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Weakly disordered superconducting films can be driven into an anomalous low temperature re-
sistive state upon applying a magnetic field. Recent experiments on weakly disordered amorphous
InOx have established that both the Hall resistivity and the frequency of a cyclotron-like resonance
in the anomalous metal are highly suppressed relative to the values expected for a conventional
metal. We show that both of these observations can be understood from the flux flow dynamics
of vortices in a superconductor with significant vortex pinning. Results for flux flow transport are
obtained using a systematic hydrodynamic expansion, controlled by the diluteness of mobile vortices
at low temperatures. Hydrodynamic transport coefficients are related to microscopics through Kubo
formulae for the longitudinal and Hall vortex conductivities, as well as a ‘vorto-electric’ conductivity.

Introduction.— In conventional metals, the Hall re-
sistivity and the cyclotron frequency are key observ-
ables that can often be used as proxies for the density
and mass of charge carriers, respectively. Recent mea-
surements have probed these quantities in the anoma-
lous metallic state of weakly disordered amorphous InOx

films. The low temperature superconducting state in this
material becomes metallic upon applying a magnetic field
greater than Hc ≈ 2T. In the metallic phase at a field of
5T the measured Hall resistivity is three orders of mag-
nitude smaller than in the more conventional high tem-
perature state1, and falls below experimental sensitivity
at a lower field HM2 > Hc. Furthermore, the maximum
of the frequency-dependent conductivity is at zero fre-
quency to within experimental resolution2; for a conven-
tional Drude peak this fact would require a cyclotron
frequency at least four orders of magnitude smaller than
expected based on normal state properties3.

Anomalous metallic phases with resistive behavior sim-
ilar to that of amorphous InOx have been found in many
two dimensional systems, as thoroughly reviewed in4. All
of these metals emerge continuously from a supercon-
ducting phase. A rapid drop in the resistivity occurs as
the temperature is lowered, before saturating to a con-
stant at low temperatures. This suggests an interpre-
tation of these regimes as ‘failed superconductors’. We
will show in this letter that the experimental facts out-
lined above can indeed be explained by the flow of phase-
disordering vortices in the would-be superconductor.

Flux flow in magnetic fields.— The extensive theoret-
ical literature on the Hall effect due to flux flow in mag-
netic fields has considered a myriad of different physical
effects, see e.g.5–15. This reflects a diverse set of exper-
imental results in different flux flow regimes and in dif-
ferent materials. Much of the existing discussion involves
microscopic modelling of the forces acting on vortices.
We will instead argue that the diluteness of the mobile
vortices allows an alternative, unified and completely sys-
tematic treatment based on hydrodynamic argumenta-
tion combined with Kubo formulae. Our result for the

Hall resistivity will be

ρyx =
(

σH
n + σH

o

)

ρ2xx +
neff
v

ns

~

e⋆2
. (1)

In the remainder we set ~ = e⋆ = 2e = 1. The three terms
in (1) respectively describe a Hall signal arising from cur-
rents in the vortex core, currents carried by Bogoliubov
quasiparticles in the superfluid, and the co-motion of su-
percurrent parallel to the vortex current. The Hall con-
ductivity σH

o of the Bogoliubov quasiparticles is typically
negligible due to their approximate particle-hole symme-
try. Dominance of the first term, proportional to the Hall
conductivity σH

n of the vortex cores, leads to the relation
ρyx ∼ ρ2xx obtained by Vinokur et al.10, and observed
in some thermally activated flux flow16–21. This scaling
arises because — as shown by Bardeen-Stephen5 and red-
erived below — ρxx ∼ x, the fraction of the area occupied
by mobile vortex cores, is strongly temperature and field
dependent, while σH

n is not. Dominance of the final ‘co-
motion’ term, on the other hand, is crucial to understand
experimental results on free flux flow. There the density
of vortices that co-move with the superfluid neff

v ∼ H ,
the applied field, while ns is the superfluid density. Thus
ρyx ∼ H ∼ x ∼ ρxx, as is observed22,23, and predicted
by Nozières and Vinen6.
The general relationship (1) between the Hall and lon-

gitudinal resistivities both unifies previous results and
establishes their domain of validity. It also allows for
regimes in which no single term dominates. The first
two terms in (1) lead to ρyx ∼ ρ2xx while the final term
leads to ρyx ∼ ρxx, if the density of co-moving vor-
tices neff

v ∼ x. The full expression, therefore, may well
explain the range of scaling relations, ρyx ∼ ρβxx with
1 . β . 2, reported in the experimental literature24–27.
Competition between effects captured by the first and
last terms in (1) has previously been invoked to explain
the observed change in sign of the Hall response in some
flux-flow regimes8,9,12,28,29. Charging of the vortex cores
can lead to a sign reversal of σH

n
30–32.

We furthermore obtain expressions for the width Ω and
frequency ΩH of a ‘supercyclotron resonance’33. This res-
onance is due to superfluid and vortex flow in a magnetic
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field. It can coexist with a conventional cyclotron reso-
nance (due to flow of the normal fluid component). We
will find

Ω =
2x

σn

fs and ΩH = −
∂jxv
∂ux

φ

≡
neff
v

m⋆

. (2)

The result for Ω in (2) is precisely the Bardeen-Stephen
expression for vortex diffusivity5, with σn the conduc-
tivity of the vortex cores and fs the superfluid stiffness.
In (2), ΩH is given by a static susceptibility; the second
step in the expression defines neff

v . The mass scale m⋆

is such that fs ≡ ns/m⋆. Therefore the phase gradient
uφ ≡ ∇φ = m⋆vs, with vs the superfluid velocity. We
have set ~ = 1. Finally, jv is the vortex current. With
Galilean invariance, neff

v = nv is the full density of mo-
bile vortices. ΩH is then precisely the frequency appear-
ing due to the co-motion of vortices and supercurrent
in Nozières-Vinen6. More generally, pinning can strongly
break Galilean invariance, so that the effective number
of vortices that co-move with the supercurrent neff

v < nv.
Experiments on anomalous metals.— We can return

now to the measurements on InOx. The first observation
is that ΩH . 10−5Ω3. The consequences of this fact fol-
low from (2), whereby ΩH/Ω = 1

2
σnn

eff
v /xns. The area

occupied by mobile vortex cores is x ∼ nvξ
2 ∼ nv/ns,

where ξ is the superconducting correlation length. Here
x ∝ nv because in a magnetic field we expect the flux
through all the different vortices to be aligned. The above
together with σn ∼ 10 e2/h ∼ 0.4 e⋆2/~1,3 then implies

neff
v

nv

. 10−5 . (3)

It follows that there is essentially vanishing parallel co-
motion of vortices and supercurrent, as quantified by
the dissipationless susceptibilty ∂jxv /∂u

x
φ in (2). Indeed,

strong pinning in InOx causes ρxx ∼ x to vary by more
than an order of magnitude as a function of applied field
in the anomalous metal1. InOx is therefore far from the
‘Nozières-Vinen’ free flow regime.
Secondly, to a good approximation ρyx ∼ ρ2xx where

the Hall signal is detectable1. This requires the final term
in (1) to be negligible, so that neff

v /ns . ρyx. From
here we can obtain neff

v /nv ∼ neff
v /(nsx) . ρyx/x ∼

ρyx/(ρxxσn) = tan θH/σn. We used the Bardeen-Stephen
result ρxx ∼ x/σn, recovered below. The measured
tan θH becomes as small as 10−41, leading to neff

v /nv .
10−4, consistent with (3). The conclusion (3) is there-
fore reached from two independent experiments. Fur-
thermore, the data shows that for the anomalous metal,
ρyx/ρ

2
xx = σH

n ∼ 2 × 10−6Ω−1 in (1) — recall that
σH
o ∼ 0 due to particle-hole symmetry of the Bogoli-

ubov excitations. This is of the same magnitude as the
Hall conductivity of the high temperature normal state1,
and is consistent with the interpretation of σH

n as the
Hall conductivity of the vortex cores. It follows that
ρyx/ρ

high T
yx ∼ (ρxx/ρ

high T
xx )2, and hence the observed

ρyx ∼ 0.01Ω at a field of 5T, suppressed by almost

three orders of magnitude relative to the high temper-
ature value, follows from the suppression of ρxx in the
anomalous metal.
A condition analogous to (3) must also hold for the

systems mentioned above where a ρyx ∼ ρ2xx scaling was
previously observed16–21. The supercyclotron resonance
will be easiest to observe in materials that instead exhibit
free flux flow, with negligible pinning, so that ρyx ∼ ρxx.
The Hall resistivity measurements further reveal a

weak field dependence of σxy = ρyx/ρ
2
xx, with σxy possi-

bly vanishing below a field HM2 > Hc
1. A strictly vanish-

ing zero temperature σxy over some field range requires
that the vortex core contribution σH

n = 0 in (1), in addi-
tion to the vanishing of vortex/superfluid co-motion im-
plied by (3). Such particle-hole symmetry1 is seen away
from a flux flow regime in more disordered samples34,35.
Hydrodynamic approach.— Our analysis is anchored in

the observation2 of a narrow peak at zero frequency in
the optical response σ(ω). This peak defines a lifetime
that is around 105 times longer than that of the elec-
tronic quasiparticles in the material. Such a hierarchy of
timescales allows a systematic hydrodynamic expansion
of the collective response; all non-collective modes have
decayed before the timescales of interest. Furthermore,
the conductance peak narrows as the magnetic field is
reduced towards the onset of superconductivity at Hc.
This strongly suggests that the appropriate low energy
description of the anomalous metal is superfluid hydrody-
namics with a slow phase-relaxation timescale2,33. Phase
relaxation requires the inclusion of vortices in the hy-
drodynamic description. The hydrodynamic variables are
therefore the electrical and vortex currents j and jv and
the phase gradient uφ = ∇φ. The conductance peak in
fact survives into the superconducting phase3 – at the
very end we explain how this can arise from the contri-
bution of pinned vortices to the optical conductivity.
Working within linear response and assuming homo-

geneous currents36, the equations for the hydrodynamic
variables in the presence of a uniform electric field E
are completely fixed. The Josephson relation, allowing
for transverse vortex flow, is (with ~ = e⋆ = 1)

u̇i
φ = Ei + ǫijjjv . (4)

Here ǫij is antisymmetric with ǫxy = 1. We must now
express the electric and vortex currents in terms of the
electric field and superfluid velocity. The most general
relation that obeys the Onsager constraint is shown in
the supplementary material37 to be38:

(

jio
jiv

)

=

(

σ̂ij
o α̂ij

v

α̂ij
v Ω̂ij/fs

)(

Ej

fsǫ
jkuk

φ

)

(5)

Here the normal component electric current jo ≡ j−fsuφ.
This ‘generalized Ohm’s law’ introduces six transport co-
efficients: σ̂ij

o = σoδ
ij + σH

o ǫij , Ω̂ij = Ωδij + ΩHǫij and
α̂ij
v = αvδ

ij + αH
v ǫij . Their physical meaning is as fol-

lows: Ω̂ij is the vortex conductivity, σ̂ij
o is the electrical

conductivity of the normal (non-superfluid) component
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and α̂v is a ‘vorto-electric’ conductivity. We will drop
the Hall component αH

v in the remainder of our discus-
sion — its only effect on charge transport is to produce
a small shift in the superfluid stiffness fs = ns/m⋆. All
of the earlier theoretical works referenced above contain
equations analogous to the steady state relations (5). We
have emphasized that these equations are justified when
slow phase relaxation defines a separation of timescales
that allows the collective response to be treated hydro-
dynamically. Furthermore, we will obtain precise Kubo
formulae for the transport coefficients that we then eval-
uate systematically.
Solving for jv and uφ using (4) and (5) gives Ohm’s

law ji = σijEj with the low-frequency conductivities33:

σxx(ω) = fs
(1− α2

v)(−iω +Ω) + 2αvΩH

(−iω +Ω)2 +Ω2
H

+ σo , (6)

σxy(ω) = fs
2αv(−iω +Ω)− (1− α2

v)ΩH

(−iω +Ω)2 +Ω2
H

+ σH
o . (7)

These formulae predict a ‘supercyclotron resonance’ due
to the poles at ω⋆ = ±ΩH − iΩ, tying dc transport to an
optical response. We see that Ω determines the superfluid
relaxation rate. Positivity of entropy production requires
α2
v ≤ σoΩ/fs.
Kubo formulae.— The transport coefficients in (6) and

(7) are given by Kubo formulae, derived in the sup-
plementary material37 using the hydrodynamic Green’s
functions that follow from equations (4) and (5). The vor-
tex conductivity is given by the retarded Green’s func-
tion of the vortex current operator Jv. This can in turn
be expressed in terms of the Green’s function for the time
derivative J̇φ = i[H, Jφ] of the supercurrent:

Ω̂ij = fs lim
ω→0

lim
x≪1

1

ω
ImGR

J
i
vJ

j
v
(ω) , (8)

= fs

(

lim
ω→0

lim
x≪1

1

ω
ImGR

J̇
i

φ
J̇

j

φ

(ω)− χ
J̇

i

φ
J

j

φ

)

. (9)

The final contact term in (9) is a static susceptibility. The
‘vorto-electric’ conductivity depends also on the normal
component current operator Jo ≡ J − fsJφ:

αv = lim
ω→0

lim
x≪1

1

ω
ImGR

J
y
v J

y
o
(ω) . (10)

= lim
ω→0

lim
x≪1

1

ω
ImGR

J̇
x

φ
J

y
o
(ω) . (11)

Finally, the normal component conductivity σ̂ij
o follows

similarly from the Green’s function for Jo. Writing the
vortex conductivities in terms of J̇φ as in (9) and (11)
will enable them to be directly related to a microscopic
mechanism for phase relaxation.
In evaluating the Kubo formulae for the vortex conduc-

tivities Ω̂ and αv it is necessary to take the limit x ≪ 1
— wherein mobile vortices occupy a small fraction of the
sample area, ensuring slow phase relaxation — before
the zero frequency limit. This can be seen explicitly from

the hydrodynamic Green’s functions given in the supple-
mentary material37. In the remainder we evaluate (9) and
(11) for phase relaxation due to vortex flux flow. In33 the
Bardeen-Stephen phase relaxation rate Ω was recovered
in this way. We can now extend that result to obtain ΩH

and αv.

Supercurrent relaxation due to flux flow.—The super-
current operator is given by the gradient of the phase
integrated outside of vortex cores, where the phase is
well-defined: Jφ ≡

∫

R2\cores
∇φd2x. This definition holds

in the limit of weak phase relaxation with dilute, inde-
pendent vortices in an otherwise well-defined background
phase – corresponding to the x ≪ 1 limit in the Kubo
formulae, taken prior to any low frequency limit. The
supercurrent operator is relaxed by charge fluctuations
that are described by a ‘self-charging’ term in the Hamil-
tonian: H = 1

2χ

∫

n2 d2x, where n is the charge den-

sity and χ the charge compressibility39. The commutator
[φ(x), n(y)] = iδ(x− y) and single-valuedness of the den-
sity operator n everywhere then leads to the expression

J̇φ =
2

χ

∫

cores

∇n d2x . (12)

This operator relation can now be used to obtain the
Green’s functions (9) and (11). The factor of 2 in (12)
was missed in our previous work33, but is physically im-
portant. When computing J̇φ one must allow for the fact
that the location of the core is time-dependent; in this
way only mobile vortices are seen to contribute. See sup-
plementary material37 for details.

The operator relation (12) is at the heart of our ap-
proach. Taking the expectation value of (12) in a state
with a single large vortex and using 〈∇n〉 = χ∇µ in the
core leads to the standard classical relation between the
vortex current and the microscopic electric field −∇µ in
the core40.

If (i) correlations between excitations in distinct vor-
tex cores are neglected and (ii) the vortex cores are as-
sumed to be large compared to the mean free path of the
normal state in the core, then the Kubo formulae can
be evaluated explicitly. Using the operator (12), the first
contribution to (9) becomes

1

ω
ImGR

J̇
i

φ
J̇

j

φ

(ω) = −x
4

χ2

∫

core

lim
ω→0

∂i∂j
ImGR

nn(ω, y)

ω
d2y ,

(13)
with x the fraction of the total area covered by mobile
vortex cores. The integral is over a single core. The con-
trol parameter in this entire computation is x ≪ 1, so
that dilute vortices lead to slow phase relaxation. The
large core assumption allowed the Green’s function in the
core to be translationally invariant so that GR(x, y) =
GR(x− y). In the large core limit the charge density dif-
fuses so that GR

nn(ω, k) = σnk
2/(−iω + Dk2). The con-

ductivity of the normal state in the core σn = χD, with
D the diffusivity. The integral in (13) is then easily eval-
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uated to give

1

ω
ImGR

J̇
i

φ
J̇

j

φ

(ω) =
2x

σn

δij . (14)

The susceptibility term in (9) can be written

χ
J̇

i

φ
J

j

φ

=
1

fs

∂u̇i
φ

∂uj
φ

=
ǫik

fs

∂jkv

∂uj
φ

. (15)

The first equality uses χAB = ∂〈A〉/∂sB. Here sB is the
source for B, and in the case at hand suφ

= fsuφ. The
second equality uses the Josephson relation (4). The elec-
tric field term, which is in fact E −∇µ in general, drops
out because E is held fixed and χ

Jφ∇µ = 0 at any nonzero
temperature (where the response at low wavevector k is
nonsingular, so that χJφ∇iµ ∼ ki → 0). Putting (14) and
(15) together gives the results for Ω and ΩH stated in (2)
above. Finally, the inclusion of correlations between dis-
tinct vortex cores and finite size corrections to Green’s
functions in the cores (i.e. lifting the two assumptions
made above) do not lead to additional contributions to
ΩH , as we note in the supplementary material37.
With the same assumptions, the vorto-electric conduc-

tivity similarly gets a contribution from inside the vortex
cores given by

αv = −
x

χ

∫

core

lim
ω→0

1

ω
ImGR

nǫij∂ijj
(ω, y)d2y . (16)

The contribution from outside of the cores turns out to
be suppressed by powers of x compared to the inside-
core contribution, as we show in the supplementary
material37. The Green’s function in the core appearing
in (16) again follows from the diffusive normal state dy-
namics. It is given by GR

nǫij∂ijj
(ω, k) = −iωσH

n k2/(−iω+

Dk2) and is derived in the supplementary material37.
Here σH

n is the Hall conductivity of the normal state in
the core. Using this Green’s function we obtain

αv = x
σH
n

σn

= −x tan θHn . (17)

Here θHn is the Hall angle of the normal state.
Conductivity and resistivity.—Inserting the flux-flow

results (2) and (17) into the hydrodynamic expressions
(6) and (7) gives the dc conductivities at small x:

σxx =
σn

2x
, (18)

σxy = σH
n + σH

o + σ2
xx

neff
v

ns

. (19)

The final term in (19) is larger than the first two by a
factor of 1/x, because σ2

xx ∼ 1/x2 and neff
v ∼ x. We saw in

our earlier discussion, however, that the other terms can
dominate when neff

v is suppressed. Assuming σxy ≪ σxx

then gives the Hall resistivity (1).

Final remark.—The hydrodynamic theory can be ex-
tended into the superconducting phase, and explains how
dynamical depinning of vortices leads to the zero fre-
quency conductance peaks observed in3. Ignoring the
(small) parity-odd terms, the optical conductivity (6) is
a simple Lorentzian σ(ω) = fs/(−iω+Ω). We have noted
that Ω is the vortex conductivity. A simple model of vor-
tex pinning is to let Ω → Ω(ω) = ωΩ/(ω + iωo). Here
ωo is a pinning frequency. This form arises in the limit
of strong momentum relaxation from the general hydro-
dynamics of pinned lattices41. The upshot is then the
optical conductivity

σ(ω) =
fs

Ω+ ωo

(

ωo

−iω
+

Ω

−iω +Ω + ωo

)

. (20)

A superconducting delta function arises once the pinning
frequency ωo becomes nonzero. It is accompanied by a
zero frequency Lorentzian peak whose width is contin-
uous across the superconducting-anomalous metal tran-
sition (which is driven by ωo → 0, not Ω → 0). This
is what the data shows3, further supporting the picture
of the anomalous metal as being due to the flux flow
of mobile vortices. Indeed, zero field amorphous InOx

shows a canonical BKT transition as a function of tem-
perature. The conductance peak in the high temperature
BKT phase42 is due to mobile unpaired vortices, and is
continuously connected in the phase diagram to the con-
ductance peak seen in the anomalous metal2,3.
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