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1Department of Physics, Brown University, Providence, RI 02912, U.S.A.
2National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA

3Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, California 94305, USA
4Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory,

2575 Sand Hill Road, Menlo Park, California 94025, USA
(Dated: March 26, 2018)

We present detailed calculations of the electric field gradient (EFG) using a point charge approx-
imation in Ba2NaOsO6, a Mott insulator with strong spin-orbit interaction. Recent 23Na nuclear
magnetic resonance (NMR) measurements found that the onset of local point symmetry breaking,
likely caused by the formation of quadrupolar order1, precedes the formation of long range magnetic
order in this compound2,3. An extension of the static 23Na NMR measurements as a function of the
orientation of a 15 T applied magnetic field at 8 K in the magnetically ordered phase is reported.
Broken local cubic symmetry induces a non-spherical electronic charge distribution around the Na
site and thus finite EFG, affecting the NMR spectral shape. We combine the spectral analysis as a
function of the orientation of the magnetic field with calculations of the EFG to determine the exact
microscopic nature of the lattice distortions present in low temperature phases of this material. We
establish that orthorhombic distortions, constrained along the cubic axes of the perovskite reference
unit cell, of oxygen octahedra surrounding Na nuclei are present in the magnetic phase. Other
common types of distortions often observed in oxide structures are considered as well.

I. INTRODUCTION

The investigation of the effects of spin orbit coupling
(SOC) is one of the central issues in the study of quantum
materials4. In addition to its key role in inducing topo-
logical phases, the combined effects of SOC and strong
electronic correlations can lead to numerous emergent
quantum phases1,4–10. A theoretical description of these
phases is challenging. Certain approaches based on mul-
tipolar interactions have been proposed1,9–11. The key
prediction of the quantum models with multipolar mag-
netic interactions is that a structural symmetry is lowered
in the magnetically ordered phase. In fact for specific
parameters, a quadrupolar/orbitally ordered phase pre-
cedes the formation of long range magnetism1,9,11. To
provide tests of such theory one needs a probe that is
concurrently sensitive to both orbital and spin degrees of
freedom. Nuclear magnetic resonance (NMR) on nuclei
with asymmetric charge distributions provide such tests,
as was shown in Refs. 2,3. In fact, in our recent 23Na
NMR measurements of the Mott insulator with strong
spin-orbit interaction Ba2NaOsO6, we reported that the
onset of local point symmetry breaking, likely caused by
the formation of quadrupolar order, precedes the forma-
tion of long range magnetic order2,3. Specifically, we es-
tablished that the magnetically ordered state is the exotic
canted two-sublattice ferromagnet with broken local cu-
bic symmetry. The broken local point symmetry (BLPS)
phase that precedes magnetism is induced by deforma-
tions of oxygen octahedra. We found that the BLPS ex-
tends over a wider temperature range as magnetic field
increases, thus occupying a larger portion of the H − T
phase diagram in high fields.

Here, we present an analysis of the angular evolution
of NMR data as an applied magnetic field is rotated in

different plains of the crystal. This analysis led us to con-
clude that the symmetry lowering transition is to an or-
thorhombic point symmetry. In crystals with cubic sym-
metry, the electric field gradient (EFG) vanishes. The
lowering of the symmetry induces a finite EFG, which is
a quantity directly observable in a static NMR measure-
ment on a nuclei with finite quadrupole moment, such
as 23Na. Specifically, the parameter extracted from the
spectra of such NMR experiments is the quadrupole res-
onance frequency, defined in terms of Vzz , which is the
largest principal component of the EFG at the nuclear
site, and other intrinsic nuclear properties12–14. Since
the EFG tensor is a traceless rank-two tensor, its com-
ponents can be determined by analysis of the spectra ob-
tained as the orientation of the magnetic field is rotated
with respect to the crystalline axes12,15.

We use EFG calculations based on a point charge
approximation12 to describe how various local lattice de-
formations affect 23Na spectra in Ba2NaOsO6. A com-
parison of these results with experimental findings al-
lows us to determine the microscopic nature of local
cubic symmetry breaking. In particular, we determine
that the broken symmetry phase is characterized by the
distortions of oxygen octahedra involving dominant dis-
placement of oxygen ions along the cubic axes of the per-
ovskite reference unit cell. Our work represents further
demonstration of power of NMR in exploring microscopic
properties15–17, which in this case consist of probing spa-
tial point symmetry breaking, that spans well beyond its
commonly known sensitivity to local magnetism18.

The remainder of the paper is organized as follows. In
Sec. II, we give a basic overview of the quadrupole inter-
actions and present the ways in which these quadrupole
effects are manifested in Ba2NaOsO6. We present the
angle dependence of the quadrupole splitting, i.e. fre-
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quency difference between two adjacent quadrupole per-
turbed Zeeman energy levels, as applied magnetic field is
rotated in two different planes of the crystal in Sec. III.
In Sec. IIIA we present detailed analysis of the angular
dependence data used to determine the exact symmetry
of the EFG. The point charge approximation approach
for calculating EFG is introduced in Sec. IV. Results of
the point charge calculations for various distortion mod-
els are presented in Sec. V.

II. MANIFESTATION OF QUADRUPOLE
EFFECT IN Ba2NaOsO6

The quadrupole effect refers to the interaction between
the non-spherical nuclear charge distribution and an elec-
trostatic field external to the nucleus. The non-spherical
nuclear charge distribution appears in nuclei with spin
I > 1/2 and is represented by the nuclear quadrupole

moment Q̂ operator, a second-rank tensor defined by the
integral over the nuclear charge distribution12. This op-
erator can be more conveniently expressed in terms of
the the nuclear spin operators I. In this case, its mag-
nitude is proportional to what is conventionally referred
to as the nuclear quadrupole moment eQ. The relevant
electrostatic field, assuming a Laplacian potential, is rep-
resented by the EFG generated at the nuclear site by sur-
rounding electronic charges12,13. Therefore, the strength
of the quadrupolar interaction is dictated by the product
of the nuclear quadrupole moment and the magnitude of
the EFG. The nuclear quadrupole moment is non-zero for
nuclei with spin I > 1/2, while the EFG is non-vanishing
for point charges arranged on a lattice with symmetry
lower than cubic. Thus, quadrupolar interactions gener-
ates finite effects only if I > 1/2 and the electronic charge
distribution is asymmetric (non-cubic).
In Fig. 1 we show a schematic of the energy levels for

nuclei with spin I=3/2, such as 23Na that we investi-
gated. Energy levels are displayed in both zero and a fi-
nite magnetic field H and in the presence of quadrupole
interaction with the EFG. The resulting NMR spectra
are also shown. As it was the case in our experiments,
in a finite field we represent the quadrupolar interaction
as a perturbation to the dominant Zeeman term. In zero
applied field and in the presence of a finite EFG, a sin-
gle line at a frequency proportional to the product of the
nuclear quadrupole moment and the magnitude of the
EFG can be observed in a nuclear quadrupole resonance
(NQR) experiment. In a finite applied field and in the
absence of quadrupolar interaction (i.e. EFG=0), the
spectrum consists of a single narrow line at the resonant
frequency ω0, which is proportional to the magnitude of
the applied field. In the presence of quadrupolar interac-
tion (i.e. EFG 6= 0) the central transition remains at fre-
quency ω0. The satellite transitions appear at frequencies
shifted by ± δq, which are proportional to the magnitude
of the EFG (App. VIIIA). Thus, quadrupole interaction
splits otherwise single NMR line to 2I = 3 lines. Satellite
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FIG. 1: Schematic of the energy levels for a I=3/2 nu-
cleus in both zero and a finite magnetic field H , in the
presence of quadrupole interaction with the EFG gener-
ated by surrounding electronic charges, and the resulting
NMR spectra. In principle, zero applied field and a finite
EFG result in a single line at frequency ωQ that can be
observed in a nuclear quadrupole resonance (NQR) exper-
iment. The frequency ωQ is proportional to the product of
nuclear quadrupole moment and the magnitude of the EFG.
In a finite applied field and in the absence of quadrupole
interaction, the spectrum consists of a single narrow line at
frequency ω0. In the presence of a quadrupole interaction
that acts as a perturbation to dominant Zeeman Hamilto-
nian in the depicted case, the central transition remains at
frequency ω0. The satellite transitions appear at frequen-
cies shifted by ± δq, which proportional to the magnitude
of the EFG (Eq. 2). For small values of the EFG, satellite
transition cannot be resolved and only line broadening is
observed. Strictly speaking, there is also a broadening due
to the distribution of magnitude of the EFG itself, but this
is manifested only on the satellites and not on the central
transition.

transition cannot be resolved and only line broadening is
observed for small values of the EFG.

These schematic qualitative describe our 23Na NMR
observations in Ba2NaOsO6. The main effects of the
quadrupole interaction observed in this compound, are
illustrated in Fig. 2. The high temperature, 20 K, para-
magnetic state spectra consist of a single narrow NMR
line. Since the nuclear spin for 23Na equals to 3/2, the
absence of the three distinct quadrupolar satellite lines
indicates that the EFG is zero as a consequence of a cu-
bic environment. Lowering the temperature broadens the
NMR line (e.g. at 10.5 K) and eventually splits it into
multiple peaks (e.g. at 4.2 K). This splitting indicat-
ing the start of significant changes in the local symme-
try, thereby producing an EFG, i.e. asymmetric (non-
cubic) charge distribution. Therefore, the observed line
broadening and subsequent splitting of the Na spectra
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FIG. 2: Temperature evolution of 23Na in Ba2NaOsO6

spectra at 15 T with magnetic field applied parallel to
[001] crystallographic axis. At 20 K, a narrow single
peak spectrum characterizes the high temperature para-
magnetic (PM) state. In this state, the crystal structure
of Ba2NaOsO6 is undistorted, as depicted. That is, point
symmetry at the Na site is cubic and leads to a to vanish-
ing EFG. At intermediate temperatures, broader and more
complex spectra reveal the appearance of finite EFG in-
duced by the breaking of local cubic symmetry. In this
case, the crystal structure of Ba2NaOsO6 is distorted so
that point symmetry at the Na site is non-cubic, induc-
ing a finite EFG. At lower temperature, the splitting into
2 sets of triplet lines (labeled as I and II) reflects the ex-
istence of two distinct magnetic sites in the lattice. Zero
of frequency is defined as ω0 = 23γ H . Splitting between
quadrupolar satellites is denoted by δq. Abbreviation: PM,
paramagnetic; BLPS, broken local point symmetry; and,
cFM, canted ferromagnetic.

into triplets in the magnetically ordered phase indicates
breaking of the cubic point symmetry caused by local dis-
tortions of electronic charge distribution, as established
in2,3. The data was taken in the same experimental con-
ditions as described in detail in Ref.3. At 4.2 K, the
23Na spectra clearly split into 6 peaks. These peaks cor-
respond to two sets of triplet lines, labeled as I and II
in Fig. 2, that are well separated in frequency. As pre-
viously established, these two sets of triplets appear due
to magnetic interactions2 that are irrelevant to our dis-
cussion of quadrupole effects. The splitting labeled δq
in Fig. 2 implies that a finite EFG has been induced by
changes in local charge distribution. In this paper we will
consider various modifications of local lattice symmetry
that can induce a finite EFG and account for our exper-
imental observations2,3. However, we first give a more
quantitative overview of the quadrupole interaction.

For anisotropic charge distributions, the quadrupole
Hamiltonian expressed in the coordinate system define

by the principal axes of the EFG is given by

HQ(x, y) =
eQVzz

4I(2I − 1)

[

(3Î2z − Î2) + η(Î2x − Î2y )
]

, (1)

where eQ is the quantity conventionally referred to as
the nuclear quadrupole moment, η ≡ |Vxx − Vyy| /Vzz

is the asymmetry parameter, and Vxx, Vyy, and Vzz

are diagonal components of the EFG. Here, Vzz ≡ eq
is defined as the principle component of the EFG and
|Vxx| < |Vyy| < |Vzz|, by convention18. The EFG is a
symmetric and traceless 3 × 3 tensor that corresponds
to the rate of change of the electric field at an atomic
nucleus19. The principal axis of the EFG define the co-
ordinate system OXY Z , which is not necessarily aligned
with that defined by the crystalline axes Oxyz. Evidently,
Vzz is parallel to one of the crystal axes if the principal
axes of the EFG and those of the crystal are aligned.
We define the observable δqto represent the quadrupole

splitting between different quadrupole satellites. As de-
rived in App.VIII A, δq corresponds to the frequency dif-
ference between adjacent quadrupole satellite transitions.
In the most general case the quadrupole splitting δq is
given by

δq =
(eQ)(Vzz)

2h

(

1 +
η2

3

)1/2

. (2)

Thus, the value of δq is dictated by both the magnitude
of the principal component of the EFG (Vzz) and the
anisotropy parameter η. In the high field limit, when
HQ is a perturbation to the dominant Zeeman term, the
angular dependence of the splitting is given by

δq =
νq
2

(

3 cos2 θ − 1 + η sin2 θ cos 2φ
)

, (3)

where θ is the angle between the applied field H and
Vzz , φ is the standard azimuthal angle of a spherical co-

ordinate system defined by OXY Z , and νQ ≡ (eQ)Vzz

2h .
Therefore, to test whether an observed splitting in the
NMR spectra originates from quadrupole effects, one has
to measure the spectra as a function of strength and ori-
entation of the applied magnetic field. Clearly, for a fix
orientation of the applied field the splitting should be in-
dependent of its magnitude. As a matter of fact, we es-
tablish that δq varies by ≤ 2%, which is if the order of the
error bars, as H increases from 7 T to 29 T 3. Insensitiv-
ity of δq to the strength of the magnetic field implies that
the splitting originates from quadrupole effects. Namely,
the finite EFG is induced by changes in charge density
distribution and/or lattice distortions and not by trivial
magnetostriction effect on a crystal. However, to deci-
pher the detailed structure of the EFG tensor, one has to
investigate how δq evolves as the orientation of the ap-
plied field is varied with respect to crystalline axes. As
we will describe in detail in the next section, this type of
rotational studies allow us to discern the exact nature of
the distortions.
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FIG. 3: The mean peak-to-peak splitting (δq) between any
two adjacent peaks of the triplets I and II as a function of
the angle between [001] crystal axis and the applied mag-
netic field (H). The red circles denote angular dependence
of splitting for H rotated in (11̄0) plane. The red solid line
is the fit to |(3 cos2 θ−1)/2|, where θ denotes the angle be-
tween the principal axis of the EFG (VZZ) and the applied
magnetic field. The blue squares denote the angular depen-
dence of splitting when sample is rotated in the (010) plane.
The blue dotted line is the fit to |(3 sin2 θ− 1− η cos2 θ)/2|
(Eq. 13), where θ denotes the angle between the (VZZ) and
H , and η is the asymmetric parameter as explained in the
text.

III. ANGULAR DEPENDENCE OF
QUADRUPOLE EFFECT

We performed detailed measurements of δq at 15 T and
8 K as a function of the angle (θ) between H and the
[001] crystalline axis in two different planes of the crystal
((11̄0) and (010)). The measured angle dependence of
the splitting is plotted in Fig. 3. We observe that the
splitting between any two adjacent peaks of the triplets
I and/or II is equal, within the error bars. Therefore, we
plot the mean peak-to-peak splitting between any two
adjacent peaks of the triplets I and II. We observed that
the splitting is the largest for H‖[001]. Moreover, for ro-
tations in the (010) plane, i.e. along one face of the cubic
unit cell, we find that δq reaches its maximum value for
H‖[100] as well32. Furthermore as described in Ref. 2,
we observe no more than 3 lines per set (I or II) regard-
less of the angle θ. This indicates that the magnetic field
was rotated in the coordinate system defined by the prin-
cipal axes of the EFG. In other words, the principal axes
of the EFG must coincide with those of the crystal in a
low temperature non-cubic phase of Ba2NaOsO6. This
observation together with finding equal δq on triplets I
and II, i.e. two magnetically inequivalent Na sites, im-
plies that in the simplest scenario the finite EFG arises
from distortions of the O2− octahedra surrounding Na+

ions with the oxygen constrained to move along the cubic
axes of the perovskite reference unit cell, as illustrated in
Fig. 2.
In a material with global cubic symmetry such as

Ba2NaOsO6, it is thus possible to stabilize three different
domains, each with the principle axis of the EFG, Vzz ,
pointing along any of the three equivalent crystal axes.
The fact that the splitting is the largest for H‖[001], and
that only three peaks per set are observed for H‖[110]
imply that two domains are plausible in the crystal. One
domain is characterized by pure uniaxial 3z2− r2 distor-
tions where Vzz is in [001] direction, while the other is
distinguished by x2 − y2 distortions where Vzz is in the
(110) plane. In the simplest case Vzz is parallel to the
[001] direction with η = 0, indicating tetragonal local
symmetry. In the second case, Vzz is aligned along the
[100] direction with η of order 1, implying orthorhombic
local symmetry. To determine the exact local symme-
try, i.e. distinguish between tetragonal and orthorhom-
bic distortions, we need to consider the details of the
angular dependence of the splittings δq obtained for ro-
tations of the applied field in the (010) plane. The fact
that δq reaches its maximum value for both H‖[001] and
H‖[100], for the field rotated in the the (010) plane, re-
veals orthorhombic local symmetry. Next, we discuss in
detail the claim that our observations imply orthorhom-
bic local symmetry.

A. Tetragonal Symmetry vs. Orthorhombic
Symmetry

To qualitatively analyze δq as the magnetic field is ro-
tated, we start by transforming the Hamiltonian in Eq. 1
into the coordinate system Oxyz, defined by H having
the Oz axis parallel to the applied field. Assuming that
the local symmetry is tetragonal, that is Vxx = Vyy and
η = 0, and that Vzz is parallel to crystalline c axis, we
may without loss of generality choose the axis, Oz par-
allel to the applied magnetic field H in plane XOZ, so
that

IZ = Iz cos θ + Ix sin θ, (4)

where θ is the angle between H and Vzz. Then, the
quadrupole Hamiltonian in Oxyz becomes

HQ =
1

6
hνQ{

1

2
(3 cos2 θ − 1)(3I2z − I(I + 1))

+
3

2
sin θ cos θ[Iz(I+ + I−) + (I+ + I−)Iz ]

+
3

4
sin2 θ(I2+ + I2−)},

(5)

where νQ = 3e2qQ
2hI(2I−1) .

Taking the quadrupole Hamiltonian as a perturbation to
dominant Zeeman term, the energy eigenstates ofHQ are
given by

Em =
1

12
hνQ [3m2 − I(I + 1)](3 cos2 θ − 1). (6)
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The quadrupole splitting δq between adjacent quadrupole
satellites then equals to

δq =
Em − Em−1

h
=

1

2
hνQ (3 cos2 θ − 1). (7)

Eq. 7 describes the angular dependence of quadrupole
splitting in the case of tetragonal symmetry (η = 0) and
Vzz parallel to c-axis. We observe such angular depen-
dence when H is rotated from the [001] to [110] direction,
i.e. in the (11̄1) plane, as shown in in Fig.3.
If η is not confined to be zero, one deduces a more

general form of the energy eigenstates of HQ
18,

Em =
1

12
hνQ[3m

2 − I(I + 1)]×

[(3 cos2 θ − 1) + η sin2 θ cos 2φ],
(8)

leading to

δq =
Em − Em−1

h

=
1

2
νQ

(

3 cos2 θ − 1 + η sin2 θ cos 2φ
)

,

(9)

where angles θ and φ are as defined in Fig. 4. For the
applied field rotated in the (11̄0) plane, as was the case
in one of our measurements, cos 2φ = 1, as illustrated in
Fig. 4a). Then, fitting our data for angular dependence
of δq as H is rotated in the (11̄0) plane to Eq. 9, we again
obtain that η = 0.
Up to this point, we have assumed that Vzz is paral-

lel to the c axis. We point out that the splitting δq, as
derived in all of the above equations, depends on polar
angles θ and φ that are given in the coordinate system
defined by the principal axes of the EFG. When Vzz is
parallel to c axis, the coordinate system defined by the
principal axes of the EFG coincides with that defined by
crystalline axes. However, if Vzz is parallel to the a or b
axis as depicted in Fig. 4b), θ and φ need to be trans-
formed into crystalline coordinates. This transformation
is necessary for a meaningful comparison with the data
as only the orientation of H with respect to crystalline
axes is know in an experiment. We denote angles θ′ and
φ′ (which are θ and φ in Eq. 9) as angles defined in the

θ’=θ φ’ = 0 θ φ’ = 90

θ’

θ φ’ = θ

θ’ = 90

o o

o

 a)  b)  c)

a ||V
ZZ

c ||V
ZZ

b ||V
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H HH

a

b

c c

a

b

FIG. 5: Schematic of rotation of the applied field in (010)
plane. The red arrow denotes the applied field direction.
VZZ is parallel to c, a, and b axis in a), b), and c), respec-
tively.

EFG coordinate system. These angles are related to the
angles θ and φ in the crystalline coordinate system ac-
cording to the following transformations,

cos θ′ = sin θ cosφ

sin θ′ cosφ′ = cos θ

sin θ′ sinφ′ = sin θ sinφ.

(10)

When the applied magnetic field is rotated in the (11̄0)
plane φ = 45◦, as shown in Fig. 4b), Eq. 9 becomes

δq =
1

2
νQ

(

3

2
cos2 θ − 1 + η

(

3

2
cos2 θ −

1

2

))

. (11)

Evidently, fitting the angular dependence of δq for H
rotated in the (11̄0) plane to Eq. 11 produces the same
quality fitting curve as a fit to Eq. 9 but with η ≈ 0.87.
The non-zero value of η indicates that the symmetry is
lower than tetragonal. Moreover, as Vzz is parallel to
either a or b-axis, symmetry must be orthorhombic.
Thus far, both the tetragonal symmetry (with either

Vzz parallel to c axis or a(b) axis) and orthorhombic sym-
metry (with Vzz parallel to a or b axis) EFG could ac-
count for the observed angular dependence of δq when
H is rotated in the (11̄0) plane. Clearly, in orthorhom-
bic structure, C4 rotation symmetry is broken and the
oxygen octahedra are distorted so that a 6= b 6= c. To de-
termine undeniably whether distortions (i.e. EFG) are
tetragonal or orthorhombic, we performed another mea-
surement of the angular dependence of the splitting in
which the applied field was rotated in the (010) plane.
To understand these results, plotted in Fig. 3, we con-
sider different orientations of Vzz as shown in Fig. 5.

First, assuming that Vzz is parallel to the c axis, θ′ = θ
and φ′ = 0, so that Eq. 9 becomes,

δq =
1

2
νQ(3 cos

2 θ − 1 + η sin2 θ). (12)

If on the other hand Vzz is parallel to the a axis, we obtain
θ′ = 90◦ − θ and φ′ = 90◦. The angular dependence of
splitting is given by,

δq =
1

2
νQ(3 sin

2 θ − 1− η cos2 θ). (13)
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Finally, if Vzz is parallel to the b axis, we have θ′ = 90◦

and φ′ = 0. The splitting becomes,

δq =
1

2
νQ(η cos 2θ − 1). (14)

The observed angular dependence of δq for H rotated in
the (010) plane can be fit to both Eq. 12 & 13. In both
cases, the fitting yields η ≈ 0.87.
To sum up, the observed angular dependence of the

splitting confirms that such splitting is due to quadrupole
effect. Since no more than 3 lines per set (I or II) are
observed regardless of the angle θ, the principal axes of
the EFG must coincide with those of the crystal. Fur-
thermore, we found that distortions with both tetragonal
(with Vzz parallel to c-axis or a(b)-axis) and orthorhom-
bic symmetry (with Vzz parallel to either a or b-axis)
could account for angular dependence of the splitting for
H rotated in the (11̄0) plane. However, only orthorhom-
bic distortions (with Vzz parallel to c-axis or a-axis) could
explain the angular dependence of the splitting δq for H
rotated in the (010) plane. Therefore, by combining the
results of the angular dependence of δq for H rotated
in two different planes, we conclude that the distortion
is orthorhombic with η ≈ 0.87 and Vzz‖a. Because the
well defined splitting is observed solely in the low tem-
perature magnetically ordered phase, we can undeniably
deduce that orthorhombic distortions are present in that
low temperature phase. In high temperature BLPS, i.e.
paramagnetic, phase we do not detect well defined split-
ting, but rather convoluted broadening. Therefore, since
the exact dependence of δq on the field orientation is un-
known, dominant tetragonal distortions along [001] di-
rection can in principle account for the line broadening
in the PM phase. Furthermore as described in Ref. 2, in
the BLPS phase the width of the NMR spectra allows us
to place an upper limit on these distortions. We estab-
lished that any deformations that exceed 0.02% of the
respective lattice constant would cause visible broaden-
ing/splitting of the NMR spectra in the PM state. In
fact, x-ray scattering measurements provide evidence of
tetragonal distortions at higher temperature paramag-
netic phase20. These distortions, though extremely small,
become significant below 100 K. However, they do not
exceed the limit of resolution of 0.02% of the respective
lattice constant in our experiment, and thus cause no
detectable broadening/splitting of the NMR spectra.
As we described, in a material with global cubic sym-

metry, it is possible to stabilize three different domains,
each with the principle axis of the EFG, Vzz , pointing
along any of the three equivalent crystal axes. There-
fore, for either a cubic to orthorhombic, or a tetragonal
to orthorhombic phase transition, formation of distinct
domains, with their principle axes rotated by 90 degrees,
is expected. The analysis of the angular dependence of
the spectral lineshapes in the low temperature magnetic
phase did not provide any evidence for the formation of
different domains. Thus, this must imply the presence
of some weak symmetry-breaking field that favors one

Ba

Na

O
Os

FIG. 6: Crystal structure of Ba2NaOsO6 deduced from x-
ray diffraction at room temperature21,22. Solid lines show
unit cell. Oxygen, osmium and sodium ions form face cen-
tered cubic structure, while barium ions arrange a simple
cubic structure. This undistorted double-perovskite struc-
ture has Fm3̄m space group.

domain over the others. A possible source of such a sym-
metry breaking field is provided by the strain from the
way the sample was mounted on the flat platform, which
was always parallel to the specific face of the crystal. We
emphasize that the distortions described here are of lo-
cal nature, involving oxygen octahedra that surround Na
sites. In principle, it is possible to preserve global cubic
symmetry, even in the presence of such local distortions,
in a double-perovskite structure.

IV. POINT CHARGE APPROXIMATION

We employed the point charge model to calculate VZZ

and η resulting from different distortion scenarios. This
is done to find the full set of possible distortions that
can account for our observations, i.e. maximum splitting
equals δq ≈ 190 kHz, for H‖c for all satellite transitions,
η ≈ 0.87, and VZZ‖a. In this model, the electron density
at the Na site is calculated by taking into account all
the surrounding charges, which are treated as the point
charges of zero radius that carry the appropriate ionic
charge. The surrounding charges are accounted for by
a lattice summation method that is easily employed for
systems with large number of atoms and/or single crys-
tals. We note that the point-charge approximation of
ions neglects any covalent nature of the bonding in a
material and is therefore strictly valid in strongly ionic
compounds, which is the case in Ba2NaOsO6. In fact,
the double-perovskite structure of Ba2NaOsO6 is an ex-
ample of a heptavalent osmium compound with Os+7.
The Fermi level lies within the t2g bands, confirming the
heptavalent nature of the Os ion23. Nevertheless, for-
mal valence of +7 for Os does not represent a real charge
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on Os ion, due to strong mixing of Os and O molec-
ular orbitals21. For computational simplicity we have
adopted a point charge model in which the Os carries
a charge of +7, though this is clearly an approximation
given the mixed Os and O character of the molecular or-
bitals. Therefore, for the purpose of our calculation, we
assigned the following charges to each of the ions: Os7+,
Ba2+, Na1+, and O2−.
The EFG tensor components Vij , i, j = x, y, z, at a

certain nuclear site resulting from an ion of charge q are
given by24

Vij =
∑

µ

∑

k

qk
3(krµi )(

krµj )− δij(
krµ)2

(krµ)5
, (15)

where
∑

µ denotes sum over multiple unit cells, and
∑

k is the sum over all atoms within a single unit cell,
and r is the distance from the specific nuclear site, the
point of interest, to the ion being considered. This ex-
pression is summed over all ions in the structure that
contributes to the EFG tensor at the point of interest.
Since the EFG is a two-dimensional tensor with nine el-
ements, each element Vij represents a second derivative
with i, j ⊂ X,Y, Z. The EFG tensor is then diagonal-
ized to obtain the principal components Vxx, Vyy, and
Vzz , where, by convention, |Vxx| < |Vyy| < |Vzz|. The
principal components are then used to calculate the ob-
servables, the asymmetry parameter η ≡ |Vxx − Vyy| /Vzz

and the splitting δq = 1
2h(eQ)(Vzz), where eQ is the nu-

clear quadrupole moment. We point out that our ap-
proach cannot reproduce the EFG tensor quantitatively
with high fidelity. However, it can reliably identify sym-
metry breaking distortions.
We can then calculate the EFG tensor at any nu-

clear site by numerically summing over the lattice for
any known crystal structure. The crystal structure of
Ba2NaOsO6 is shown in Fig. 6. At room temperature
this material has an undistorted double-perovskite struc-
ture, in which OsO6 octahedra are neither distorted nor
rotated with respect to each other or the underlying lat-
tice. Specifically, considering the periodic nature of crys-
tal structure, one determines the lattice in a standard
way by translation of the three primary vectors, as de-
scribed in detail in Appendix VIII B. Since EFG ele-
ments are proportional to 1/r3, we found that an itera-
tion over 64 unit cells suffices to make numerical results
converge. That is, summing beyond 64 unit cells does
not induce variations in the mean value of any observ-
able that exceed 1%. More precisely, we compared the
results of summations ranging over up to 8000 unit cells.
In each unit cell, there are 89 ions and the position of
each ion can be accessed by Eq. 31.
The first step of the numerical calculation is to set

up the distortion model. We emphasize that we cannot
distinguish between displacements of the actual ions and
distortions of the ion charge density in our measurements.
Moreover, the point-charge method does not permit mod-
eling distortions of the ion charge density. Therefore, we

choose to model the development of the final EFG by lo-
cal distortions only. The local distortion of oxygen ions
in an NaO6 octahedron is reflected by altering the basis
indices. For example, in order to test the effect of 2%’s
elongation along c-axis of the oxygen ion above the Na
site at origin, its original position (0, 0, 0.25a) should be
modified to (0, 0, 0.25(1 + 2%)a), where a is the lattice
constant. After laying out the distortion model of a sin-
gle unit cell, we iterate over all unit cells by changing
primary vectors. In each unit cell, we first access the po-
sition and charge of each ion and then calculate all the
EFG elements. Finally, after the iterations, we calculate
the asymmetry parameter η ≡ |Vxx − Vyy| /Vzz and max-
imum δq ≡

1
2h (eQ)(Vzz) (for H‖c), as derived in Eq. 19.

Moreover, even though the calculation can yield Vzz par-
allel to either the a or b crystal axes for orthorhombic
distortions, our measurements presented here do not al-
low us to discern between these two orientations of Vzz .
Therefore, we use symmetry arguments to compare re-
sults of calculations to our measurements.

V. RESULTS AND DISCUSSIONS OF POINT
CHARGE CALCULATIONS

Next, we describe results of our calculations of the
EFG induced by various type of distortions using the
point charge approximation. We first consider distor-
tions where the oxygen ions, forming the O2− octahedra
surrounding Na+ ions, are constrained to move along the
cubic axes of the perovskite reference unit cell.

A. Distortion along principal axis - one
structurally distinct Na site

This model involves distortions of the O2− octahedra
surrounding Na+ ions as illustrated Fig. 7a). We assume
that the modifications are identical for all the octahe-
dra and that three pairs of O ions independently move
along each crystalline axis. That is, each pair of O ions
can either elongate or compress symmetrically about the
central Na site by an arbitrary amount along the Na-O
bond direction. We note that we are not making any
prior assumptions about the structural symmetry. The
schematic of this model is shown in Fig. 7a). In the ac-

δa δb δc η vaa vbb vcc δq(kHz) Vzz

0.1% 0.55% 0.25% 0.87 -2.39 38.89 -36.49 189.8 b (y)
0.55% 0.1% 0.2% 0.87 38.89 -2.395 -36.49 189.8 a (x)
-0.25% -0.65% -0.1% 0.87 2.394 -38.89 36.49 189.8 c (z)
-0.65% -0.25% -0.1% 0.87 -38.89 2.394 36.49 189.8 a (x)

TABLE I: Sample results of point charge calculations with
one structurally Na site. Program loops through δa, δb and δc
values within the range of (-5%, 5%) and returns combinations
of parameters that can yield η in the vicinity of 0.87 and δq ≈
190 kHz. The parameters that reproduce our experimental
findings are in bold fonts. (Model A)
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 a)  b)

FIG. 7: Schematic of the proposed lattice distortions. a)
One structurally distinct Na site in non-cubic environment
is produced by elongation/compression of O2− octahedra.
(Model A) b) Two structurally distinct Na sites are gener-
ated by elongation, or compression, of one O2− octahedron
along [001] direction and its concurrent compression, or
elongation, in the (a,b) plane. (Model B)

tual simulation we define the distortion in percentage rel-
ative to the Na-O distance, 2.274 Å, of undistorted bond.
We also define the elongation deformation as negative
and the compression deformation as positive.

The simulation is ran to produce combinations of dis-
tortions along all three axes of the original cubic axes of
the perovskite reference unit cell which can reproduce our
observations. Thus, our parameter space consists of three
numbers, δa, δb and δc, corresponding to distortions along
crystalline a, b and c axes, respectively. We find that nu-
merous combinations result in the desired/observed val-
ues of δq and η, some of which are listed in Tab. I. vaa,
vbb and vcc are the EFG components along the a, b and
c axis of the lattice coordinate, and Vzz is the largest
absolute value of the three by definition.
As evident in Tab. I, orthorhombic distortions with

η ≈ 0.87 can induce the desired value of δq for differ-
ent values of relative displacement along any of the 3
crystalline axes. In addition to the appropriate value
of δq, the calculations have to identify a set of relative
displacements that generate the EFG with its principal
component along a-axis to account for the data. The
set of displacements that account for our experimental
observations are presented in bold font in Tab. I. We
find that distortion along any particular direction that
does not exceed 0.8% of the respective lattice constant
reproduces the EFG parameters, in agreement with our
observations.

B. Distortion along principal axis - two
structurally distinct Na sites

In this second model, two structurally different Na sites
are generated by elongation, or compression, of one O2−

octahedron along the [001] direction and its concurrent
compression, or elongation, in the (110) plane, as illus-
trated in Fig. 7b).

I

Na

Os

O

I

c

b

a

FIG. 8: Schematic of the rotational lattice distortion gen-
erating single Na site. One structurally distinct Na site
in non-cubic environment is produced by in-plane rotation
of O2− octahedra, as depicted by shorter green arrows.
(Model C)

This model also naturally accounts for the appearance
of two magnetically different Na sites. These two sites
appear from the two distinct frequency shifts for triplet I
and II, even if the magnetically ordered state is a simple
ferromagnet where all spins on Os7+ ions are assumed
to point in the same direction. The transfer hyperfine
field from Os electronic spins to the Na nuclei is me-
diated by O2− ions via its p-d hybridization with well
localized 5d orbital of Os7+. Evidently, the shorter the
distance between O2− and Os7+ ions, the stronger the
hybridization and thus transfer hyperfine field at the Na
site. Thus, the internal field at the Na site in the lower
plane (in Fig. 7b)) consists of a sum of two stronger and
four weaker fields, while the field at Na in the upper
plane consists of a sum of four stronger and two weaker
fields. Consequently, NMR signal from the lower plane
Na will appear at smaller absolute frequency shift (as is
the case for triplet I), while that from the upper plane at
the larger absolute frequency shift (triplet II).

The findings of our point charge simulations indicate
that in order to generate equal δq for both Na sites, as
we established in our experiments, the relative magni-
tude of the elongation has to be equal to that of the
compression, i.e. distortions must satisfy the relation
|δa| = |δb| = |δc|. It is very unlikely that such distor-
tions will occur, as electrostatic energies associated with
elongation and compression of the octahedra by the same

δa δb δc η vaa vbb vcc δq(kHz) Vzz

-0.185% -0.185% 0.185% 0 27.9 27.9 -55.9 190.03 c (z)
0.185% 0.185% -0.185% 0 -27.9 -27.9 55.9 190.03 c (z)

TABLE II: Sample results of point charge calculations with
two structurally distinct Na sites. (Model B)
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φ δc η vaa vbb vcc δq(kHz) Vzz

5◦ 0% 0 -0.6675 -0.6675 1.335 4.899 c
25◦ 0% 0 -12.09 -12.09 24.19 88.764 c
45◦ 0% 0 -20.65 -20.65 41.3 151.57 c
65◦ 0% 0 -12.09 -12.09 24.19 88.764 c
85◦ 0% 0 -0.6675 -0.6675 1.335 4.899 c

TABLE III: Sample results of point charge calculations of
rotational distortion in the (a,b) plane. (Model C)

relative amount are very different. However, as it results
from our calculations, such distortions are of tetragonal
symmetry and can only induce η = 0, in contrast to our
observations. For the reasons listed, this model cannot
account for our data.

C. Rotational distortion in (a, b)-plane

Here we consider model C, consisting of rotations of
oxygen ions in the (110) plane. In this model for each
Na, four of its surrounding O2− ions in the (a, b)-plane
undergo a counter-clockwise rotation, as viewed from the
top and depicted in Fig. 8.

We found that our calculations could not generate the
splitting δq of 190 kHz, as shown in Tab. III. More im-
portantly, only tetragonal distortions with η = 0 are gen-
erated, which is inconsistent with our data as well.

Next, we add distortions that involve the other two
O2−. Simple arguments indicate that this type of pro-
posed distortion possesses tetragonal symmetry, i.e. η =
0. In Tab. IV we display distortions that generate the
observed splitting in point charge simulations. Calcula-
tions indicate that this model only generates tetragonal
distortions with η = 0 and Vzz‖c, both inconsistent with
our experimental findings. Therefore, both models with
dominant rotational distortions in the (a, b) plane fail to
account for our data.

δc φ η vaa vbb vcc δq(kHz) Vzz

1% 20◦ 0 26.18 26.18 -52.35 192.13 c
0.9% 15◦ 0 25.8 25.8 -51.59 189.34 c
-0.2% 40◦ 0 -26.35 -26.35 52.69 193.38 c
-0.25% 35◦ 0 -26.09 -26.09 52.18 191.51 c
-0.35% 30◦ 0 -26.4 -26.4 52.81 193.8 c
-0.45% 25◦ 0 -26.06 -26.06 52.12 191.29 c
-0.85% 5◦ 0 -26.29 -26.29 52.59 193 c

TABLE IV: Sample results of point charge calculations of
rotational distortion in the (a,b) plane with c-axis elongation,
or compression. Positive values in the δc column represent
compression while negative ones represent elongation. (Model
C2)

I

I

c

a

b

Na

Os

O

FIG. 9: Schematic of the rotational lattice distortion com-
bined with elongation, or compression, of two oxygen ions
along [001] direction. One structurally distinct Na site in
non-cubic environment is produced by this lattice modifi-
cation, consisting of in-plane rotation (green arrows) and
distortion along c-axis (orange arrows) of O2− octahedra.
(Model C2)

I

I

Na

Os

O

c

a

b

FIG. 10: Schematic of the tilt-lattice distortion. One struc-
turally distinct Na site in non-cubic environment is pro-
duced by tilt of the (a, c) plane. (Model D)

D. Tilt distortion in (a, c)-plane

In the following model, we consider tilt distortions in
the (a, c) plane depicted in Fig. 10. Two O2− ions of the
octahedra position along the c axis are tilted by an angle
θ away from the c axis in the (a, c) plane. The rest of crys-
tal remains unchanged. Since this tilt does not involve
the entire octahedra, it does not represent Glazer-type
distortion, as explained in Appendix VIII C.To generate
the observed splitting, the tilt angle θ is found to be
≈ 10◦. However, the resulting asymmetry parameter is
≈ 0.69, as shown in Tab. V. This value of η is insufficient
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FIG. 11: Schematic of the combined rotational and tilt lat-
tice distortions. One structurally distinct Na site in non-
cubic environment is induced by concurrent (a, b) plane ro-
tation and (a, c) plane tilt. (Model E)

to account for the experimental data.

E. Rotational distortion in (a,b) plane and tilt
distortion in (a, c) plane

In this model, we consider tilt distortions in the (a, c)
plane accompanied with a rotational distortion in the
(a, b) plane, as described in Model C. Specifically, the
lattice modification consists of a rotational distortion in
(a, b) plane and a tilt in (a, c) plane, as shown in Fig. 11.
Four O2− ions of octahedra positioned in the same plain
as Na, i.e. in (a, b) plane, are rotated by an angle φ
(counter-clockwise from the a axis). The two remaining
O2− ions, located along the c axis, are tilted by an angle
θ relative to the c axis. A subset of angles θ and φ that
generate parameters, in point charge approximation, in
agreement with experimental observations are listed in
Tab.VI. We find that for θ = 8.5◦±0.4◦ and φ = 12◦±1◦

calculations results are in good agreement with our data.
Therefore, this is the only model in addition to Model A
that well accounts for our observations.

F. Common lattice distortions in perovskite oxides

θ η vaa vbb vcc δq(kHz) Vzz

10◦ 0.6877 -41.46 6.473 34.99 184.67 a
10.1◦ 0.6888 -41.97 6.529 35.44 187.03 a
10.2◦ 0.6899 -42.48 6.586 35.9 189.41 a
10.3◦ 0.691 -43 6.644 36.36 191.82 a
10.4◦ 0.692 -43.52 6.702 36.82 194.25 a
10.5◦ 0.6931 -44.05 6.76 37.29 196.7 a

TABLE V: Sample results of point charge calculations of tilt
distortion in the (a, c) plane. (Model D)

Na

O

O (After)

c

a

b

a

b

c

θ

φ

 a)  b)

FIG. 12: Schematic of the proposed GdFeO3-type distor-
tion. a) The red solid line denotes distorted Na-O bond,
which in its undistorted state points along the c axis. The
NaO6 octahedra is tilted by angle θ and φ in spherical co-
ordinates. b) Schematic of the specific tilt of NaO6. The
blue spheres/atoms represent O2− ions in undistorted state
while the green ones represent distorted ones. We note
that φ is the angle in (a, b) plane but the four oxygen ions,
originally in (a, b) plane, are no longer in that plane after
the distortion. This corresponds to a+a+c+ distortion in
Glazer’s notation. (Model F)

Perovskite oxides are well known to be prone to lattice
distortions25,26. However the tolerance factor, an indica-
tor for the stability of crystal structures, of Ba2NaOsO6

is 0.99, which falls in to the very stable category for cu-
bic structure21. Nevertheless, in this section we consider
common lattice instabilities often present in perovskite
transition metal oxides, with tolerance factors less than
0.98. In general, these lattice distortions involve changes
in symmetry and global detectable changes of lattice pa-
rameters. A typical distortion mechanism involves a tilt-
ing of essentially rigid oxygen polyhedra, as is the case
in GdFeO3. In Ba2NaOsO6 this type of modification
would tilt the entire rigid oxygen octahedra surrounding
the Na ion. In this case, rigid implies that the octahe-
dra preserve their shape, i.e. no motion of individual

θ φ η vaa vbb vcc δq(kHz) Vzz

6.8◦ 20◦ 0.8194 -36.26 -3.6 39.86 189.11 c
7.1◦ 19◦ 0.859 -36.63 -2.779 39.41 190.68 c
7.3◦ 18◦ 0.8962 -36.69 -2.008 38.69 190.69 c
7.5◦ 17◦ 0.9342 -36.78 -1.251 38.03 190.98 c
7.6◦ 16◦ 0.9701 -36.51 -0.5546 37.07 189.52 c
7.8◦ 15◦ 0.991 -36.67 0.165 36.51 189.47 a
8.2◦ 14◦ 0.9493 -37.7 0.9555 36.75 190.79 a
8.5◦ 13◦ 0.9126 -38.41 1.677 36.73 190.83 a
8.7◦ 12◦ 0.88 -38.74 2.324 36.41 189.38 a
9◦ 11◦ 0.8489 -39.58 2.99 36.59 190.52 a
9.2◦ 10◦ 0.8214 -40.02 3.573 36.45 190.09 a

TABLE VI: Sample results of point charge calculations of ro-
tational distortions (a, b) plane and tilt in (a, c) plane. (Model
E)
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FIG. 13: Tilting of essentially rigid oxygen octahedra. The
schematic of the tilting of NaO6 octahedra with θ = 10◦

and φ = 45◦, where θ and φ are standard angles defining
spherical coordinates. (Model F2)

oxygen atoms occurs. However, the orientation of the
entire octahedra changes as it tilts away from the [001]
direction. The tilt is characterized by two angles: θ, re-
ferred to as the polar angle away from c axis, and φ, the
azimuthal angle defined relative to the a axis, as illus-
trated in Fig. 12a). The tilted crystal structure is de-
picted in Fig. 13 and corresponds to a+a+c+ distortion
in Glazer’s notation, i.e. the Pmmn space group, as ex-
plained in Appendix VIII C. The important thing about
the GdFeO3-type distortion is that only the orientation
of the octahedra changes, whereas their intra-ionic struc-
ture remains intact. Moreover, typical values of the bend
in the bond involving oxygen in GdFeO3 are roughly be-
tween 145-170◦. Point charge calculations are carried for
both rigid and non-rigid octahedra cases. As it results
from our calculations, the maximum quadrupole splitting
induced by the distortions involving rigid octahedra does
not exceed ≈ 150 kHz. A subset of the results is dis-
played in Tab.VII. Besides insufficient magnitude of the
splitting, in all cases we obtain Vzz‖c, inconsistent with
observations.

θ φ η vaa vbb vcc δq(kHz) Vzz

0◦ 10◦ 0 -2.465 -2.465 4.93 18.091 c
0◦ 30◦ 0 -15.46 -15.46 30.92 113.46 c
0◦ 46◦ 0 -20.63 -20.63 41.25 151.39 c
0◦ 60◦ 0 -15.46 -15.46 30.92 113.46 c
2◦ 10◦ 0.0721 -2.577 -2.23 4.807 17.687 c
2◦ 30◦ 0.0067 -15.49 -15.29 30.78 112.96 c
2◦ 46◦ 0.0004 -20.54 -20.56 41.1 150.85 c
6◦ 46◦ 0.0031 -19.96 -20.08 40.03 146.92 c
10◦ 46◦ 0.0086 -18.85 -19.17 38.02 139.55 c

TABLE VII: Sample results of point charge calculations of
GdFeO6 - type distortion with rigid O6 octahedra. (Model
F)

θ φ η vaa vbb vcc δq(kHz) Vzz

0◦ 0◦ 0.8768 38.89 -2.395 -36.49 189.81 a
0◦ 2◦ 0.8719 38.71 -2.479 -36.24 188.51 a
0◦ 10◦ 0.7814 35.17 -3.844 -31.32 163.8 a
0◦ 44◦ 0.2214 -2.675 -4.196 6.87 25.825 c
0◦ 46◦ 0.2214 -4.196 -2.675 6.87 25.825 c
2◦ 0◦ 0.8694 39.13 -2.555 -36.58 190.31 a
2◦ 2◦ 0.8646 38.96 -2.638 -36.32 189 a
2◦ 44◦ 0.2274 -2.612 -4.149 6.761 25.445 c
2◦ 46◦ 0.2274 -4.149 -2.612 6.761 25.445 c
4◦ 2◦ 0.8452 39.58 -3.063 -36.52 190.2 a
4◦ 44◦ 0.2447 -2.442 -4.025 6.468 24.436 c
4◦ 46◦ 0.2447 -4.025 -2.442 6.468 24.436 c

TABLE VIII: Sample results of point charge calculations
of GdFeO6 - type distortion with flexible NaO6 octahedra
(Model F + Model A). The underlying distortions along a, b
and c axis are 0.55%, 0.1% and 0.25%. The calculated η and
δq are symmetric with respect to φ = 45◦ because the a axis
and b axis are symmetric around φ = 45◦. (Model F2)

Next, we consider the flexible octahedra, where the in-
tra oxygen bonds within an octahedra can either elongate
or compress, like in models A and B. To illustrate this, we
take the second entry of Tab.I. This entry corresponds
to 0.55% elongation along a axis, 0.1% elongation along
b axis and 0.25% compression along c axis, which gen-
erates calculated results in agreement with observations.
We then combine such elongation/compression and the
rigid tilt. In Model A, the displacement of Na-O bond
occurs along the a, b or c axis. As the octahedra tilt,
the displacements are still along the Na-O bonds but no
longer along the principal axes of the crystal. As in the
case of rigid octahedra, θ and φ are the polar and az-
imuthal angles in spherical coordinates as depicted in
Fig. 12a). A subset of point charge calculation results
is shown in Tab.VIII. Minimum splitting occurs when
φ = 45 for fixed θ. As illustrated in Table VIII, to gen-
erate results compatible with our observations, we find
that the displacements of oxygen ions must be compa-
rable to those that reproduce the data in Model A and
the angles do not exceed 4◦. Such a small tilt angle in-
duces a displacement of oxygen ions that is much smaller
than the dominant displacement along the cubic axes of
the perovskite reference unit cell. For angles larger than
4◦, both δq and η significantly decrease below the ob-
served value. Larger angle displacements along the cubic
axes are requires to obtain desired δq and η values. in
agreement with the data. This indicates that the domi-
nant displacement of oxygen ions along the cubic axes of
the perovskite reference unit cell reproduce our observa-
tions, as was the case described in Model A. Essentially,
this model maps to Model A. In addition, the tilt angle
has to remain relatively small to assure that these dis-
tortions induce and EFG with the principal axes aligned
with those of the crystal, as imposed by the experiment.
Therefore, GdFeO3-type tilt distortions are inconsistent
with our data.
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VI. CONCLUSION

We reviewed details of the quadrupole interactions in
Ba2NaOsO6 in the low temperature phase characterized
by local cubic symmetry breaking. We presented mea-
surements of the splitting δq, frequency difference be-
tween the adjacent quadrupole perturbed Zeeman energy
levels, at 15 T and 8 K as a function of the direction of
the applied magnetic field. The field was rotated away
from the [001] crystalline axis in two different planes of
the crystal. From the analysis of the rotation data in two
different planes, we established that only the orthorhom-
bic distortions are responsible for the local cubic symme-
try breaking in the low temperature magnetically ordered
phase. These distortions induce an EFG with principal
axes aligned with those of the crystal, a principal com-
ponent Vzz‖a, and an anisotropy parameter of η ≈ 0.87.

To find the full set of possible distortions that can in-
duce such EFG, we employed the point charge model
to calculate Vzz and η resulting from different scenar-
ios. This is the simplest model valid for strongly ionic
compounds, such as Ba2NaOsO6. However, it allowed
us to quickly scan through a huge parameter space of
possible lattice modifications. We found that our exper-
imental observations can be accounted for by distortions
of oxygen octahedra surrounding Na ions dominated by
the displacement of oxygen ions along the cubic axes of
the perovskite reference unit cell, as described in Model
A. In addition to distortions in Model A, we find that
Model E consisting of combined affects of tilt distortions
in the (a, c) plane with rotational distortions in the (a, b)
plane, for angles not exceeding 12◦, is consistent with
our data. Both models are characterized by the domi-
nant displacement of oxygen ions along the cubic axes of
the perovskite reference unit cell.

Since we cannot distinguish between displacements of
the actual ions and distortions of the ion charge density,
the point charge approach does not allow us to determine
the nature of the orbital order possibly responsible for the
local cubic symmetry breaking in Ba2NaOsO6 described
in Ref. 1. First principle calculations27,28 of the EFG,
with the input from our current work, are required to
learn more about the nature of the putative orbital order
in this compound. As indicated in Ref. 2, the presence
of a two-sublattice canted ferromagnetic state can im-
ply that the broken cubic symmetry phase is a staggered
quadrupolarly ordered phase with distinct orbital polar-
ization on two-subattices. Experimentally, the distinct
orbital polarization on two-subattices, and thus the ex-
act nature of the orbital order, can directly be identified
by performing 17O NMR. The challenge in such an exper-
iment is the weakness of naturally abundant 17O NMR
signal, but this can be overcome by performing 17O iso-
tope exchange.
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VIII. APPENDIX

A. Quadrupole Interaction

1. Axially Symmetric Case

In the simplest case of a field with axial symmetry, the
interaction between the EFG (eq) and the nucleus with
spin I and quadrupole moment eQ, is described by the
Quadrupole Hamiltonian,

HQ =
(eQ)(eq)

4I(2I − 1)
[3I2z − I(I + 1)]. (16)

By definition the EFG is a 3× 3 tensor that corresponds
to the rate of change of the electric field at an atomic
nucleus.19 The matrix is symmetric and traceless. The
principal components are denoted by Vxx, Vyy, Vzz and
|Vzz | ≥ |Vyy | ≥ |Vxx|. By convention, the principal com-
ponent of the EFG is defined as Vzz ≡ eq. The principal
axes of the EFG define the coordinate system OXY Z ,
which is not necessarily aligned with that defined by the
crystallographic axes Oxyz. Evidently, Vzz is parallel to
one of the crystal axes if the principal axes of the EFG
and those of the crystal are aligned.
For a nuclear spin I = 3/2, as is the case of 23Na, the

energy eigenstates of HQ are given by,

Em =
(eQ)(eq)

4I(2I − 1)
[3m2 − I(I + 1)]. (17)

Then, the frequencies between different quadrupole satel-
lite transitions equal,

ωm→m−1 =
(eQ)(eq)

h 4I(2I − 1)
[3(2m− 1)] =

(eQ)(eq)

h
× Ω

Ω ≡
1

2
, for |+ 3/2〉 → |+ 1/2〉

0, for |+ 1/2〉 → | − 1/2〉

−
1

2
, for | − 1/2〉 → | − 3/2〉 .

(18)

Therefore, in a magnetic field applied along the princi-
pal axis of the EFG only 3 NMR lines (transitions) will be
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observed with equal splitting δq between adjacent tran-
sitions. In this case, the quadrupole splitting δq between
different quadrupole satellites is simply given by,

δq =
1

2h
(eQ)(Vzz)

=
1

2h
(Quadrupole moment)× (EFG).

(19)

Consequently, we can estimate the value of the EFG by
using the experimentally determined value of the split-
ting δq ≈ 190 kHz for H‖[001].

EFG =
2hδq
eQ

=
2× 4.136× 10−15 eV · s× 190× 103 s−1

0.12× e× 10−28m2

= 1.31× 1020V/m2.

(20)

Next, this value can be used to roughly estimate the
magnitude of particular lattice distortions in our mate-
rial. In the oxygen octahedra surrounding the Na nuclei
the EFG takes on the following form29,

EFG =
2q

4πǫ0

[

2

a3
− 1

b3
− 1

c3
0 0

0 − 1

a3
+ 2

b3
− 1

c3
0

0 0 − 1

a3
− 1

b3
+ 2

c3

]

(21)

Clearly, with cubic symmetry such as in Ba2NaOsO6,
the paramagnetic state is characterized by a = b = c.
The EFG is then zero, which leads to a vanishing splitting
δq.
The observed δq is largest for a field applied in the [001]

direction, as shown in Fig. 2 of the manuscript. In this
case the simplest model, accounting for the splitting of
the Na line into three equally spaced quadrupole satellite
lines, involves distortions of the O octahedra surrounding
Na nuclei solely along the [001] direction. In this case,
q = 2e, a = b 6= c, and we obtain

EFG =
2q

4πǫ0

[

1

a3
− 1

c3
0 0

0 1

a3
− 1

c3
0

0 0 −2( 1

a3
− 1

c3
)

]

. (22)

Therefore, the principal axis of the EFG (Vzz ≡ eq) is
given by,

Vzz = ±
8e

4πǫ0

(

1

a3
−

1

c3

)

(23)

(

1

a3
−

1

c3

)

=±
4πǫ0
8e

× 1.31× 1020V/m2

=± 0.01137× 1030m−3.

(24)

In Ba2NaOsO6 with a = 2.274 Å, distortions along the

c crystalline axis of the order of 4 % can account for the
observed δq, that is

1

c3
=

1

a3
± 0.01137

c = 2.181Å (−4.1%), for compression

c = 2.385Å (4.9%), for elongation.

(25)

2. Anisotropic Charge Distribution Case

For anisotropic charge distributions, the quadrupole
Hamiltonian expressed in the coordinate system defined
by the principal axes of the EFG, is given by

HQ(x, y) =
eQVzz

4I(2I − 1)

[

(3Î2z − Î2) + η(Î2x − Î2y )
]

, (26)

where η ≡ |Vxx − Vyy| /Vzz is the asymmetry parame-
ter and Vxx, Vyy, and Vzz are diagonal components of
the EFG. In this case, the splitting between the adjacent
transitions is given by,

δq =
(eQ)(Vzz)

2h

(

1 +
η2

3

)1/2

. (27)

Thus, the value of δq is dictated by both Vzz and
anisotropy parameter η. In the high field limit, when
HQ is a perturbation to the dominant Zeeman term, the
angular dependence of the splitting is given by

δq =
νq
2
(3 cos2 θ − 1 + η sin2 θ cos 2φ), (28)

where θ is the angle between the applied field H and Vzz ,
φ is the standard azimuthal angle of spherical coordinate

system defined by OXY Z , and νQ ≡ 3e2qQ
2hI(2I−1) =

(eQ)Vzz

2h .

As in the case of axially symmetric EFG, in the coordi-
nate system defined by the principal axes of the EFG,
denoted by (OXY Z), only three NMR lines (transitions)
will be observed with equal splitting δq between any ad-
jacent lines.

B. Lattice Sum

Considering the periodic nature of crystal structure,
one determines the lattice in a standard way by the trans-
lation of the three primary vectors. We define the target
Na site to be the origin of three dimensional coordinate
system. Any other point in the lattice is denoted by

r
′ = r + µ1a1 + µ2a2 + µ3a3 (29)

where ai are primary vectors of the lattice and µi the
primary indices of these vectors. Then each atom within
a unit cell can numerically be located from

ri = xia1 + yia2 + zia3, (30)
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where xi, yi and zi are fractions between 0 and 1 that
represent the position of the ith atom corresponding to
the basis origin. Combining Eq. 29 and Eq. 30, the
position of any particular ion is then given by

ri = (µ1 + xi)a1 + (µ2 + yi)a2 + (µ3 + zi)a3. (31)

C. Glazer’s Notation

Perovskite oxides are well known to be prone to lattice
distortions25,26. In fact, most materials with perovskite
structures are not in their ideal cubic form ABO3, de-
scribed by the Pm3̄m space group and represented as a
network of corner-sharing BO6 octahedra with ‘A’ atoms
located in the geometric center of the gap between oxy-
gen octahedra. However, their distorted structure can be
defined as distortions from the ideal cubic configuration.
The types of distortions established in perovskites can be
reduced to three types: B-cation displacements within
an octahedra; distortions of the BO6 octahedral unit
(Models: A, B, C, D, and E); and, the rigid tilting of the
corner-sharing BO6 linked-octahedra units (Model F).
This last type of distortion was classified and derived
from crystallographic assumptions by Glazer in Ref. 30.
That is, Glazer type distortions are described in terms

of tilt components along the three different pseudo-cubic
(PC) axes, referred to the original undistorted cubic
perovskite. Such pseudocubic axes coincide with the
tetrad axes of the octahedra. Given the octahedra
corner connections, a tilt about a pseudocubic axis
determines the tilts in the directions perpendicular to
this axis. However, the tilt of the successive octahedra
along the same axis can be either in the same direction
or in the opposite direction. To sum up, there are
several possibilities for tilts in a perovskite network of
corner-sharing octahedra: the main axis of the tilt can
be parallel to each crystallographic axis; the amplitude
of each tilt may be different from the others; and, two
subsequent layers being stacked along the tilt axis may
be tilted either in phase or anti-phase. The different
possibilities of tilt-distortions can be labeled by the
notation a∗b∗c∗, where a, b, c refer to tilts around the
[100]PC, [010]PC and [001]PC axes, respectively. If letters
are repeated, the tilts are equal for their respective axis.
The superscript ∗ can be either 0, for no-tilt along an
axis; +, for tilt of successive octahedra in the same sense;
or −, for tilt of successive octahedra in the opposite
sense30,31.

† Corresponding author V.F.M. (vemi@brown.edu)
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