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We numerically examine the manipulation of superconducting vortices interacting with a moving
trap representing a magnetic force tip translating across a superconducting sample containing a
periodic array of pinning sites. As a function of the tip velocity and coupling strength, we find
five distinct dynamic phases, including a decoupled regime where the vortices are dragged a short
distance within a pinning site, an intermediate coupling regime where vortices in neighboring pinning
sites exchange places, an intermediate trapping regime where individual vortices are dragged longer
distances and exchange modes of vortices occur in the surrounding pins, an intermittent multiple
trapping regime where the trap switches between capturing one or two vortices, and a strong coupling
regime in which the trap permanently captures and drags two vortices. In some regimes we observe
the counterintuitive behavior that slow moving traps couple less strongly to vortices than faster
moving traps; however, the fastest moving traps are generally decoupled. The different phases can
be characterized by the distances the vortices are displaced and the force fluctuations exerted on
the trap. We find different types of stick-slip motion depending on whether vortices are moving into
and out of pinning sites, undergoing exchange, or performing correlated motion induced by vortices
outside of the trap. Our results are general to the manipulation of other types of particle-based
systems interacting with periodic trap arrays, such as colloidal particles or certain types of frictional
systems.

I. INTRODUCTION

Vortices in type-II superconductors interacting with
ordered or disordered substrates represent an outstand-
ing example of a condensed matter system with compet-
ing interactions, since the vortex-vortex repulsion favors
a hexagonal lattice while the substrate ordering can favor
different lattice symmetries, leading to commensurate-
incommensurate transitions1–6, depinning phenomena in
the presence of an external drive,7–11, and order-disorder
transitions12–14. In addition to these basic science issues,
vortex motion and pinning are relevant to a variety of ap-
plications such as critical current optimization12,15, while
there are a number of proposals for using individual vor-
tex manipulation to test aspects of statistical physics16,17

or to create new types of vortex logic devices18–21. It has
also been proposed that vortices in particular materials
can support Majorana fermions22–24, and that individ-
ual vortex manipulation and exchange could be used to
create certain types of quantum braiding phenomena for
quantum computing operations25,26.

A growing number of experiments have demonstrated
individual vortex manipulation using various techniques
such as local magnetic fields27, magnetic force tips28–32,
optical methods33, local mechanical applied stress34,
nanoscale electrostatic manipulation35, local applied
currents36, and tunneling microscope tips37,38. Numer-
ous related works describe the dynamics of individu-
ally manipulated or dragged colloidal particles moving
through glassy39–43 or crystalline systems44,45, where the
fluctuations of the probe particle can be used to induce
local melting or to study changes in the viscosity across
an order-disorder transition. Understanding the differ-

ent kinds of dynamics associated with particle manipu-
lation on periodic substrates is relevant for vortices in
superconductors1,46 or Bose-Einstein condensates47, as
well as for other particle based systems with periodic
substrates such as skyrmions48, ions on optical traps49,
colloidal particles50–52, and nanofriction systems where
individual atoms or molecules can be dragged with a
tip53. In many of the previous numerical works on the
local manipulation of dragged particles, the trap used
for manipulation is strong enough to permanently bind
a single particle and drag it under a constant force. A
more accurate model of recent experiments on vortices
in a type-II superconductor is a trap of fixed strength
moving at fixed velocity that can couple to or decouple
from an individual vortex. Vortices dragged by such a
trap can either move at the average velocity of the trap
or decouple and fall away from the trap, and the trapping
of multiple vortices is also possible.

Here we consider a trap with a finite confining force
or strength moving across a superconductor containing
a periodic array of pinning sites. As a function of trap
strength and velocity we identify five generic dynamic
phases and several subphases. At low coupling or high
trap velocities we find a decoupled phase (I) where the
trap can only shift a vortex within a pinning site but
cannot depin the vortex. For larger coupling or smaller
tip velocities, there is an intermediate coupling phase (II)
where a single vortex can be dragged out of the pinning
site but is trapped by the next pinning site it encounters
in an exchange process. In the intermediate trapping
phase (III), vortices can be dragged over a distance of
several lattice constants and additional vortex exchange
modes arise in adjacent pinning sites. For stronger cou-
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pling, there is an intermittent multiple trapping phase
(IV) in which the trap alternates between capturing one
and two vortices, producing telegraph noise in the trap
force fluctuations. At the strongest coupling and low-
est trap velocities we find a strong coupling phase (V)
where the trap permanently captures two vortices. These
phases are associated with distinct signatures in the force
fluctuations exerted on the moving trap, such as stick-
slip signals produced when vortices exit and enter pin-
ning sites or exchange positions in the trap. We observe
nonmonotonic behavior in which the trapping effective-
ness increases as the trap velocity decreases, but for the
highest trap velocities the system is always in a decou-
pled phase. We map the dynamic phases as a function of
coupling strength, trap velocity, and the angle between
the driving direction and the pinning lattice symmetry
direction. We also study the effect on the behavior of
changing the shape of the pinning sites.

Our results should also be relevant to other types
of particle assemblies driven over periodic substrates.
One example of such a system is colloids on periodic
substrates11,50–52, where a single colloid can be dragged
with an optical trap at different angles with respect to the
substrate symmetry directions. Similar dragging tech-
niques could be used for skyrmions48 or ions on periodic
substrates49. We specifically focus on modeling effec-
tively two-dimensional vortices, which can represent ei-
ther bulk samples containing very stiff vortex lines or
thin film samples. For three-dimensional vortices that
are not stiff or for layered superconductors, additional
effects that we do not model can occur, such as bend-
ing of the vortex lines or decoupling of vortex segments
between the layers.

II. SIMULATION AND SYSTEM

We consider a two-dimensional system with periodic
boundary conditions in the x and y-directions containing
Nv vortices modeled as point particles interacting with
a square periodic pinning array. We work in two dimen-
sions since this is much more numerically tractable than
a fully three-dimensional simulation, and more impor-
tantly, many of the related systems mentioned above can
appropriately be studied in the two-dimensional limit.
The magnetic field applied perpendicular to the sample
plane is set to the matching field B = Bφ at which the
number of vortices equals the number of pinning sites.
We introduce a trap of radius Rtr that moves across the
sample, representing a magnetic force microscope (MFM)
tip as illustrated schematically in Fig. 1(a). The MFM
tip creates a localized potential with a finite trapping
force that can capture one or more vortices, and it trav-
els at a constant velocity Vtr at an angle θ with respect to
the x-axis symmetry direction of the pinning lattice. The
dynamics of vortex i are determined by the overdamped

FIG. 1: (a) Schematic of a superconducting slab containing
a square array of artificial pinning sites (yellow) occupied by
vortices (red arrows). The number of vortices produced by the
magnetic field B applied perpendicular to the sample plane
matches the number of pinning sites. A magnetic force micro-
scope (MFM) tip moves over the sample surface at velocity
vtr and is represented by a finite range harmonic trap with a
trapping force or strength that can be varied by adjusting the
distance between the MFM tip and the sample. (b) Schematic
of a 5λ× 5λ subsection of the system. Open black circles are
pinning sites, filled blue circles are the vortices, and the large
red circle is the trap which is moving at an angle of θ = 30◦

relative to the x axis symmetry direction of the pinning array
as indicated by the red arrow.

equation of motion

η
dri
dt

= Fvvi + Fvpi + Ftri . (1)

Here ri is the position of vortex i and we set the damping
coefficient η = 1. All forces are measured in units of
f0 = φ20/(2πµoλ

3) where φ0 = h/2e is the flux quantum
and λ is the London penetration depth. The first term
on the right hand side describes the repulsive vortex-

vortex interactions, Fvvi =
∑Nv

j=1K1(rij)r̂ij , where rij =

|ri − rj |, r̂ij = (ri − rj)/rij , and K1 is the modified
Bessel function of the second kind. The pinning forces
arise from a square lattice of finite range harmonic wells,

Fvpi = −
∑Np

k=1(Fp/rp)(ri−r
(p)
k )Θ(rp−|ri−r

(p)
k |), where

Fp = 0.3 is the maximum pinning force, rp = 0.3 is the

pin radius, r
(p)
k is the location of the k-th pinning site,

and Θ is the Heaviside step function. The force from
the moving trap Ftri has the same form as the pinning
interaction but with a maximum trapping force of Ftr
and a trapping radius Rtr = 0.5. The trap translates at
a constant velocity of vtr.

We consider a 20 × 20 square pinning array at a field
of B/Bφ = 1.0, where Bφ is the matching field at which
there is one vortex per pinning site. The pinning lattice
constant is a = 1.0 and we measure all distances in terms
of λ. We initialize the system with each pinning site oc-
cupied by a vortex. Figure 1(b) schematically illustrates
a 5×5 subsection of the sample showing the motion of the
trap, which is dragging a single vortex. We measure the
vortex displacements in and outside of the trap as well
as the time series of the force fluctuations on the moving
trap. During an individual run we translate the trap a
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total distance of Dx = 300a in the x direction, corre-
sponding to a total distance of Dx/ cos(θ) in the driving
direction. Throughout this work we describe distances in
terms of their projections into the x direction.

We define the time and location at which an individual
vortex i becomes captured by the trap as (tiin, riin), and
the corresponding time and location at which vortex i
escapes from the trap as (tiout, r

i
out). We can then write

the individual capture length Cil = |riout − riin| cos(θ)/a
as a measure of the distance vortex i travels inside the
trap projected into the x direction and normalized by
the pinning lattice constant a. This measure indicates
how far a given vortex is dragged. For example, if a
trap moving in the x direction captures a vortex and
drags it over a distance |riout − riin| = 100a, then Cil =
100. If instead the trap only drags the vortex from one
pinning site to the next, Cil ≈ 1.0. We define the average

capture length as Cl = N−1
c

∑Nv

i=1 C
i
l , where Nc is the

total number of vortices captured by the trap during the
measurement interval.

The initial conditions we consider, with the vortices
initially trapped in the pinning sites, corresponds to a
field cooled sample. If the field were applied to a sam-
ple that is already superconducting, vortices would enter
from the edges and the vortex configuration would be
more disordered. We choose a square pinning array since
such arrays have already been experimentally realized.
The symmetry of the square array makes it easier to un-
derstand the results for driving at different angles with
respect to the principal symmetry directions of the ar-
ray. Our results should be robust for triangular pinning
arrays; however, the detailed dependence on the angle of
driving would be different.

III. RESULTS

We first consider a system with a trap of strength
Ftr = 1.0 moving at an angle of θ = 30◦ with respect
to the x axis of the pinning array. In Fig. 2(a) we show
the vortex and pinning site locations along with the tra-
jectories of the vortices and the trap over a fixed period
of time in the decoupled phase I at a trap velocity of
vtr = 0.5. Vortices in the pinning sites wiggle a small
amount as the trap passes over them but they do not
depin. For 0.19 < vtr < 0.375, we find an intermediate
coupling phase II in which the trap captures a vortex
and drags it a projected distance of approximately 2a
to the next pinning site along the trap trajectory, where
the trapped vortex exchanges places with the pinned vor-
tex. In Fig. 2(b), the vortex trajectories in phase II at
vtr = 0.2 extend from pin to pin following the motion
of the trap. For vtr < 0.19 we find an intermediate
trapping phase III where individual vortices remain in-
side the trap for distances greater than 2a but are not
permanently trapped. Simultaneously, vortex exchange
motions emerge in the surrounding pinning sites, as il-
lustrated in Fig. 2(c) for vtr = 0.02.

x(a)

y

x(b)

y

x(c)

y

FIG. 2: Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex tra-
jectories (green lines) in an 8λ× 8λ portion of a system with
Ftr = 1.0 and Fp = 0.3 where the trap moves at an angle of
θ = 30◦ with respect to the x axis of the pinning array. Red
filled circles indicate vortices that were displaced a distance
of at least a pin radius due to the motion of the trap. (a)
The decoupled phase I at vtr = 0.5, marked A in Fig. 3(a),
where all the vortices remain pinned. (b) The intermediate
couping phase II at vtr = 0.2, marked B in Fig. 3(a), where
individual vortices travel a distance 2a with the trap before
escaping and being replaced by a new trapped vortex. (c)
The intermediate trapping phase III at vtr = 0.02, marked C
in Fig. 3(a), where in addition to translations of the trapped
vortex, vortices near but outside the trap move in exchange
rings through neighboring pinning sites.

The effect of the trap on individual vortices is illus-
trated in Fig. 3(a), where we plot the capture length Cl
versus the trap velocity vtr for a trap with Ftr = 1.0 and
θ = 30◦. We observe a clear drop in Cl for vtr > 0.375
when the system enters the decoupled phase I in which
the trap moves too rapidly to capture any of the pinned
vortices. In phase I, Cl � 1.0 but it remains nonzero
since the trap drags individual vortices a small distance
within the pinning site. We find that there is an optimal
trapping velocity vtr = 0.012 corresponding to the peak
in Cl where the vortex can on average be trapped for
distances as large as 18a before exchanging places with a
pinned vortex. For vtr < 0.012, Cl drops dramatically
when the trap velocity becomes so slow that vortices
have enough time to escape from the trap or exchange
with neighboring pinned vortices. The escape of the vor-
tices is purely a dynamical effect since we are working
in the regime of no thermal fluctuations. In contrast,
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FIG. 3: (a) Capture length Cl, the average distance a vortex
is dragged by the trap, vs trap velocity vtr in the system
from Fig. 2 with Ftr = 1.0 and θ = 30◦. The points marked
A, B, and C correspond to vtr values at which the images
in Fig. 2 were obtained. (b) The total displacements d of
all the vortices over a time interval during which the trap
translates by Dx = 300a vs vtr. Above vtr = 0.375, we find
the decoupled phase I in which the trap does not drag any
vortices. In the intermediate coupling phase II for 0.19 <
vtr < 0.375, an individual vortex can be dragged by the trap a
distance of 2a before exchanging places with a pinned vortex.
For vtr < 0.19, the system is in the intermediate trapping
phase III where vortices can be dragged a distance of several
lattice constants and additional vortices exchange positions
among the sites close to the trap. For vtr < 0.012, vortices
are able to escape more easily from the slow trap so Cl drops
while d remains large.

for vtr > 0.012, the trapped vortex can remain trapped
since it does not have enough time to exchange with an-
other vortex. As vtr increases above 0.012, Cl drops as
the trapped vortex experiences larger displacements until
the system reaches the II-III transition where the trapped
vortex always exchanges with a pinned vortex.

To measure the global effect of the trap, in Fig. 3(b)
we plot the scaled net total projected displacement d of

all the vortices d = a−1
∑Nv

i=0 |(ri(t0 +τ)−ri(t0)) · x̂| ver-
sus vtr, where τ = D/(vtr cos(θ)) is the time required for
the trap to translate a projected distance of D = 300a.
We start the measurement at time t0 6= 0 since we wait
for a period of time before beginning the measurement
in order to avoid transient effects. Above the I-II transi-
tion at vtr = 0.375, d drops to zero. In the intermediate
coupling phase II, the trap is never empty, and there is
a plateau with d = 300 throughout the phase II region
of 0.19 < vtr < 0.375. No individual vortex travels this
distance with the trap; instead, as shown in Fig. 3(a),
vortices translate an average distance of Cl = 2a be-
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FIG. 4: (a) Cl vs vtr and (b) d vs vtr for the θ = 30◦ system
with a decreased trap strength of Ftr = 0.5. The motion
is always in the decoupled phase I. (c) Cl vs vtr and (d) d
vs vtr in the same system for a strong trap with Ftr = 1.8,
where dashed lines indicate the boundaries of phases II, III,
IV, and V. In the intermittent multiple trapping phase IV, the
trap intermittently captures two vortices, and in the strongly
coupled phase V, the trap always captures two vortices. A
reentrant window of phase III appears just above phase V.

fore encountering a pinning site and exchanging with the
pinned vortex. The surrounding vortices remain pinned
and do not contribute to d. In the intermediate trapping
phase III for vtr < 0.19, d increases with decreasing vtr
as vortices surrounding the trap begin to depin from the
pinning sites and undergo rotational exchange motions
of the type illustrated in Fig. 2(c) at vtr = 0.02.

We find transitions among the different phases as a
function of trap strength Ftr as well as trap velocity.
Figure 4(a,b) shows Cl and d versus vtr for driving at θ =
30◦ in the same system from Fig. 3 with a smaller Ftr =
0.5. Both Cl and d are less than one, and the system
remains in the decoupled phase I for all values of vtr. In
Fig. 4(c,d), we find that additional phases appear when
the trap strength is increased to Ftr = 1.8. These include
phase IV, where the trap alternates between capturing
one and two vortices, and phase V, where the trap always
captures two vortices. Here phase II appears for vtr >
0.3, while for vtr < 0.03 the system is in phase V and the
trap always contains two vortices. There is a reentrant
window of phase III just above phase V.

In Fig. 5(a) we illustrate the vortex trajectories in
phase V at vtr = 0.02, where a multi-vortex exchange
process occurs in the vortices adjacent to the trap. The
two trapped vortices produce a repulsion that is strong
enough to depin the vortex in the pin traversed by the
trap along with those in a pair of neighboring pins on
either side of the trap. The three depinned vortices
form a cascading loop of reoccupancy, and one of them
moves to occupy the pinning site behind the trap that
was previously vacated. For 0.03 < vtr < 0.1 and
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FIG. 5: Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex tra-
jectories (green lines) in an 8λ × 8λ portion of the Ftr = 1.8
system in Fig. 4(c,d). Red filled circles indicate vortices that
were displaced a distance of at least a pin radius due to the
motion of the trap. (a) At vtr = 0.02 in phase V, the trap al-
ways contains two vortices and correlated ringlike exchanges
of vortices occur in the surrounding regions. As the trap
moves, the two trapped vortices dislodge three pinned vor-
tices, and one of these vortices jumps into the empty pinning
site immediately behind the moving trap. (b) At vtr = 0.12
in phase IV, the trap alternates between capturing one and
two vortices. (c) Disordered flow in phase III at vtr = 0.25,
with a much weaker perturbation of the surrounding pinned
vortices. (d) At vtr = 0.5 in phase II, a vortex only travels a
short distance with the trap before exchanging with a pinned
vortex.

0.018 < vtr < 0.3 we find the intermediate trapping
phase III, while for 0.1 < vtr < 0.018, an intermit-
tent multiple trapping phase IV occurs in which the trap
alternates between capturing one or two vortices. Fig-
ures 5(b) and (c) illustrate typical phase IV and phase
III trajectories, respectively. Phase IV contains several
subregimes. When vtr is close to 0.1, the trap perma-
nently captures one vortex and exchanges a second vor-
tex with each pinning site it passes, while at larger vtr,
both trapped vortices exchange places with vortices in
the pinning sites as the trap moves. We note that sim-
ulations using a Landau-Ginzburg approach have shown
that sufficiency strong pinning sites can simultaneously
capture two vortices54. In our case the multiply occupied
pinning site takes the form of a moving trap, but multi-
vortex trapping by pinning sites has been demonstrated
as feasible in more realistic models that operate beyond
the London limit54.

In Fig. 6(a) we plot a heat map of the total displace-
ments d as a function of trap strength Ftr versus trap
velocity vtr for a driving angle of θ = 30◦ in which
we highlight the locations of phases I through V. For
Ftr < 0.75, the system is in the decoupled phase I. The
effect of changing the angle of drive on d appears in the
Ftr versus vtr heat maps in Fig. 6(b,c,d) for θ = 0◦, 15◦,
and 45◦, which trace the evolution of the five different
phases. In each case, the transition lines generally shift
to higher values of Ftr with increasing vtr. For θ = 0◦

in Fig. 6(b), the trap does not start dragging vortices
out of the pinning sites until Ftr > 1.25, and we observe
a variety of additional subphases that are not present
at larger θ. The subphases are variations of phases V
and IV in which either two vortices are captured by the
trap or two vortices are exchanged in a variety of dis-
tinct orbits which produce various jumps and dips in d
and Cl, as seen near Ftr = 0.18 and vtr < 0.1. Pre-
vious work for vortices driven over square periodic pin-
ning arrays at θ = 0◦ showed a series of distinct dynam-
ical phases associated with positive or negative jumps
in the velocity-force curves8,9,55,56, and the dynamics we
observe in Fig. 6(b) is consistent with this type of behav-
ior. In the θ = 15◦ phase diagram of Fig. 6(c), there is
less jumping between phases V and IV for Ftr > 1.6, and
there is an extended region of phase II flow. At θ = 45◦ in
Fig. 6(d), the region containing phase V is smaller but we
find the same general phase behavior as described above
for other values of θ.

In Fig. 7(a) we plot d versus vtr for the θ = 0◦ sample
at Ftr = 1.8, where we find numerous jumps at small
vtr. In contrast, the plot of d versus vtr in Fig. 7(b) at
Ftr = 1.8 and θ = 45◦ has a smoother behavior at small
vtr and a step marking the II-III transition at vtr = 0.25.

The transition between a trap that can drag a vortex
and a trap that cannot drag a vortex is similar to the
transition from weak to strong pinning near a Labusch
point57. In our system, in the absence of pinning a sin-
gle trap can always drag a vortex, and if the vortices
are strongly coupled with each other, the single trap
would drag the entire vortex assembly which would act
like an elastic solid. When pinning is present that is
strong enough to hold back the vortex motion, there is a
transition point at which the vortex assembly decouples
from the moving trap. There have been several observa-
tions of vortex decoupling transitions produced when a
dragged portion of the vortex assembly decouples from
the remainder of the assembly, including the driving of
vortices coupled to magnetic degrees of freedom in mag-
netic superconductors58, the dissociation of composite
vortices in multi-component superconductors59, decou-
pling of vortices in layered systems60, and driven transi-
tions of vortices to a phase slip regime61.

In Fig. 8(a) we show the vortex and trap trajectories
in phase II for a sample with Ftr = 1.8 and θ = 0◦

at vtr = 0.35. Individual vortices are trapped over a
distance of one lattice constant, moving along a one-
dimensional path defined by the trap trajectory and in-
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FIG. 6: Heat map of the total displacements d as a function of Ftr vs vtr for driving at (a) θ = 30◦, (b) θ = 0◦, (c) θ = 15◦, and
(d) θ = 45◦. Dashed lines are guides to the eye indicating the locations of the different phases: I (decoupled), II (intermediate
coupling), III (intermediate trapping), IV (intermittent multiple trapping) and V (strongly coupled).
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FIG. 7: d vs vtr at Ftr = 1.8. Dashed lines indicate intervals
corresponding to the distance 300a traveled by the trap during
the simulation. (a) At θ = 0◦, there is no II-I transition, but
the jumps in d for vtr < 0.075 indicate the location of the V-IV
transition, while the drop in d near vtr = 0.1125 corresponds
to the IV-III transition. (b) At θ = 45◦, a clear drop in d
occurs at the IV-III transition near vtr = 0.25. Another drop
in d appears at small vtr where the system is in region IV but
jumps to region V as the trap velocity increases.

ducing few to no perturbations in the surrounding vor-
tices before exchanging positions with the next pinned
vortex along the path of the trap. At vtr = 0.1 in
Fig. 8(b), the perturbations to the surrounding vortices
are stronger, while at vtr = 0.02 in Fig. 8(c), there is
continuous plastic mixing of the vortices in the two rows
of pins on either side of the trap trajectory. For driv-
ing along θ = 45◦, Fig. 8(d) shows that in phase II at
Ftr = 1.8 and vtr = 0.35, motion occurs along the diago-
nal with some distortions of the vortices in the adjacent
pinning sites.

IV. EFFECT OF PINNING POTENTIAL SHAPE

In Sec. III we employed parabolic pinning sites with an
attractive force that is cut off beyond the pinning radius.
Since there are many different ways to create pinning
sites, an important question is how the results change
for different forms of the pinning potential. The most
generic variation of the pinning is to introduce a smooth
cutoff of the pinning force. To address this, we change
the form of the pinning potential to a Gaussian shape,
U(r) = Up exp(−κR2). We set Up = 0.045 and κ = 50 to

obtain Fvpi = −
∑Np

k=1 2κUp exp[−κ(ri−r
(p)
k )2](ri−r

(p)
k ).

In Fig. 9(a) we plot the shapes of the Gaussian and
parabolic pinning potentials, and in Fig. 9(b) we show
the resulting pinning forces. We choose the parameters
of the Gaussian potential such that both types of poten-
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FIG. 8: Vortex positions (filled circles), pinning site locations
(open circles), tip trajectory (magenta line), and vortex tra-
jectories (green lines) in an 8λ× 8λ portion of a sample with
Ftr = 1.8 and (a-c) θ = 0◦. (a) Phase II at vtr = 0.35, where
there is little distortion of the background. (b) Phase III at
vtr = 0.1, where the amount of distortion of the surrounding
vortices has increased. (c) Phase IV at vtr = 0.02, where the
multiple dragged vortices induce plastic motion in the sur-
rounding vortices. (d) The phase II motion at vtr = 0.35 in a
sample with θ = 45◦.

tial produce the same maximum pinning force. We map
the dynamic phase diagram as a function of Ftr vs vtr
for the Gaussian pinning potential in Fig. 10 with driv-
ing at θ = 30◦, where the same dynamic phases found
in Fig. 6(a) for parabolic pinning appear. The I-II tran-
sition has the same general features for both types of
pinning, occurring at similar values of Ftr in each case
and shifting to higher values of Ftr as vtr increases. The
window of phase V at small vtr and large Ftr is larger
for Gaussian pinning than for parabolic pinning, while
phase IV covers a smaller area for the Gaussian pinning.
The results in Fig. 10 indicate that phases I through V
robustly appear for different pinning potentials. We note
that while all the phases reported for the parabolic pin-
ning also arise with the Gaussian pinning, there are some
differences in the phase diagram. In particular, phases
IV and V are expanded for the Gaussian pinning, while
phases I and II are very similar for each type of pinning.

V. FORCE FLUCTUATIONS

We next examine the time series of the x direction
forces fx experienced by the trap as it moves in the dif-

FIG. 9: (a) The shape U(r) of the pinning potential for
parabolic (blue) and Gaussian (red) pinning sites. (b) The
corresponding pinning force Fp(r) showing a sharp cutoff for
the parabolic pins and a smooth cutoff for the Gaussian pins.

FIG. 10: Heat map of the total displacements d as a function
of Ftr vs vtr for the system in Fig. 6(a) with driving at θ = 30◦

where the parabolic pinning has been replaced by Gaussian
pinning. Dashed lines are guides to the eye indicating the
locations of the different phases: I (decoupled), II (interme-
diate coupling), III (intermediate trapping), IV (intermittent
multiple trapping), and V (strongly coupled). Compared to
Fig. 6(a), some small changes in the locations of phases I to V
appear, but both the smooth and the parabolic pinning sites
exhibit the same dynamic phases.

ferent phases. In Fig. 11(a) we plot a representative time
series of fx for the θ = 30◦ system from Fig. 2(a) and
Fig. 3(a) in the decoupled phase I at Ftr = 1.0 and
vtr = 0.5. We find a pronounced stick-slip character
in fx with a strong asymmetry of sudden increases and
gradual decreases. The slow drops in fx occur when the
moving trap is dragging a vortex inside a pinning site
and the force from the pinning site is resisting the pull of
the trap, while the rapid increases correspond to intervals
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FIG. 11: (a) A representative plot of the time series of the x
direction forces fx experienced by the moving trap in phase I
at θ = 30◦, Ftr = 1.0, and vtr = 0.5. (b) The corresponding
distribution function P (fx). The time intervals when the trap
does not contain a vortex produce the peak at fx = 0.
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FIG. 12: (a) A representative segment of fx(t) in phase II at
vtr = 0.2 for a sample with θ = 30◦ and Ftr = 1.0. (b) The
corresponding P (fx). There is no peak at fx = 0 since the
trap always contains a vortex. (c) fx(t) in the same sample in
phase III at vtr = 0.05. (d) The corresponding P (fx) contains
additional peaks produced by additional modes of motion.

when the vortex decouples from the trap and drops back
into the pinning site. Figure 11(b) shows that the prob-
ability distribution function P (fx) has a spike at fx = 0
produced by the time periods during which there is no
vortex inside the trap. There is a local maximum in
P (fx) near fx ≈ −0.6, the value of the x component of
the average decoupling force Fdc at which the vortex es-
capes from the trap and is pushed back into the pinning
site by the restoring force from the surrounding pinned
vortices.

In Fig. 12(a,b) we plot fx(t) and P (fx) in phase II at
vtr = 0.2 for a sample with θ = 30◦ and Ftr = 1.0.
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FIG. 13: (a) fx(t) for a sample with θ = 30◦ and Ftr = 1.8 at
vtr = 0.12 in phase IV. The time series has a telegraph noise
characteristic in which the two values are produced when the
trap alternates between dragging one (higher fx) or two (lower
fx) vortices. (b) In phase V at vtr = 0.02, the trap always
captures two vortices and the telegraph noise is lost. (c) In
phase IV at vtr = 0.048, there is a transient signature when
the trap initially drags one vortex but then captures a second
vortex, producing a clearly visible jump in fx.

There is no longer a peak in P (fx) at fx = 0 since
the trap always contains one vortex. We find a peri-
odic signal in fx(t) containing both stick-slip features and
additional smoother oscillations between pairs of force
spikes. The force spike pairs arise when the trap cap-
tures a new vortex or drops a trapped vortex. Since a
trap with Ftr = 1.0 is not strong enough to confine two
vortices, every time the trap captures a vortex it sheds
the previously captured vortex. The process of bringing
a trapped vortex close to a pinned vortex, followed by
capture of the pinned vortex, produces a peak in P (fx)
at fx = −0.2. The smooth oscillations occurring on a
longer time scale correspond to the transport of a vor-
tex between pinning sites by the trap, since at θ = 30◦

the trap passes over a pinning site in every other col-
umn of the pinning array. When the trap passes between
two pinned vortices at a distance a/2, the trapped vortex
must cross an energy barrier generated by the repulsive
vortex-vortex forces, giving a second peak in P (fx) at
fx = −0.4. In Fig. 12(c,d) we show fx(t) and P (fx) for
vtr = 0.05 in phase III for the θ = 30◦ and Ftr = 1.0
system from Fig. 12(a,b). At this low trap velocity, the
trapped vortex produces a larger perturbation of the sur-
rounding vortices as it moves, resulting in the appearance
of additional peaks in P (fx). The highest peak in P (fx)
at fx = −0.2 results when the strongly trapped vortex
passes through a pinning site and pushes the pinned vor-
tex out of its way without escaping from the trap.

In phase IV, illustrated for a sample with θ = 30◦ and
Ftr = 1.8 at vtr = 0.12 in Fig. 13(a), fx(t) shows a strong
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FIG. 14: (a) fx(t) in phase I for a sample with θ = 0◦, Ftr =
1.0, and vtr = 0.3. (b) The corresponding P (fx) indicates
that the fluctuations are periodic.

telegraph noise signal in which two states arise when the
trap alternates between dragging one or two vortices. In
phase V at vtr = 0.02, Fig. 13(b) indicates that the tele-
graph noise in fx(t) is lost since there are always two vor-
tices in the trap, and the forces exerted on the trap are
always in the negative x direction. Figure 13(c) shows
a transient situation at vtr = 0.048, where the trap is
initially dragging one vortex but then captures a second
vortex, as indicated by the drop in fx to a more negative
value.

In general, we find that when the trap is dragged along
certain symmetry angles of the pinning array, such as
θ = 0◦ and θ = 45◦, the force fluctuations contain a
stronger periodic component, while for driving at incom-
mensurate angles, the force fluctuations are more disor-
dered. Previous work with particles driven over square
pinning arrays showed that directional locking should oc-
cur at angles of θ = tan−1(n/m), where n and m are
integers62–66, so for driving at these locking angles, we
expect the force fluctuations to be more periodic. In
Fig. 14 we show fx(t) and P (fx) in phase I for a sample
with θ = 0◦ at Ftr = 1.0 and vtr = 0.3. There is a strong
periodic signal and fx(t) is much more ordered than the
stick-slip time series shown in Fig. 11(a) for a θ = 30◦

system in phase I at Ftr = 1.0 and vtr = 0.5.

VI. DISCUSSION

Within the particle description we use, the number of
vortices and their shape is held fixed; however, it is possi-
ble that a sufficiently strong trapping force could induce
vortex shape distortions that could change the dynamics.
Recent imaging experiments have shown how vortex dy-
namics can change when vortex distortion is taken into
account beyond the London limit67. A similar breakdown

of the particle model could also arise for other systems
such as skyrmions dragged over different types of pinning
substrates68. Additionally, if the trap is strong enough,
then in the multiple vortex trapping phases IV and V,
the trapped vortices may merge and form multiquantum
states. Our results apply to the limit in which the trap
is weak enough that such distortions do not occur. In
experiments, it is likely that the tip speed will be in the
limit of low vtr; however, the phase diagrams of Fig. 6
indicate that most of the phases can be accessed even at
the lowest trap velocities by varying the trap strength.
We consider a two-dimensional system, but some three
dimensional systems such as layered samples could pro-
duce different results due to additional three-dimensional
effects such as the dissociation of vortices or line breaking
effects.

Instead of employing a moving trap, it would also be
possible to use a stationary trap of fixed strength and
apply a current so that all of the vortices flow past the
trap in order to exert forces on it. When the vortices are
moving fast enough that the trap cannot capture a vor-
tex, the system enters a decoupled state. We note that
there are differences between the stationary and moving
trap realizations. With the moving trap, the drive is local
and applied only to the trap, whereas for the stationary
trap, the current is applied to all of the vortices. A uni-
form current produces a constant force on the trapped
vortex in the stationary trap rather than a constant rela-
tive velocity difference as in the case of the moving trap.
One advantage of the stationary trap geometry is that it
is not necessary to include a background pinning poten-
tial. Instead of using an applied current to drive vortices
past the stationary trap, it is also possible to translate
the vortices with dynamic pinning sites by means of se-
quential flashing of the pinning potential69,70.

In this work we focus on a specific trap radius and
vortex-vortex interaction strength, but we expect that
the same dynamic phases should appear for a range of
other parameters, such as at higher fields or different trap
sizes, although the locations of the phase boundaries will
likely shift to different trap strengths and velocities. Our
results should also be robust for triangular rather than
square pinning arrays; however, the high symmetry driv-
ing angles would be θ = 30◦ and θ = 60◦ for the triangu-
lar arrays instead of θ = 45◦ for the square arrays. There
is a slight energy difference between a square vortex lat-
tice and a triangular vortex lattice, which may cause the
phase transition boundaries to shift if a different pinning
lattice symmetry is used. It could be also be interest-
ing to consider the effects of dragging vortices with a
trap over random, quasiperiodic, or anisotropic pinning
arrays, but this is beyond the scope of the present work.

Our results should be general to other systems of par-
ticles interacting with periodic trap arrays, such as col-
loidal particles in optical or gravitational lattices, where
the interactions between colloids can be of magnetic form
with a 1/r3 behavior or of screened Coulomb or Yukawa
form.
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VII. SUMMARY

We have numerically examined vortex manipulation in
superconductors with a periodic array of pinning sites by
a local moving trap. We find five distinct phases depend-
ing on the trap strength and velocity. In phase I, which
appears for low trap strength or large trap velocity, the
vortices are decoupled from the trap, which can move a
vortex within a pinning site but cannot depin it. The dis-
tribution of forces experienced by the trap has a peak at
zero force corresponding to time intervals during which
the trap is moving between adjacent pinning sites and
contains no vortex. In the intermediate coupling phase
II, the trap drags a vortex out of a pinning site and then
exchanges that vortex with another vortex upon reaching
the next occupied pinning site, so that the trap is always
occupied by a vortex. In phase III, where intermediate
trapping occurs, the trap can drag a single vortex over
long distances, but still occasionally exchanges this vor-
tex with another pinned vortex. Within phase III we find
a counterintuitive effect in which the trap couples more
strongly to a single vortex at higher velocities than at
lower velocities, since at lower velocities there is enough
time for a pinned vortex to complete an exchange with
the trapped vortex. Phases II and III both exhibit stick-

slip fluctuations of the force experienced by the trap that
correlate with vortex exchange events and with the entry
and exit of vortices from the trap. Phase IV is an inter-
mittent multiple trapping regime in which the trap alter-
nates between capturing one or two vortices, producing a
telegraph noise signature in the trap force fluctuation sig-
nal. In phase V, where the trap is strongly coupled and
always captures two vortices, the telegraph noise signal
is lost. We map the evolutions of these phases for varied
trap coupling strength, trap velocity, and the angle of
trap motion with respect to the x symmetry axis of the
pinning array. For a given trap coupling force, transitions
among the phases occur as a function of increasing trap
velocity. Our results should be general to other types of
particle systems with a periodic substrate subjected to a
moving local trap, such as colloidal particles, skyrmions,
or ions on optical traps.
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