need to cool the system near its ground-
state7,12–14. Practically, one-dimensional FSPT phases
actually have less stringent symmetry requirements than
their equilibrium counterparts7,12. This feature allows
them to be implemented with simple, realistic two-particle
interactions, and paves the way for their realization in
a variety of experimental setups including trapped ions,
Rydberg atoms12, and superconducting qubits.

The topological structure of 1d FSPTs can be formally
understood by mapping the time-periodicity of the drive
onto an effective additional discrete time-translation sym-
metry6,7. This enables a systematic classification and
characterization of their topological properties via group
cohomology methods5–7 or via topological features in the
entanglement dynamics7,12.

Despite the theoretical progress in understanding these
non-equilibrium topological phases, a viable method to
directly measure the dynamical topological invariants of
FSPT phases remains elusive. In fact, the global topolog-
ical properties of FSPT phases cannot be revealed by any
local measurements (though it may be indirectly inferred
by the presence of robust edge states). In this paper, we
construct a non-local dynamical string order parameter
to directly measure the 1d FSPT order, by extending a
related construction for static SPTs15–17.

After developing the general theory of such string-order-
parameters for FSPT phases, we specialize to the simplest
example of an FSPT phase, which is protected by an Ising
(Z2), spin-flip symmetry. We demonstrate that long-range
string order can be used as a numerical diagnostic for this
FSPT order. We then propose a simple protocol to realize
this Ising-FSPT phase in transmon superconducting qubit
arrays.

I. FSPTS AS CHARGE PUMPS

To formally establish the existence of dynamical string
order in 1d FSPT phases, we focus on a FSPT phase with
Zn symmetry18. The generator g of the Zn symmetry
has eigenvalues e2πiq/n, where q ∈ {0, 1, . . . , n − 1} is
the charge associated with the symmetry. Consider a
chain of lattice sites, with an on-site representation of the
symmetry and define operators q̂±x that raise or lower the
symmetry charge on site x: g†q̂±x g = e±2πiq/nq̂±x .

Our construction derives from an intuitive picture of the
formal FSPT classification as a charge pump, transferring
a quantized symmetry charge across the system7. This
global charge pumping is mediated by local charge transfer
between nearby sites, as illustrated in Fig. 1. While
there is no net accumulation of charge in the bulk after
a full period, a charge q is removed from the left edge
of the chain and added to the right edge; a “quantum
Archimedes’ screw”. Since the symmetry charges take
discrete values, the amount of charge pumped cannot
be continuously changed by any symmetric, T -periodic
perturbation: it is a topological invariant of the FSPT
phase. While reminiscent of Thouless pumps19, there

FIG. 1. Charge Pump Schematic. – The FSPT evolution
during one period is a non-adiabatic topological charge pump.
The topological aspect of U(T ) can be interpreted as locally
nucleating dipoles of symmetry charge q̂+q̂−. These dipoles
annihilate with neighboring dipoles and transfer a net symme-
try charge across the system. Non-topological evolution gives
additional trivial MBL dynamics which is not shown.
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are key differences. Thouless pumps are restricted to
the adiabatic and zero-temperature limit, while FSPT
occur for finite driving period and far from equilibrium.
Additionally, we note that the discrete symmetries of
FSPTs have no locally conserved charge or associated
current.

The periodic pumping in the FSPT cycles the charge
of the edge through all of its possible values, thereby
precisely canceling out any net coupling between the edge
and the bulk. This results in topologically protected edge
states.

II. DYNAMICAL STRING ORDER

The charge pumping picture suggests a simple way
to construct a non-local string order parameter that
detects the FSPT order even far from the boundaries.
The idea is to induce an artificial edge, by truncating
the Floquet evolution to a finite interval, and then to
measure the accumulated charge. Specifically, suppose
the FSPT is produced by a local time-dependent Hamil-
tonian H(t) =

∑
x hx(t), where each term hx(t) acts

only within a finite-region around site x. We define
the restriction of the evolution to an interval [i, j] as

U[i,j](T ) = T exp{−i
∫ T
0
dt
∑
x∈[i,j] hx(t)}.

Just as the full Floquet operator U pumps a symmetry
charge across the entire system in the FSPT phase, U[i,j]

pumps one across the interval [i, j]. We need to compen-
sate this charge accumulation by acting with q̂−i , q̂

+
j to

obtain the actual non-local order parameter20:

S[i,j] = q̂−i U[i,j]q̂
+
j . (1)

When acting on an MBL eigenstate, U[i,j] preserves the

state of local integrals of motion (LIOM)13,21,22 deep in-
side the interval up to exponential accuracy in ∼ |i− j|/ξ,
yielding only an overall phase. Here ξ is the localization
length. Apart from this phase, U[i,j] acts non-trivially
only near the edge of the interval, where it deposits
or removes charge. Since the charge pumped by U[i,j]

generically spreads over a region of characteristic size
ξ, it is not precisely cancelled by the site-local opera-
tors q̂−i , q̂

+
j . Nevertheless, for finite ξ, these operators

remove the pumped charge with non-zero fidelity, result-
ing in a non-zero expectation value of S[i,j], even for
arbitrarily long intervals: lim|i−j|→∞ |〈n|S[i,j]|n〉| > 0.
In contrast, for a non-topological Floquet drive, U[i,j]

does not pump any charge and S[i,j] is equivalent to
measuring the correlations in the symmetry breaking
operators, which fall off exponentially with distance23

lim|i−j|→∞ |〈n|S[i,j]|n〉| ∼ |〈n|q̂−i q̂+j |n〉| ∼ e−|i−j|/ξ.
Note that unlike conventional static order parameters,

the string order parameter (1) explicitly depends on the
Hamiltonian itself. This is a manifestation of the defining
property of FSPT phases, namely that they are protected
by the emergent time-translation of the periodic drive,
whose precise form depends on H(t).

A minor complication is that the string order exhibits
glassy behavior – while the amplitude of 〈n|S[i,j]|n〉 re-
mains non-zero for a FSPT state, its phase will randomly
vary with i and j, in a state-dependent fashion. This is
analogous to magnetic order behavior of a spin-glass. To
avoid that the eigenstate average vanishes to this trivial
phase variation, we consider an Edwards-Anderson type
order parameter

CS(i, j) =
1

|H|
∑

n

∣∣〈n|S[i,j]|n〉
∣∣2 . (2)

Here |H| is the total number of states of the system. It
is not possible, however, to directly prepare an exact
Floquet eigenstate |n〉 experimentally. Instead, one must
look for temporal string correlations frozen into the long
time dynamics by measuring

C
(d)
S (i, j; t) = 〈ψ0|S†[i,j](t)S[i,j](0)|ψ0〉 (3)

in a quench from an arbitrary initial state |ψ0〉, which
could even be a trivial product state. On averaging over
long time-intervals and over different initial states |ψ0〉,
C

(d)
S exhibits a transient decay and saturates at a value
≈ CS .

III. DUAL PERSPECTIVE

A complementary perspective on the string order pa-
rameter comes from a dual description of 1d SPT states as
condensates of charged domain walls (DWs)24. For exam-
ple, if we take a Zn-symmetry breaking order parameter
and condense the domain walls of this order that have
bound to them a charge of a different Zm symmetry, we
obtain a Zn×Zm equilibrium SPT phase (see Appendix B
for a detailed review). Kramers-Wannier duality allows us
to exactly relate the local order parameter of the compos-
ite DW-bound charge object to a non-local string order
parameter.

A related construction applies for FSPTs, which can for-
mally be mapped onto 1d equilibrium SPTs with an extra
time-translation symmetry6,7,25. The state that sponta-
neously breaks this dynamical time-translation symmetry
is a discrete time-crystal25–29, which exhibits persistent
nT -periodic oscillations. The n distinct oscillating pat-
terns are related by evolving for one period U(T ), just
as the n different domains of a Zn magnet are related
by applying the symmetry generator. By analogy to the
equilibrium construction, an FSPT state can be obtained
by condensing domain walls in the time-crystalline order
bound to charges of another symmetry group.

This dual description relates to the string order pa-
rameter: in a time-crystal state U[i,j] shifts the phase of
the time-crystal domain in [i, j] by one cycle, creating a
time-crystal DW (anti-DW) at the interval boundaries.
Concurrently, the edge-charge operator q+i (q̂−j ), adds

(removes) symmetry-charge q to the locations of the time-
crystal DW (anti-DW) respectively. Therefore, long range
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FIG. 2. Experimental Protocol. – (a) Schematic of a
two-leg ladder of superconducting transmon qubits. After
implementing the FSPT phase in each one-dimensional array,
we can use the inter-leg couplings J⊥ to measure the non-local
string order parameter. (b) Three step protocol (4) realizing
1d Z2 FSPT phase: random on-site gates (gold), followed by
two sets of pair-interactions between qubits (red).

order in S[i,j] corresponds exactly to long-range order in
charged-DW creation and annihilation operators, i.e. the
string order parameter detects the charged-DW conden-
sate.

IV. SUPERCONDUCTING QUBIT
IMPLEMENTATION

We now propose a scheme to experimentally realize
the simplest FSPT phase with a Z2 (Ising) symmetry
and measure its non-local string order using arrays of
superconducting transmon qubits. Dramatic progress
in superconducting qubit technology has led to recent
demonstrations of linear30,31 and two-leg ladder arrays32

with 10’s of qubits. The long coherence times and pro-
grammable single- and two-qubit gates in these systems
provide an ideal platform for exploring non-equilibrium
Floquet phases.

One obstacle to obtaining a 1d FSPT realization in
these systems is that the two-qubit interactions natu-
rally take the form HJ (t) = −∑i Ji(t)(XiXi+1 +YiYi+1),
whose U(1) symmetry does not, by itself, support an
FSPT phase. Here Xi, Yi, Zi are the Pauli matrices act-
ing on the qubit on site i. We can show (Appendix A)
that a sequence of staggered two-qubit operations and
single-qubit rotations can be used to generate effective
Ising interactions HIsing =

∑
i Ji(t)XiXi+1. These en-

able a variety of non-equilibrium phases including MBL
spin-glasses13 and discrete time-crystals25–29.

For realizing a Z2 FSPT, the protocol can be com-
pressed into only three steps per Floquet period (Fig. 2b):

H(t) =
3

T





∑
i hiXi 0 ≤ t < 1

3T∑
i odd J (XiXi+1 + YiYi+1) 1

3T ≤ t < 2
3T∑

i even J (XiXi+1 + YiYi+1) 2
3T ≤ t < T

(4)

The random fields hi ∈ [−h, h] both induce MBL and
break down the U(1) symmetry of the two-qubit gates
to a Z2 Ising symmetry generated by g =

∏
iXi. In-

ducing MBL in this way is essential to avoid the state
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FIG. 3. Phases of the three-step drive. – Eigenstate
observables as a function of the two-qubit interaction J , for
different system sizes L, and averaged over 5 · 102 − 104 disor-
der realizations. Vertical dashed lines indicate approximate
phase boundaries from entanglement (Jc1 = 0.21± 0.05, Jc2 =
1.31± 0.05). (a,b) have open boundaries, and (c) has periodic
boundary conditions. (a) Normalized bipartite entanglement
entropy averaged over 25 eigenstates distinguishes MBL and
thermal phases. (b) Fit coherence time τcoh of the edge spin
diverges exponentially with L in the FSPT phase and becomes
infinite at J = π/2. Error estimates are obtained by boot-
strap resampling. (c) Non-local string order parameter CS(i, j)
from (2) on a closed system (solid lines), which directly detects
FSPT order despite the absence of edge-states. Correlations
of local order parameter

∑
n |〈n|ZiZj |n〉|2/|H| (dashed lines),

do not detect the FSPT order; here i = 1 and j = L/2 + 1.

continuously heating and loosing all quantum coherence
as further gates are applied. The last two sequences
of pulses lead to symmetry charge pumping and edge
states when the system is in the FSPT phase. On an
open chain of size L with J = π/2, the time evolution is
simply U(T ) = Z1ZLe

−i
∑
i hiXi . This realizes the zero

correlation-length limit of the FSPT. The operators Z act
on the left and right ends of the chain, flipping the edge
spins in the x basis. The flipping exactly corresponds to
adding a charge Zi = q̂+i or removing a charge Zi = q̂−i –
these two operations are equivalent for a Z2 symmetry.

Even when J is tuned away from π/2, residual cou-
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plings between edge and bulk are dynamically cancelled
over the course of two periods. This dynamical decou-
pling is analogous to a spin-echo protocol on a single
spin. Crucially, however, the pulse in a spin-echo protocol
needs to be precisely tuned to achieve exact refocusing,
otherwise errors accumulate in time. The FSPT achieves
perfect decoupling over a range of driving parameters due
to the topological protection. In effect, the interactions
among qubits self-correct errors in the pulse implementa-
tions. This correction is exponentially accurate in L up
to non-zero threshold Jc, where the FSPT phase breaks
down.

To explore the behavior away from J = π/2, we nu-
merically simulate arrays of up to 12 qubits. Disorder is
fixed to its maximal value h = π and T = 1 is the unit of
time. We observe three distinct phases: for small J , the
system is a trivial MBL paramagnet, for J close to π/2
the system is an MBL FSPT, and for intermediate J , the
system thermalizes.

To distinguish the MBL and thermal regions, we com-
pute the half-system entanglement S

(
L
2

)
, averaged over

Floquet eigenstates and disorder realizations. Normal-
izing by the leading order infinite-temperature thermal
value gives s

(
L
2

)
= S

(
L
2

)
/
(
L
2 log 2

)
. Upon increasing L,

s exhibits two finite size crossing at moderate J which
separates the MBL phases (s ∼ 1/L) and thermal phase
(s ∼ 1); see Fig. 3a.

We diagnose the FSPT order in two ways. First, via
the coherence time τcoh of the edge spins in an open
chain, by fitting the disorder averaged spin-correlations
〈Z1(t)Z1(0)〉 to an exponential form ∼ e−t/τcoh (Fig. 3b).
As J approaches J = π/2, τcoh increases rapidly and also
diverges with system size L as expected for topologically
protected edge-states. Second, via the eigenstate averaged
string order parameter, CS(1, L/2 + 1) in a periodic chain
(Fig. 3c). We observe finite size behavior consistent with
long-range spin-glass string-order. At small and inter-
mediate J it decreases exponentially with system size L
as expected for disordered systems. At a critical Jc, the
order onsets and grows to 1 at J = π/2. Deep in the
FSPT phase, near J = π/2, the string order parameter
is non-zero and independent of L. Closer to the thermal-
ization transition, J ∼ Jc, the system size L becomes
comparable to or smaller than the correlation length for
this transition, i.e. the system crosses over into the the
corresponding critical fan, and CS decreases with L. The
analytic arguments of the previous section show that this
L dependence will saturate to a non-zero constant for all
J > Jc. However, the accessible system sizes in our ex-
act diagonalization study is too limited to systematically
explore this finite size crossover in detail.

V. MEASURING THE NON-LOCAL ORDER
PARAMETER

An obvious challenge to observing the string order
parameter is its complicated non-local form. This obstacle
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FIG. 4. Correlation Functions detecting FSPT order
at L = 9 – (a) Absolute value of correlation functions in
the FSPT phase with J = 19π/40, averaged over disorder.
The edge spins oscillates coherently up to infinite times. The
bulk spin loses coherence; the oscillations decay as a power
law33. (b) Time dependance of the string order parameter,
with i = 3, j = 7 averaged over all initial states. The decay
in the thermal phase (J = 13π/40) is much faster than in the
trivial MBL phase (J = 2π/40). In the infinite time limit,
this reproduces the behavior of eigenstate averaged quantity
of Fig. 3c.

can be surmounted by making two copies of the system,
and performing a quantum interferometric sequence that
maps the string order parameter to a simple set of single-
qubit measurements in the computational basis.

Our scheme realizes copies of the FSPT phase in a L×2
array of qubits that has local transmon coupling between
the two chains (Fig. 2a). Such two-leg ladder devices with
L = 8 have recently been experimentally realized by the
IBM group32. First, consider initializing the two chains
into the same state |ψ〉 so that the overall system is in state
|Ψ〉 = |ψ〉⊗|ψ〉. Here |ψ〉 does not need to be an eigenstate
of the system, but could be an easy to prepare product
state. Next, evolve the first row of qubits with time-
evolution Vn = S[i,j]U(nT ), and the second with V ′n =
U(nT )S[i,j]. Both V and V ′ can be readily implemented
by selectively applying the sequence (4) to the spins inside
the interval [i, j], or to the entire chain in the appropriate
order, resulting in |Ψ′〉 = (Vn|ψ〉) ⊗ (V ′n|ψ〉). Finally,
suppose that one is able to measure the SWAP operator
Σ, which exchanges the states of the two systems, defined
by Σ|ψ1〉 ⊗ |ψ2〉 = |ψ2〉 ⊗ |ψ1〉. For the above choice of
V and V ′, the SWAP measurement simply produces the
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dynamical string-correlations:

〈Ψ′|Σ|Ψ′〉 =
∣∣〈ψ|U†(nT )S[i,j]U(nT )S[i,j]|ψ〉

∣∣2

=
∣∣∣C(d)
S (i, j;nT )

∣∣∣
2

(5)

In pioneering experiments34, a protocol to measure en-
tanglement via SWAP operators35 was experimentally
implemented in bosonic optical lattice systems. We can
adapt this boson-based scheme for use in qubit arrays as
follows (see also36).

Consider the pair of qubits in a given column. Viewing
each qubit as an effective spin-1/2, we can describe the
four-possible states of this pair by the singlet and triplet
states, and consider the action of SWAP in this column-
pair basis. Only the column singlets transform under a
SWAP operation, acquiring a (−1) phase. Therefore, the
overall SWAP eigenvalue is equal to (−1)Ns where Ns is
the number of column-singlets. To facilitate measurement
of Ns we can first perform the unitary operation:

W =e−i
π
8

∑L
j=1(X1,jX2,j+Y1,jY2,j)ei

π
8

∑L
j=1(Z1,j−Z2,j) (6)

that maps a singlet configuration on column j to the
un-entangled product state | ↑1,j↓2,j〉, and can be imple-
mented via single-qubit rotations followed by two-qubit
inter-row interactions. After applying W , the SWAP op-
erator measurement can then be performed simply by
measuring all qubits in the computational basis, and
recording (−1)N↑↓ where N↑↓ is the number of columns
measured in the | ↑i,1↓i,2〉 configuration.

Figure 4b numerically shows the expected results of
the dynamical string order parameter measurement in the
Ising FSPT model (4), for various J . The FSPT regime
shows a well-saturated long-time average, with little finite
size evolution. By contrast, the trivial and thermal phases
show a rapid decay of string-correlations.

This proposal outlines a practical route towards real-
izing an FSPT phase and directly measuring the FSPT
order that is accessible to the current generation of su-
perconducting qubit devices. The practical limits of topo-
logical quantum information storage will require detailed
modeling of noise and qubit errors for a given hardware
implementation. Noise that is incommensurate with the
driving period will tend to melt the MBL bulk and lead
to decoherence. In contrast, the topological nature of
the FSPT protects entirely against static, symmetry pre-
serving errors, enhancing the fidelity compared to generic
quantum memories.

VI. DISCUSSION

We close with a discussion of the advantages of super-
conducting qubits compared to competing atomic, molec-
ular, and optical AMO systems for realizing a 1d Ising
FSPT phase. The key feature utilized in our proposal is

that inductively coupled transmon qubits produce inde-
pendently tunable and strictly nearest neighbor interac-
tions with a natural U(1) symmetry, from which we could
select a Z2 subgroup using appropriate single-qubit gates.

In contrast, neutral atoms37 have only contact interac-
tions which are unsuitable to realizing correlated topolog-
ical phases in 1d. On the opposite end of the spectrum,
trapped ion arrays38,39 have very long range interactions,
which have been previously shown to obstruct the 1d
FSPT physics12. These long-range interactions can be
used to synthesize arbitrary two-qubit interactions, includ-
ing nearest neighbor ones, however such interactions can
only be applied to a single pair of ions at a time, requiring
one to raster through the chain with two-qubit pulses,
which is slow and greatly limits the number of accessible
Floquet periods before the experimental lifetime.

Rydberg atoms have less long-range interactions and of-
fer a complementary route towards realizing the 1d FSPT
phase12, but so far lack the ability to synthesize disorder
potentials to produce MBL. Hence, a Rydberg implemen-
tation of the 1d Ising FSPT phase necessitates realizing
a long-lived, though ultimately metastable, pre-thermal
regime40, which unlike MBL systems requires either care-
ful state preparation or cooling to obtain a low-energy
initial configuration with respect to the pre-thermal Hamil-
tonian. In contrast the MBL-protected FSPT phase can
be obtained in a quench from any convenient initial state.
We note that the string-order parameter definition, and
experimental protocol described above, apply directly to
pre-thermal versions of 1d FSPTs, supposing the addi-
tional challenges associated with pre-thermal ground-state
preparation can be met.
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Appendix A: Generating Ising interactions from
two-qubit gates

As discussed in the main text, Floquet SPTs are only
possible with discrete symmetries, while the coupling
between superconducting qubits using transmon coupling
is naturally U(1) symmetric due to the phase symmetry of
the superconductor. We can break this U(1) symmetry to
Z2, by applying a series of staggered single-site rotations.
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FIG. 5. Seven-Pulse Sequence. – Sequence implementing
a Z2 FSPT with effective Ising interactions. Time flows left-
to-right: UD (gold), UO(−J) (blue), UP (gray), UO(J) (red),

UE(J) (red), U†P (gray with black dot), UE(−J) (blue).

Specifically, consider one of the bond applications of (4)

UE(J) = exp

[
−iJ

∑

i even

(XiXi+1 + YiYi+1)

]
.

Conjugating this unitary with the staggered π/2 pulses

UP = exp

[
−iπ

2

∑

i even

Xi

]
.

changes the relative sign between XX and Y Y terms in
UE(J). Together with applying UE(J ′) with coupling J ′,
this allows independent tuning of the two terms:

U†PUE(J)UPUE(J ′) =

exp

[
−i

∑

i even

([J + J ′]XiXi+1 + [J − J ′]YiYi+1)

]

For J = −J ′ only an Y Y Ising term remains. In addition
to breaking the U(1) symmetry, the sequence of pulses
here has the key property that each unitary is still sym-
metric under the Z2 symmetry g =

∏
iXi, which protects

the FSPT phase.

We can repeat this conjugation with the pulses
UP for two-qubit interactions on the odd staggered
bonds UO(J). A modification of the full pulse se-
quence (4) with only Ising interactions would be

U†PUE(J)UPUE(−J)U†PUO(J)UPUO(−J)UD, where UD
are the unitaries with disorder along the Xi. Rearranging
this sequences, gives a simpler equivalent 7-gate sequence,
shown in Fig. 5.

Appendix B: Dual formulation of the string order
parameter

Here, we review the dual charged-domain wall conden-
sate description for a 1d equilibrium (ground-state) SPT
in detail and then construct the analogous properties in
a Floquet SPT with symmetry group Zn.

1. Dual formulation in equilibrium 1d SPT phases

We begin by reviewing the classification of 1d equi-
librium SPTs41–43 with symmetry group Zn × Zm, by
constructing solvable, fixed point Hamiltonians that real-
ize each of the non-trivial SPT phases in this class based
on a decorated domain wall construction24. These fixed
point Hamiltonians enable one to directly deduce the
appropriate non-local string order parameters of these
phases, and also allow a concrete demonstration that the
SPT phases are decorated DW condensates.

Consider a spin chain with n- (m-) state spins on even
(odd) numbered sites respectively. We can describe the
n-state spins by “number” operators: N2i with eigen-
values e2πij/n with j ∈ {0, 1, . . . n− 1}, and raising and

lowering operators η±2i =
(
η∓2i
)†

that increase (decrease)

j by +1 mod n, i.e. η−Nη+ = e2πi/nN . Similarly,
define operators M2i+1 with eigenvalues e2πik/m with
k ∈ {0, 1, . . .m− 1}, and raising and lowering operators
µ± for the m-state spins.

With these ingredients, one can construct a solvable
Hamiltonians with SPT ground-states of the form:

Hj,k = −K
∑

i

(
µ−k2i−1N2iµ

+k
2i+1 + η−j2i M2i+1η

+j
2i+2

)

(B1)

where j ∈ {0, 1, . . . n − 1}, and m ∈ {0, 1, . . . ,m − 1}.
This Hamiltonian has a Zn × Zm symmetry generated
by gn =

∏
iN2i, and gm =

∏
iM2i+1, and general-

izes the Z2 × Z2 SPT made from spins-1/2: HZ2×Z2 =
−K∑i Zi−1XiZi+1.

a. Zero correlation length

One can verify that the Hamiltonian terms commute if
k and j are common multiples of m and n and k = m

n j.
For example:

(
µ−k2i−1N2iµ

+k
2i+1

) (
η−j2i M2i+1η

+j
2i+2

)
=

e2πi(k/m−j/n)
(
η−j2i M2i+1η

+j
2i+2

) (
µ−k2i−1N2iµ

+k
2i+1

)
(B2)

in which case we obtain a zero-correlation length Hamilto-
nian. There exist LCM(m,n) distinct values of j for which
we obtain such commuting Hamiltonians, corresponding
to the ZLCM(m,n) group structure of SPT phases. To see
that these are indeed fixed point Hamiltonians of SPT
phases we can examine the structure of edge modes.

b. Edge modes

In a semi-infinite chain with site indices i = 1, 2 . . . ,
there are Zm edge mode operators that commute with
the Hamiltonian, whose algebra is generated by:

µ̃ = µ1 M̃ = M1η
+j
2 (B3)
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which obey the same algebra as the µ and M operators
of individual m-state spins on odd sites. However, unlike
the bulk m-state spins, these edge modes transform pro-
jectively under the Zn symmetry. Namely, acting on the
edge mode, the Zn-symmetry generator commutes with
M̃ only up to an overall projective phase:

g−1n M̃gn = e2πi
j
n M̃ = e2πi

k
m M̃ = g−km M̃gkm (B4)

We can represent the action of the symmetry restricted
to the edge modes as:

gm,edge = µ̃ gn,edge = M̃k (B5)

which form a projective representation of the Zm × Zn
symmetry:

gm,edgegn,edge = e2πi
k
m gn,edgegm,edge (B6)

Similar considerations show that the right-hand edge of a
chain satisfies the conjugate projective representation.

The LCM(m,n) distinct values of k
m exhaust to the

LCM(m,n) projective representations of the symmetry
group Zm × Zn, which are in one-to-one correspondence
with the SPT phases (including the trivial phase k = 0).

c. Charged domain wall condensation

The SPT ground-state of H is an eigenstate of each of
the operators {µ−k2i−1N2iµ

+k
2i+1} with eigenvalue 1. Hence

it is also an eigenstate of product of strings of these
operators, such as:

S
(m)
[i,j] ≡

∏

i<x<j

µ−k2x−1N2xµ
+k
2x+1 = µ−k2i+1


∏

j<i

N2j


µ+k

2j+1

(B7)

since 〈S(m)
[i,j]〉 = +1 in the ground-state, regardless of i

and j, the SPT states show long-range string order with
respect to S(m).

We next interpret this long range string order as a
condensation of domain walls (DWs) of the Zn breaking
order, bound to Zm symmetry charges. Consider taking
a Zn symmetry-breaking ground-state, |FMa〉 defined by:
µi|FMa〉 = e2πia/m|FMa〉 ∀i. There are n-distinct such
ground-states labeled by a ∈ {0, . . . , n − 1}, which are
related by the Zn symmetry. Acting on this state, the

string operator S
(m)
I creates a DW at the edges of the

interval i and also adds charge ±k to the left and right
boundaries respectively. Hence, we can also interpret the
long-range order of S(m) as a condensate of these charged
DWs.

While we have deduced these properties for the zero-
correlation length fixed point Hamiltonian, by defini-
tion, an arbitrary SPT state, |ψSPT〉 in the same phase
as H will differ only by a finite-depth symmetry pre-
serving local-unitary transformation U . I.e for any

other SPT ground-state there exist such a U for which:

〈ψSPT|U†S(m)
[i,j]U |ψSPT〉 = 1. Since U commutes locally

with the string of symmetry generators N appearing in

Sm, the transformed string U†S
(m)
[i,j]U differs from Sm[i,j]

only within a region that is exponentially well-localized
near the endpoints of the interval i, j. Hence, the expec-
tation value of the non-rotated string, will generically be
non-zero in any SPT state with the same projective edge

symmetry: 〈ψSPT|U†S(m)
[i,j]U |ψSPT〉 ≥ 0.

2. Dual formulation in FSPT phases

One-dimensional FSPTs can also be viewed as equi-
librium SPT phases generated by a static Hamiltonian,
but with an enlarged symmetry group that incorporates
the discrete time-translation symmetry of the drive. This
relationship provides a complementary route towards con-
structing the string order parameter for an FSPT phase.
Specifically, the Floquet operator for a 1d FSPT, the
Floquet operator, U(T ), cannot be written as e−iHt for
any local, static, symmetry preserving Hamiltonian H.
However, there generally exists an integer N for which the
time-evolution operator for N periods can be written as
evolution under a local, symmetric, and time-independent
Hamiltonian, U(NT ) = e−iNHT . However, this effective
Hamiltonian, H, is not completely arbitrary, but rather,
“remembers” that it comes from time-evolution under N
identical driving periods. Namely, in addition to any mi-
croscopic symmetry group G, H also has an emergent dy-
namical symmetry generated by25: g = eiHTU(T ). This
dynamical symmetry satisfies gN = 1 (forms a ZN group),
consists of a product of quasi-local unitary operators due
to the MBL nature of H and U(T ). Unlike an ordinary
microscopic symmetry, however, this dynamical symmetry
g is emergent, and its precise form depends on the details
of the drive U(T ) (it can be explicitly constructed, for
example, using a high-frequency expansion).

The FSPT phases can be understood has SPT phases
with this enlarged symmetry group containing both G
and ZN 6,7. This relation enables one to classify FSPTs
using equilibrium methods such as group-cohomology
approaches44,45. In addition, this framework provides
valuable insight into other non-equilibrium phases, such
as discrete time-crystals, which spontaneously break the
emergent dynamical symmetry, manifesting in persistent
oscillations at a fixed multiple of the fundamental driving
period (fraction of the driving frequency).

In fact, the FSPT phases have a dual description in
terms of modified time-crystals, which enables a comple-
mentary construction of the string order parameter.

Let us consider the dynamical analog of the decorated
domain wall construction for a Floquet MBL system. A
trivial time-translation invariant Floquet-MBL system (a
time-“liquid” or time-“paramagnet”) is a condensate of
DWs of time-crystalline order that breaks the emergent
time-translation symmetry, so has long-range order in
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UI . For example, consider a Z2 time crystal of a spin-1/2
chain, in the limit of zero correlation length, whose time
evolution is U(T ) ≈ ∏iXie

−i
∑
i hiZi . Starting from a

Z-basis product state, like | · · · ↑↑↑↑↑ · · ·〉, the system
oscillates with 2T -periodicity as:

| ↑↑↑↑↑ . . .〉 −→
U(T )

| ↓↓↓↓↓ . . .〉 −→
U(T )

| ↑↑↑↑↑ . . .〉 (B8)

Similarly, starting in the opposite product state, the time-
evolution starting from all down exhibits the out-of phase
oscillations:

| ↓↓↓↓↓ . . .〉 −→
U(T )

| ↑↑↑↑↑ . . .〉 −→
U(T )

| ↓↓↓↓↓ . . .〉 (B9)

Then, applying UI restricted to the middle three spins
would alter: UI | ↑↑↑↑↑ . . .〉 = | ↑ ↓↓↓ ↑ . . .〉. The flipped
spins would then oscillate out of phase with the remaining

un-flipped spins:

| ↑ ↓↓↓ ↑ . . .〉 −→
U(T )

| ↓ ↑↑↑ ↓ . . .〉 −→
U(T )

| ↑ ↓↓↓ ↑ . . .〉 (B10)

corresponding to an temporally out-of-phase domain sit-
ting inside the larger time-crystal.

A trivial MBL time-paramagnetic would then be a quan-
tum superposition or “condensate” of all such domains,
where the condensation of time-crystal DWs restores the
time-translation symmetry breaking. Similarly, an FSPT
can be viewed as a condensate of time-crystal domain
walls bound to symmetry charges of the microscopic sym-
metry G. The string order parameter SI is precisely the
operator that adds a time-crystal domain in the region I
(UI), creating a DW at the right and an anti-DW at the
left end, and also inserts a symmetry charge (anti-charge)
at the location of the DW (anti-DW).
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