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Abstract 

We present a comprehensive study of the magnetization dynamics and phase evolution in the 

chiral helimagnet Cr1/3NbS2, which realizes a chiral soliton lattice (CSL). The magnetic field 

dependence of the ac magnetic response is analyzed for the first five harmonic components, 

Mnω (H) (n = 1 – 5), using a phase sensitive measurement over a frequency range, f = 11 – 10,000 

Hz.  At a critical field, the modulated CSL continuously evolves from a helicity-rich to a 

ferromagnetic domain-rich structure, where the crossover is revealed by the onset of an 

anomalous nonlinear magnetic response that coincides with extremely slow dynamics. The 

behavior is indicative of the formation of a spatially coherent array of large FM domains which 

relax on macroscopic time-scales. The frequency dependence of the ac magnetic loss displays an 

asymmetric distribution of relaxation times across the highly nonlinear CSL regime, which shift 

to shorter time-scales with increasing temperature.  We experimentally resolve the tricritical 

point at TTCP in a temperature regime above the ferromagnetic Curie temperature which separates 

the linear and nonlinear magnetic regimes of the CSL at the phase transition. A comprehensive 

phase diagram is constructed which summarizes the features of the field and temperature 

dependence of the magnetic crossovers and phase transitions in Cr1/3NbS2. 



Keywords: Chiral helimagnet; Chiral soliton lattice; Spin dynamics; Tricritical point; Magnetic 

phase diagram; ac susceptibility; Dzyaloshinskii-Moriya interaction; Metamagnetic transition 

*Corresponding authors: phanm@usf.edu and sharihar@usf.edu  

 

I.  INTRODUCTION 

The spatially-modulated magnetic states that arise in noncentrosymmetric magnetic 

materials with strong spin-orbit coupling have gained significant interest due to the stability and 

high degree of tunability of their symmetry-protected spin textures. [1–6] In Cr1/3NbS2, the chiral 

helimagnetic (CHM) structure, with period L(0) = 48 nm, propagates over a remarkably large 

spatial range. This is due to the close coupling of the localized magnetic moments with the 

underlying crystal lattice via the Dzyaloshinskii-Moriya interaction [7,8] and the high uniaxial 

anisotropy which fixes the spin helix along the crystallographic c axis. [9–11] The layered 

structure of Cr1/3NbS2 consists of 2H-type planar NbS2 with Cr atoms intercalated between 

planes and belongs to the hexagonal space group P6322, which lacks inversion symmetry. [12] 

The localized moments of the Cr3+ ions (S = 3/2) are oriented in the ab plane and exhibit strong 

single-ion anisotropy. [13,14] Under a magnetic field applied perpendicularly to the chiral axis, 

the harmonic spiral structure continuously crosses over into a nonlinear chiral soliton lattice 

(CSL), as illustrated in Fig. 1(a). [15,16] According to a quasi-1D model, [6,17] the CSL can be 

described as a periodic chain of ferromagnetic domains separated by 360° domain walls, called 

solitons. [15,18] The physical realization of the CSL in Cr1/3NbS2 was first observed by Togawa 

and coworkers via a Lorentz microscopy experiment. [16] In recent years, a number of studies 

have uncovered fundamental properties of the symmetry-broken magnetic state. The sliding 

motion of the highly coherent CSL structure in the presence of an ac magnetic field has been 



theoretically shown to amplify the physically observable spin motive force, which is in direct 

proportion to the number of solitons along the spin chain. [19,20] Several studies which followed 

have shown the effects of confinement on both its collective dynamics [21] and of the 

topologically protected CSL, in which the number of solitons can be discretely controlled. [22–

24] Thus, as a candidate for spintronics applications, a clear understanding of the magnetic field 

dependence of the ac magnetic response of the CSL is essential in controlling spins and spin 

transport for magnetoelectronic devices.  

The chiral magnetic phase is characterized by a robust spin coherence in which both the 

amplitude and phase of the order parameter display long-range order. [17] In the presence of a 

magnetic field, the modulated CSL is stabilized due to the competition between field-induced 

commensuration and the chirality-protected helical ground state.  A schematic diagram displayed 

in Fig. 1(b) presents a simple model of the evolution of the spin uniformity or coherence (ξ) as a 

function of magnetic field, H. [25] At H = 0, the spin coherence of the CHM phase is 

theoretically infinite due to the uniformity of the structure over the entire crystal. As H is 

increased, ξ abruptly disappears, marking the crossover into a distorted helicoid state. In this 

helicity-rich regime of the CSL, the growth of ξ is minimal in a field range, 0 < H < HC,1.  At a 

crossover field, HC,1, ξ increases more rapidly as the periodic ferromagnetic domains of the CSL 

grow and eventually diverge at the incommensurate to commensurate (IC-C) phase transition 

into the forced ferromagnetic (FFM) phase at HC,2. The long-range coherence exhibited in the 

incommensurate CSL leads to special consequences such as collective dynamics, the character of 

which depends on the excitation frequency. [6,17,25]  For example, in the microwave range, 

phonon-like modes or sliding dynamics of the CSL may occur at on- or off-resonance 

frequencies, respectively. [17]   



On the other hand, the study of magnetization dynamics at frequencies much lower than 

the microwave range, ~ 0.1 – 10,000 Hz, can reveal the time-dependent response on length-

scales which range from the level of the magnetic superlattice to individual moments of 

ferromagnetic domains. The time-dependent magnetization due to an alternating field, Hac = h 

sin(ωt), can be expanded as, [26] 

1 1 2 2 3 3( ) sin( ) sin(2 ) sin(3 ) ...M t M t M t M tω ω ω ω ω ωω θ ω θ ω θ= + + + + + + ,  (1) 

where ω = 2π f, Mnω is the nth harmonic component (for integer n = 1, 2, 3, …), and θnω is the 

delay in phase of each component against Hac. M1ω represents the linear response to Hac while the 

non-zero contributions of the higher harmonics represent the degree of nonlinearity in the 

response of the magnetic system, i.e. the distortion of the periodic curve from sinusoidal 

behavior. Tsuruta, et al. [25] investigated the domain dynamics of the CSL across the phase 

boundaries separating the paramagnetic (PM) state for frequencies f = 0.1 – 500 Hz and fixed dc 

fields, Hdc. At small Hdc, the dynamic response lacked the signature magnetic loss and third-order 

harmonic response (M3ω) attributed to the formation of ferromagnetic domains. This identified 

the PM-linear CSL transition. Conversely, as Hdc was increased to a value close to HC,2, the 

magnetic response exhibited large magnetic loss and M3ω as a function of temperature on 

crossing into the highly coherent ferromagnetic domain-rich CSL from the FFM phase. This field 

regime of the CSL is referred to as the highly nonlinear (HNL) CSL.  

Although the results in [25] allowed the delineation of the phase boundaries between the 

high temperature disordered state and the chiral magnetic phase below T0, it is not clear how the 

dynamics change as a function of magnetic field as the CSL continuously evolves from linear 

regime and across the highly nonlinear regime. In general, the behavior of the magnetic response 

of long-wavelength structures includes contributions from spins on atomic length-scales and 



from the macroscopic spin structure. [27–29]  These contributions have vastly different time-

scales in which the latter may not be completely tracked by the ac measurement. Thus, the 

observation of the frequency dependence of the ac magnetic response may be used to identify the 

onset of the collective response of a spin structure that is coherent over large length-scales. 

The schematic H-T phase diagram for Cr1/3NbS2, presented in Fig. 1(c), summarizes 

experimental [25,30,31] and theoretical [32,33] results and depicts the phase boundaries near the 

critical temperature. An isothermal line at temperatures below the tricritical point, TTCP, tracks 

the continuous transformation that coincides with the coherence model in Fig. 1(b). The IC-C 

phase boundary (black line), below which the chiral magnetic state exists, terminates at T0 − the 

zero-field critical temperature that marks the onset of the CHM phase. According to recent 

experimental and theoretical studies, the spatially modulated phase is stable in a region above the 

Curie temperature, TC. [31–33] In this region, a tricritical point along the chiral phase line 

separates the second-order HNL CSL-FFM transition from the first-order linear CSL-PM phase 

transition.  

In [31], we reported phase boundaries which were carefully determined using the 

temperature and magnetic field dependence of the magnetic entropy change (ΔSM (T,H)) and dc 

magnetization. Our results demonstrated that the chiral magnetic phase is stable above the Curie 

temperature within a precursor region (TC − T*) analogous to the fluctuation-disordered regime 

observed in the cubic CHMs. [34,35] Although the first- and second-order behaviors were 

demonstrated experimentally, the location of the tricritical point was not experimentally 

resolved. The ac magnetic response reported in [25] identified a possible tricritical point 

separating the linear and nonlinear regimes, however, the results do not show refined detail in 

this region. As relaxation times observed at the phase boundaries in chiral helimagnets have been 



shown to decrease dramatically (over several orders of magnitude) at temperatures close to the 

phase transition [36], a wider frequency range may allow the refinement of distinctly different 

magnetic regimes to locate the tricritical point as well as detect the CSL behavior within the 

precursor region, TC − T*. 

The following study presents an analysis of the ac magnetic response as a function of 

applied dc magnetic field, Mnω(H), which tracks the dynamic response across the spatially 

modulated chiral phase into the FFM state. The measurement is taken across a logarithmic 

frequency range, f = 11 − 10,000 Hz, on a single crystal sample with TC = 130.75 K. [31] We 

first present the field dependence of the linear ac magnetic response in Sec. III A. Sec. III B. 

follows with an analysis of the higher harmonic components of the ac magnetic response to 

clarify how the nonlinear response evolves as the chiral magnetic phase undergoes multiple 

field-induced crossovers. The study of the relaxation behavior of the HNL CSL is presented in 

Sec. III C. The temperature dependence, Mnω(T), is presented in Sec. IV and clarifies the nature 

of correlations above the magnetic ordering temperature. Finally, in Sec. V, the phase diagram is 

constructed and the tricritical point is identified where the separation between the linear and 

highly nonlinear CSL regimes becomes apparent. A brief summary is given in Sec. VI. 

 

II.  EXPERIMENTAL METHODS 
 

The Cr1/3NbS2 single crystal was grown by a chemical vapor transport method that has 

been described elsewhere. [37] Measurements of the ac magnetic response, Mnω, were carried out 

using an AC Magnetometry System (ACMS) option for a commercial Physical Property 

Measurement System (PPMS, Quantum Design). Both the temperature and field dependence of 

Mnω, M'nω, and M''nω were measured up to the fifth harmonic for the driving field Hac = h sin (2π f 



t) with amplitude, h = 5 Oe. The temperature-dependent ac magnetic response, Mnω(T), was 

measured with a series of fixed dc fields ranging from Hdc = 0 – 1200 Oe, parallel to Hac, with a 

linear frequency range, f = 10 – 10,000 Hz.  The ac magnetic response as a function of applied dc 

magnetic field, Mnω(H), was measured for a series of temperatures in the range T = 129 − 133 K 

with a logarithmic frequency scale, f = 11 − 10,000 Hz. Temperature- and field-dependent 

measurements were taken using a zero field-cooled (ZFC) protocol with Hac/dc ⊥ c. A warming 

protocol was used between each measurement in which the sample was heated to 200 K, well 

above TC, to remove history effects.  

 The complex ac magnetic response can be separated into real and imaginary parts, 

n n nM M iMω ω ω′ ′′= + ,      (2) 

where the imaginary component, M''nω, is 90° out-of-phase with M'nω and reflects the presence of 

hysteresis or loss in M(Hac). 

 

III. AC MAGNETIC RESPONSE: FIELD DEPENDENCE 
 

A. Linear response 

Figs. 2(a) and (b) show the real and imaginary components of the linear magnetic 

response as a function of applied dc magnetic field, M'1ω (H) and M''1ω (H), measured with f = 

111 Hz for selected temperatures ranging between T = 129 – 133 K. While M'1ω is non-zero for 

all fields measured, M''1ω appears only at 0 Oe and in a field range between H = 250 – 570 Oe, 

i.e. where M'1ω shows a giant response. In the context of the simple spin coherence model 

described in Sec. I, the following describes the behavior of the ac magnetic response as the 

magnetic system continuously transforms from a spatially-modulated chiral phase to the 



homogenous FFM state: At H = 0 Oe, M'1ω displays a maximum, which is accompanied by a 

large M''1ω due the essentially infinite spin coherence of the CHM structure, which is spatially 

uniform over the entire crystal. As magnetic field is increased in steps of 10 Oe, M'1ω drops to a 

relatively constant value. M''1ω abruptly goes to zero and marks the crossover into the linear 

CSL. In this regime, long-range spin coherence disappears, extending over a broad field range 

from ~ H = 30 – 250 Oe for T = 129 K. At a critical field, the spin system crosses over into a 

HNL CSL in which both M'1ω and M''1ω show an exponential-like increase that evolves into a 

broad peak with sharp anomalies. Above a critical magnetic field, M'1ω drops to a minimum and 

loss disappears marking the IC-C phase transition into the FFM phase. 

Figs. 2(c) and (d) show the H-T surface plots of M'1ω(H,T) and M''1ω(H,T) for f = 1111 

Hz. The double anomalies of the HNL CSL are apparent as dark red ridges. The large linear 

response and accompanying magnetic loss of the HNL CSL extend past the Curie temperature, 

TC = 130.75 K measured for this system, [31] into a region marked by strong chiral correlations, 

in agreement with results in [31–33].  For temperatures above ~131.5 K, the magnetic loss 

vanishes. Here, M'1ω remains as a single broad peak (see also Figs. 2(a) and (b)) and extends to 

T0 ~ 132.25 K, which marks the disappearance of the chiral magnetic phase. This feature without 

magnetic loss emerges on the boundary between the linear CSL and PM states. [25] The H-T 

surface plots mirror the phase diagram shown in Fig. 1(b). Namely, the HNL CSL-FFM 

transition and linear CSL-PM transitions meet in the region TC − T0. 

While the behavior of the domain dynamics elucidated the HNL CSL-FFM and linear 

CSL-PM phase boundaries as a function of temperature in [25], the nature of the field-dependent 

crossover from the helicity-dominated linear regime of the chiral phase into the highly coherent 

ferromagnetic domain-rich nonlinear regime of the CSL is still unclear. To understand the 



evolution of the spatially-modulated chiral phase, the study begins with a comparison of the 

static (differential) and dynamic susceptibilities. Fig. 3 compares the differential susceptibility, 

dM/dH, shown by the black curve, and the ac susceptibility, M1ω'/h, shown by the green curve, 

for T = 129 K at the lowest frequency (longest time-scale) measured in this study, f = 11 Hz. 

dM/dH, derived from dc magnetization versus magnetic field measurements, shows a single peak 

at a characteristic field, HdM/dH
peak. As the susceptibility reaches its maximum, in a field regime 

where the coherent FM domains dominate the magnetic structure, the dynamic susceptibility 

deviates from the behavior of dM/dH, splitting into two anomalies of lesser magnitude. The 

location of HdM/dH
peak lies exactly at the position of the minimum between the two peaks in 

M1ω'/h. A closer inspection indicates that the deviation between the dc and ac susceptibilities 

becomes prominent near H = 250 Oe and coincides with the onset of non-zero magnetic loss, 

shown by the orange curve. Clearly, the dynamic susceptibility at 11 Hz, which has a time 

window of ~ 90 ms, does not track the susceptibility measured in the static limit. The dynamic 

response is instead suppressed in magnitude and is accompanied by an increase in magnetic loss.  

The discrepancy in the magnetic field dependence of the susceptibility has been observed 

in many systems with long-wavelength magnetic structures, e.g. CHM and SkL phases. [4,29,38] 

The difference in magnitude has been linked to (1) a slow field-driven process, such as the 

reorientation of large helical domains, that may only be fully observed in the zero frequency 

limit, and (2) phase coexistence and strong dissipation accompanying a first-order transition. [29] 

As the field-driven crossover in Cr1/3NbS2 is a continuous process, [16] the dynamic behavior 

shown here is characteristic of long-wavelength magnetic structures that relax on macroscopic 

time-scales. [27] Indeed, the suppression of the susceptibility is enhanced with higher frequency 

and will be explored further in Sec. III. C. In the following section, we will examine the variation 



of the nonlinear response in the field regime marked by slowing dynamics to identify the onset of 

collective dynamics of a coherent macroscopic spin state.    

B. Nonlinear response 
 

We begin with a brief review of nonlinear ac magnetic response in magnetic systems. 

The relative magnitudes of higher harmonic components represent the distortion of the time-

dependent magnetization from typical sinusoidal behavior in response to an ac driving field, Hac 

= h sin(ωt). Mito and coworkers have rigorously studied the nonlinear response of chiral 

magnetic materials [39–42], mainly as a tool to study magnetic domain dynamics: The 

dynamical magnetization, M(Hac), with large M3ω and magnetic loss is modelled using the 

nonlinear spring (Duffing) equation to describe the displacement of domain walls from 

equilibrium. [41] In light of the description of the collective dynamics of the chiral soliton lattice 

in relation to a modified Duffing oscillator model [20], Tsuruta, et al. applied this technique to 

Cr1/3NbS2 to elucidate the dynamics across different regimes of the CSL with increasing 

temperature. [25] Beyond domain dynamics, early studies of higher-order susceptibilities yielded 

descriptions of the phase transitions in canonical systems, i.e. FM, antiferromagnet, and spin 

glass [43,44]: The third harmonic identifies the nature of the magnetic ordering at the phase 

transition. It is linked to the breaking of spatial-reversal symmetry and yields information about 

the spin environment. [39,40] Additionally, the even harmonics are dependent on the presence of 

a symmetry-breaking internal field and are commonly utilized as an unambiguous detection of 

spontaneous magnetization. [45–47] Thus, the analysis of the nonlinear ac magnetic response can 

be a powerful tool to understand the fundamental phenomena across various magnetic regimes. 

 The first five harmonics of the ac magnetic response as a function of magnetic field, 

Mnω (H), at f = 111 Hz are compared in Figs. 4(a)-(f), where the black curves represent the 



measurement at T = 129 K. The first column, Figs. 4(a)-(c), compares the large response of the 

higher-order odd harmonic components, M3ω(H) and M5ω(H), to the magnetic loss M''1ω(H). In 

Figs. 4(e) and (f), the large responses of the even harmonic components, M2ω and M4ω, are 

displayed and show a complex modulation across the highly nonlinear regime. As a reference 

between even and odd harmonics M'1ω is displayed in Fig. 4(c).  

M2ω – M5ω capture the disappearance of spin uniformity which is predicted to occur as the 

CHM structure crosses over into the CSL. At H = 0 Oe, the magnetic response of the CHM 

structure displays a contribution from all higher harmonics, M2ω – M5ω, and abruptly drops at 

small H. The minimum, which extends for a relatively wide field range, rapidly rises at a 

characteristic field, HC,1. 

As shown by the black dashed lines through Figs. 4(d)-(f), M3ω(H) and M5ω(H) display 

virtually the same field dependence as M''1ω(H):  The onset of M''1ω is accompanied by a rise in 

M3ω, and appearance of M5ω, and is followed by an exponential-like increase to sharp double 

anomalies. Thus, the onset of slowing dynamics, indicated by M''1ω (Fig. 3), corresponds to a 

prominent nonlinear response which, in the picture of magnetic domain dynamics, is associated 

with the growth of the FM domain component of the CSL. The third harmonic response as a 

function of field, M3ω(H), for f = 25 – 10,000 Hz is shown in Fig. 5 for T = 129 K.  As frequency 

is varied, the regime of large M3ω remains rigid as a function of magnetic field and shows no 

shift of the sharp double anomaly (Fig. 5). M3ω displays the characteristic dip in magnitude that 

was observed in M'1ω(H) and M''1ω(H), which corresponds to peak in the static susceptibility, 

HdM/dH
peak.  

While the highly nonlinear regime of the CSL was previously characterized [25] with 

respect to the large M3ω, the large magnitude of the higher harmonics from M2ω to M5ω reinforces 



that the time-dependent magnetization is highly distorted in response to the sinusoidal driving 

field. The relative magnitudes of the higher harmonics to M1ω further demonstrate the high 

nonlinearity in the system. Specifically, the ratio of M3ω/M1ω, called the Klirr factor, is used as a 

measure of the nonlinearity and was reported previously as approximately 10% in this 

system. [25]  The measurements reported herein demonstrate a large Klirr factor of up to 15%. It 

is also worth noting that M5ω is in the range of 16% of M3ω. Depending on the measurement 

frequency, the peak magnitude of M2ω is comparable to M3ω, as seen in Fig. 4(e) where M2ω(H) 

measured at T = 130.75 K reaches a magnitude of ~ 1.3 (emu/mol). Consequently, the even order 

terms of (1) contribute a considerable distortion to the time-dependent magnetization and, 

similarly to M3ω and M5ω, reflect the collective response of the coherent FM domains of the HNL 

CSL.  

The magnetic field dependence of the second harmonic magnetic response, M2ω(H), is 

shown in Fig. 6(a) for T = 130.5 K. As observed in the odd order ac magnetic responses, M2ω 

displays a complex field dependence across the HNL CSL, which is further demonstrated by the 

real and imaginary components (M'2ω and M''2ω) shown in the inset. Both the in-phase and out-

of-phase components contribute almost equally to the total M2ω, which signifies significant 

energy loss associated with the changes in internal field. Due to the presence of spontaneous 

magnetization in a system, there exists an asymmetry in the magnetization with respect to the 

direction of the applied magnetic field in an ac measurement. [45], [46] Furthermore, sharp 

anomalies in M2ω should accompany sudden changes in internal field. [45], [46] The M2ω 

response is largest upon entering and exiting the highly nonlinear regime as field increases, 

where on entry a sharp positive to negative sign change occurs and on exit, small positive values 

sharply switch to negative moving into the FFM phase. The sign changes in M'2ω and M''2ω across 



the highly nonlinear regime can be observed for all temperatures measured up to T ~ 131.5 K, as 

can be seen in the M'2ω(H,T) surface plot in Fig. 6(b). M2ω(H) displays sudden changes 

associated with the onset of the rich ferromagnetic domain component of the HNL CSL. This 

may be associated with a precipitous increase in ferromagnetic domain size which, based on 

static magnetization measurements, thereafter rapidly increases with magnetic field. [48] To our 

knowledge the magnitude of M2ω is usually not a significant contribution to the total measured ac 

magnetic response, and therefore the results have not been formally displayed in previous studies 

of the nonlinear response of chiral magnets. [25,41]  

The field dependence of M2ω – M5ω clearly portrays the evolution of the CSL from one 

regime to another: the linear CSL, which displays a predominantly in-phase linear response to an 

ac magnetic field, and the HNL CSL, which includes large nonlinear contributions and large 

magnetic loss to the total response. The attenuation in magnitude of M1ω – M5ω at HdM/dH
peak is a 

signature of the excessive slowing of the dynamics across the highly nonlinear CSL as the FM 

domains continuously grow with increasing H. [25] To further understand the relaxation 

behavior across the highly nonlinear regime, we analyze the frequency dependence in the 

following section. 

C. Frequency dependence 

The frequency dependence of M'1ω(H) and M''1ω(H) (Figs. 7(a) and (b)) further illustrates 

the effect of a decreasing time window as the magnitude of M'1ω decreases with frequency. To 

investigate the effect of frequency in more detail, a quantitative analysis of the frequency 

dependence of the linear susceptibility, χ = M1ω/h, is possible from the Cole-Cole 

modification [49] of the Debye model, 
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Thus from fits of (4) and (5) to the frequency dependence of the real and imaginary components 

of the linear susceptibility, the above parameters can be extracted to analyze the change in the 

dynamics as a magnetic phase evolves with temperature and magnetic field.   

Figs. 7(c) and (d) plot the real and imaginary components of χ1ω, respectively, as a 

function of frequency at H = 490 Oe, which corresponds to HdM/dH
peak at T = 129 K. χ''1ω displays 

an asymmetry about its peak which corresponds to the characteristic frequency f0 or, 

equivalently, the average relaxation time, τ0 (Fig. 7(d)).  Additionally, χ''1ω approaches an 

apparent non-zero value in the isothermal limit, χ(ω → 0). The solid lines in Fig. 7(c) and (d) 

demonstrate how the model deviates from the measured χ'1ω and χ''1ω, where separate fits were 

performed on either side of the peak at τ0. To account for the low frequency behavior of χ''1ω, 



following a similar procedure reported in [50], an additional frequency-independent term, χ0'', 

was added to the right hand side of (5).  

Fig. 8(a) plots the evolution of τ0 with temperature for selected fields within the HNL 

CSL regime. For each magnetic field, an acceleration of the dynamics is observed as the 

characteristic time drops with an increase in temperature, varying from ~ 10-3 – 10-5 s 

approaching T = 131.5 K. However, as H is increased and the FM domain component of the 

HNL CSL grows, a general slowing trend is observed between curves, most noticeably as 

magnetic field increases past HdM/dH
peak.  

As demonstrated by the fits to χ'1ω in Fig. 7(c), the asymmetry is less pronounced with 

respect to the inflection point at τ0. However, at the lowest frequencies, χ'1ω deviates 

significantly from the expected sigmoidal dispersion. In this regime, the susceptibility displays 

an almost linear increase in magnitude as frequency varies from 39 – 11 Hz. Thus, as the 

measurement window approaches macroscopic time-scales, an additional dynamic process is 

captured by both the real and imaginary components of the susceptibility. Fig. 8(b) shows the 

trend in the constant term χ''0, which gradually drops with temperature to a value close to zero at 

T = 131.5 K. The drop in χ''0 may indicate that the gradual loss of a competing dynamic process 

which disappears above the tricritical point. 

Anomalous relaxation phenomena with respect to the Cole-Cole model has been 

observed in other magnetic systems with spatially-modulated structures such as the cubic chiral 

helimagnets and a cycloidal magnet, GaV4S8. [38,50,51] In each of these systems the behavior of 

the deviation varies: The frequency dependence of χ''1ω in Fe1−xCoxSi displays a similar profile to 

the data presented in this study and is attributed to the coexistence of multiple phases due to 

chemical doping. [51] In [50], it was reported that Cu2OSeO3 the behavior of χ''1ω implied a 



symmetric distribution of relaxation times, yet a frequency-independent component, χ''0, was 

added to the model for the full frequency range. In GaV4S8, separate fits of the Cole-Cole model 

to χ'1ω and χ''1ω failed to produce the same parameter set. [38] Unlike in Cr1/3NbS2, where the 

anomalous behavior is representative of the dynamics of a pure magnetic phase, the behavior in 

these systems is observed on phase boundaries between modulated phases. Nevertheless, the 

relaxation phenomena in each of these systems are complicated by the slow dynamics of 

magnetic structures on large length-scales.   

The acceleration of the dynamics with increasing temperature is also clear in the 

frequency dependence of the real and imaginary components of the third harmonic response, 

M'3ω and M''3ω, Figs. 9(a)-(e). As previously discussed in Sec. III. B., the field range of the large 

M3ω signal is relatively rigid as frequency is varied. However, the character of M'3ω and M''3ω 

varies significantly with frequency across the HNL CSL.  In Fig. 9(a), M'3ω starts off as a large 

negative value that gradually reduces in magnitude with increasing frequency. For f ~ 111 – 155 

Hz, M'3ω exhibits a negative to positive crossover. Above 155 Hz, M'3ω increases to a positive 

peak. The gradual evolution of the sign change in M'3ω is typically attributed to the ac 

measurement probing the response of spin interactions and other degrees of freedom at different 

time, and hence, spatial scales. [40,44,47] The variation in the characteristic frequency 

dependence described above is summarized in Figs. 9(b)-(d), where the location of the inflection 

point of the negative (blue) to positive (red) crossover in M'3ω (Η,Τ) shifts to higher temperatures 

with increasing frequency.  

The decrease in time-scale at progressively higher temperatures has been observed in 

magnetic systems with long-wavelength structures and suggests the thermal activation of 

relaxation processes. [36,38] However, the behavior may not always be explained in terms of a 



simple Arrhenius model, f0 = Aexp(-Ea/kBT), which can lead to unphysically large energy 

barriers. [50] Fig. 10 plots the extracted parameters as ln f0 vs 1/T.  The inset illustrates the 

acceleration of the dynamics as the peak in χ''1ω vs f shifts to higher values of f0 as temperature 

increases toward the phase transition at T ~ 131.5 K.  The behavior of spin relaxation clearly 

falls outside of a simple thermal activation scheme in which a linear trend in ln f0 vs 1/T would 

be expected.  However, the data show a clear trend in the dynamic response, which speeds up on 

approaching the tricritical point. The frequency regime used in this work allows access to shorter 

time-scales than in previous studies, which may aid in refining the destruction of the highly 

nonlinear regime to identify the tricritical point.  

 

IV. AC MAGNETIC RESPONSE: TEMPERATURE DEPENDENCE 
 
 To gain a comprehensive portrait of the phase diagram, we explore the behavior of the 

even and odd higher harmonic responses with temperature across several magnetic field regimes. 

As demonstrated in Sec. III C., the dynamic phenomena close to the phase transition gradually 

approach shorter time-scales. Therefore, a particular emphasis is placed on measurements at the 

higher end of the frequency spectrum to clarify the phase evolution within the precursor region, 

TC − T*.  

Fig. 11 shows the temperature dependence of M1ω – M5ω of the CHM phase at 0 Oe and f 

= 10,000 Hz.  The familiar sharp kink in M1ω corresponds to the phase transition into the CHM 

phase from the PM state [10,31,52,53] at T0 ~ 132.25 K. The inflection point, which is noted in 

other chiral helimagnets to mark a fluctuation-disordered precursor region [34,35], occurs at T* 

= 133 K and is in close agreement with our M vs T results reported in [31]. The inflection point 

at T* coincides with the onset of strong M2ω and M3ω, which supports the predictions of chiral 



correlations in the precursor region and suggests an increasing coherence of fluctuations as the 

phase transition is approached. In fact, a large zero-field M3ω(Τ) has been demonstrated to detect 

the effects of crystalline chirality on magnetic correlations above the transition temperature. [39]  

The temperature dependence of Mnω at fixed dc fields is presented in Fig. 12(a)-(d). Figs. 

12(a) and (b) show the temperature dependence of the real and imaginary components of the 

linear magnetic response, M'1ω(T) and M''1ω(T), measured in this study at f = 100 Hz and with dc 

field, Hdc = 50 – 1200 Oe. The two field-dependent anomalies in M'1ω(T) at high and low 

temperature, respectively, are consistent with results reported by Tsuruta, et al. in [25]. Namely, 

for Hdc > 400 Oe, a shallow peak emerges in M'1ω at high temperature, T = Tm (> TC), that is not 

accompanied by loss. A similar feature has been observed above TC in ac magnetic 

measurements of the cubic chiral helimagnets and is associated with the transition from the 

paramagnetic into the field-polarized (FP) state. [29,34] It has already been demonstrated that 

strong ferromagnetic correlations exist well above TC in Cr1/3NbS2 [31] and in other 

CHMs. [35,54] Thus, the transition at Tm indicates the temperature regime in which the FM 

correlations become strongly interacting. In this case, under an applied magnetic field, M2ω(T) 

should be present. The second harmonic magnetic response displayed in the inset supports this 

picture, where the peak in M2ω(T) coincides with the peak at Tm in M'1ω(T) measured at 1200 Oe.  

Tm shifts to higher temperature as magnetic field is increased and Zeeman energy stabilizes FM 

correlations at higher temperature.  

For Hdc ≥ 400 Oe, the low temperature peak in M'1ω(T) is accompanied by a significant 

response in M''1ω(T) which, as established in [25], reflects the energy loss of the ferromagnetic 

domains of the HNL CSL against the time-dependent field. Similar to the behavior of M'1ω(H) 

reported in Sec. III A., the center of the broad peak exhibits a small dip in magnitude and 



coincides with the center of the highly nonlinear regime of the CSL at HdM/dH
peak. The abrupt 

disappearance of magnetic loss as temperature is increased, occurs at phase the boundary 

between the  HNL CSL and FFM phase.  The low temperature peak in M'1ω(T) becomes 

suppressed at lower temperatures as the dynamic processes of the HNL CSL slow significantly 

moving away from the tricritical temperature. Specifically, at Hdc = 800 Oe, the M'1ω(T) 

maximum is completely suppressed, yet the domain dynamics are still apparent from the non-

zero M''1ω(T) down to T ~ 115 K in Fig. 12(b). The same behavior is observed in [25], where it 

was noted that the anomaly in M'1ω(T) measured at f = 1 Hz is temporarily enhanced and then 

suppressed at lower temperature. In the present study, the measurement of M'1ω(T) for f = 100 Hz 

accesses time-scales that are faster by 2 orders of magnitude. Hence, the regime of maximum 

response occurs at temperatures closer to the phase transition. 

Figs. 12(c) and (d) demonstrate the temperature dependence of M2ω and M3ω for low 

magnetic fields, H = 50, 200, 400 Oe, measured at f = 10,000 Hz. A double peak in M2ω 

gradually develops with successively higher fields up to 400 Oe, where the anomaly is 

accompanied by a large M3ω of the HNL CSL.  The M2ω response at 50 Oe and 200 Oe which 

lack a giant M3ω and a magnetic loss signature in Fig. 12(b) represents the PM-linear CSL 

transition.  Hence, the transition from PM-linear CSL displays a nontrivial change in internal 

field with a similar character to the transition into the HNL CSL. The non-zero M2ω signal 

indicates the presence of small field-polarized regions in an otherwise helicity-rich structure. It is 

likely due to the gradual formation of short-range ferromagnetic regions with increasing 

magnetic field, which agrees with the theoretical picture in which the spatial period of the CSL 

continuously grows as H increases. 

 



V. PHASE DIAGRAM AND TRICRITICAL POINT 
 

In this section, a comprehensive phase diagram is constructed to summarize the features 

of the field and temperature dependence of the crossovers and phase transitions in Cr1/3NbS2. 

First, the details of the determination of the critical values are presented in Fig. 13. Fig. 13(a) 

directly compares the field dependence of the first derivatives of the linear and higher order 

magnetic responses, dM'1ω/dH, dM3ω/dH, dM2ω/dH for the measurement at T = 129 K. The 

magnetic responses all display sharp changes in slope across the highly nonlinear regime of the 

CSL. The collapse in the spin coherence of the CHM state with an increase of magnetic field 

from H = 0 Oe is observed in all measurements, after which the change in slope is minimal over 

a broad field range. Both dM'1ω/dH and dM3ω/dH display a gradual increase near H = 300 Oe. 

This coincides with the apparent onset of the frequency dependence in M1ω and M3ω as well as 

the deviation between the static and dynamic susceptibilities and appearance of magnetic loss 

(Fig. 3). Above 400 Oe, rapid jumps in slope occur in M1ω, M3ω and M2ω, which we define as the 

crossover field, HC,1. In the field regime above HC,1, the CSL is characterized by the onset of an 

anomalous M3ω response which coincides with extremely slow dynamics associated with the 

collective response of spatially coherent FM domains. This behavior falls off at HC,2, the critical 

field for the IC-C transition into the FFM phase.  

The determination of the critical temperature, Tm, which separates the paramagnetic and 

field-polarized state is shown in Figure 13(b). As demonstrated in Fig. 12(a), Tm shifts to higher 

temperature with increasing magnetic field. M'1ω(T) for f = 10,000 Hz measured in the vicinity of 

the tricritical point are displayed for fixed dc fields ranging from Hdc = 400 – 550 Oe. Unique Tm 

values were extracted from a peak fit of each curve, as demonstrated in the inset. The 

disappearance of Tm indicates the location of the tricritical temperature, below which the 



continuous transformation of the chiral helix into the ferromagnetic state is achieved via a 

crossover into a highly nonlinear CSL.  

Figs. 14(a)-(f) display the surface plots of M'1ω – M'5ω(H,T) and M''1ω(H,T) measured at f 

= 10,000 Hz, for which the regime of maximum ac magnetic response runs from TC to TTCP. 

Critical field and temperature values determined from anomalies in Mnω are superimposed. In 

Fig. 14(a), M'1ω demonstrates the extent of the chiral magnetic phase down to T0, the zero-field 

critical temperature of the PM-CHM transition. The chiral phase extends past the ferromagnetic 

Curie temperature calculated for this system [31] into a precursor region, TC − T*. In all plots of 

Mnω, a strong response is observed near H = 0 Oe, reinforcing the conclusion of Tsuruta, et 

al. [25] that the CHM phase exists as a singularity in the absence of applied magnetic field. The 

large response is present up to T* = 133 K as defined in Sec. IV., which may signify chiral 

correlations in a precursor regime analogous to the fluctuation-disordered region observed in the 

cubic chiral helimagnets. [34,35] 

The critical fields, HC,2, at which M'1ω and M''1ω fall off are marked by open black 

symbols below TTCP and in red for T > TTCP. A simple power law fit to the IC-C phase line is 

given by HC,2∝(T − T0)0.258±0.031 with T0 = 132.3 ± 0.05 K (solid black line). HC,1 and HdM/dH
peak 

are tracked by dashed lines extrapolated to H = 0 Oe using a similar power law to HC,2. The PM-

FP line is given by the location of Tm, determined from peak fits of M'1ω (T, Hdc) (green squares) 

as demonstrated in Fig. 13(b). Tm values obtained from M'1ω (T, H) reformulated from field-

dependent data (hollow pink squares) are in good agreement with temperature-dependent data, 

which demonstrates negligible hysteresis across the field-polarized transition. The intersection of 

the PM-FP phase line with HC,2 at TTCP = 131.35 K defines the tricritical point that separates the 

HNL CSL-FFM and the linear CSL-PM transitions.   



Fig. 14(b) labels the magnetic phases and mirrors the schematic phase diagram presented 

in Fig. 1(c) in Sec. I. The temperature and field dependence of each harmonic, Figs. 14(b)-(f), 

illuminates the destruction of the HNL CSL above the tricritical temperature, as the dynamic 

signatures of the periodic array of ferromagnetic domains disappear. Small M2ω and M3ω values 

exist above TTCP at the PM-linear CSL transition. As already demonstrated in the temperature 

dependence section, M2ω points to the change in internal field due to the gradual formation of 

short-range FM regions as a precursor to the crossover into the HNL CSL regime. In general, the 

presence of non-zero M3ω accompanying M1ω is expected at a phase transition. [26] However, it 

lacks the large magnetic response due to the formation of large FM domains which are spatially 

coherent over large length-scales.  The phase diagram calculated from dynamical measurements 

distinguishes the linear and HNL CSL regimes and reinforces the existence of the tricritical point 

that has been theoretically predicted. [32,33] 

While the phase diagram based on the field dependence of Mnω presented here focuses on 

a temperature regime close to the phase transition, the measurement window detects the 

signature magnetic loss of the FM domains for temperatures down to at least T = 110 K, as 

demonstrated in Sec. IV. The dynamic behavior studied within the frequency range f = 11 – 

10,000 Hz reinforces the results of Tsuruta, et al. [25], measured at frequencies as low as 0.1 Hz. 

In the present study, Tm shifts from T = 131.35 – 135 K over fields H = 0.3 – 0.8 HC,0, where HC,0 

refers to the critical field extrapolated to absolute zero. In [25] the phase line also shifts with 

applied field, over a range of ~ 5 K as dc magnetic field varies from an estimated H ~ 0.4 – 0.9 

HC,0. The frequency range employed herein refines details of the phase diagram at high 

temperatures, where the dynamics are significantly accelerated.  



The broad field range of the linear CSL regime (ranging between 0 < H < HC,1 = 410 Oe 

at T = 129 K) is testament to the competition between the symmetry-protected chirality of the 

magnetic state and the external magnetic field which forces commensuration. This implies that 

the Zeeman energy must reach a critical value before the system crosses over into a 

ferromagnetic-domain dominated state, after which the growth of the commensurate regions 

presumably becomes more rapid with increasing magnetic field. The consequences of this 

competition are also seen in previous studies of the dc magnetization, which displays a linear 

growth at low field followed by a rapid nonlinear increase before reaching saturation. [25,31,37] 

Furthermore, as temperature is increased, the field regime becomes smaller as thermal disorder 

destabilizes the competition. Fig. 14(b) displays a line at low field that represents the deviation 

from linearity of the dc magnetization as a function of magnetic field curves, which was 

suggested as a possible crossover boundary between the linear CSL and HNL CSL in [25].  The 

measurements reported herein demonstrate that the system requires higher applied magnetic 

fields to exhibit the large nonlinearity in the magnetic response. 

The initial growth of the magnetic loss, as seen in Fig. 3, is quite slow and precedes the 

onset of the enormous magnetic response by a relatively large field interval, ΔH ~ 250 – 410 Oe.  

This behavior points to a gradual formation of commensurate regions, which agrees with the 

theoretical picture of a modulated CSL that evolves continuously from a simple chiral helix. At 

HC,1, our measurement detects a rather sharp increase in the magnetic response and magnetic loss 

(Fig. 13(a)) as the system crosses over into the HNL CSL. However, it is important to emphasize 

that the theoretical description of the field-induced evolution from a simple spin helix into a 

modulated HNL CSL is a completely continuous process. The dynamic magnetic response 

presented in this report sensitively detects changes in the magnetic structure. [55] According to 



early neutron diffraction studies of the soliton lattice by Izyumov and Laptev [56], the scattering 

amplitudes representing the first-order (harmonically-modulated) component and the zero-order 

(ferromagnetic) component cross at a magnetic field below the critical field for the IC-C 

transition (H < HC,2). [55] At the crossing point, the physics of the ferromagnetic domains may 

begin to dominate the dynamic response, [55] leading to anomalously large magnetic loss and 

nonlinear ac magnetic response.  

 
VI. SUMMARY 

We investigated the magnetic field-driven crossovers of the incommensurate chiral 

magnetic structures in the monoaxial helimagnet Cr1/3NbS2 via the magnetic field and 

temperature dependence of the ac magnetic response. As magnetic field is increased 

perpendicularly to the chiral spin helix, the growth of the spatial period of the commensurate 

domains of the CSL is initially slow. However, at a crossover field, HC,1, the FM domain 

component dominates the spin structure and marks the crossover into a highly nonlinear CSL. 

The anomalous ac magnetic response observed above HC,1 sensitively detects this change in 

magnetic structure, which coincides with the onset of extremely slow dynamics.  

The deviation in the static and dynamic susceptibilities of the HNL CSL is characteristic 

of a large magnetic structure that relaxes on macroscopic time-scales. An investigation of the 

frequency dependence of the susceptibility demonstrates that the dynamic response in the highly 

nonlinear regime of the CSL exhibits an asymmetric distribution of relaxation times.  The 

dispersion and loss in the linear ac susceptibility indicate the presence of a competing dynamic 

process, which is gradually lost as the dynamics speed up with increasing temperature. 

A thorough investigation of the M2ω component of the nonlinear response has been 

presented for the first time. M2ω probes the changes in internal field in both the HNL CSL and 



the linear CSL and exhibits signatures of spontaneous magnetization in both structures.  This 

suggests a gradual increase in the spatial period of commensurate regions throughout the CSL, 

and agrees with the theoretical picture of simple chiral helix which continuously transforms into 

a homogenous FFM phase via a CSL.  

  Each harmonic, M1ω – M5ω, illuminates the destruction of the HNL CSL above the 

tricritical point.  Based on the power law dependence of the IC-C phase line, HC,2, and the 

determination of the paramagnetic to field-polarized transition, Tm, the tricritical point at TTCP = 

131.35 K is experimentally resolved which separates the HNL CSL-FFM transition and the 

linear CSL-PM transition. 
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Figure captions: 

FIG. 1. Evolution of the spatially-modulated chiral spin structure in Cr1/3NbS2 with applied 
magnetic field. (a) The CHM structure continuously evolves into a CSL. The period of the 
helical ground state is L(0) = 48 nm. The CSL period, L(H), continuously grows with applied 
magnetic field, H, perpendicular to the c axis. The forced ferromagnetic (IC-C) transition occurs 
at magnetic fields above HFFM. (b) The change in spin coherence or uniformity of the magnetic 
structure as a function of magnetic field, ξ(H), as described in the text. The CHM is coherent 
over the entire crystal at H = 0 Oe. In the CSL regime, the spin uniformity corresponds to 
ferromagnetic domain (commensurate) component of the magnetic structure. (c) Schematic H-T 
phase diagram. The green line at H = 0 Oe represents the pure CHM state where ξ(0) = ∞. The 
PM-CHM transition occurs at T0. The CSL is divided into two regimes by a crossover boundary 
at HC,1 (blue line) which separates the linear and HNL CSL. The chiral phase boundary extends 
past the Curie temperature, TC, and terminates at T0. A precursor region of strong correlations is 
marked by T*. The tricritical point, TTCP, separates a second-order HNL CSL-FFM transition 
with a first-order linear CSL-PM transition. 
 
FIG. 2. Magnetic field dependence of the real and imaginary parts of the linear ac magnetic 
response, M1ω (H), measured with an ac magnetic field amplitude, h = 5 Oe. (a) Real and (b) 
imaginary parts of M1ω (H, T) measured as a function of magnetic field at fixed temperatures in 
the range T = 129 – 133 K. (b) Real and (b) imaginary parts of M1ω(H,T) measured for a 
frequency of f = 1111 Hz. 
 
FIG. 3. Comparison of the magnetic field dependence of the dc differential susceptibility, 
dM/dH, the ac susceptibility, M'1ω/h = χ'1ω, at f = 11 Hz (right axis), and ac magnetic loss, M''1ω/h 
= χ''1ω, at f = 11, 111 Hz (left axis). The dashed lines mark the field regime of the deviation 
between the dc and ac susceptibilities and the corresponding onset and destruction of ac 
magnetic loss. The maximum in dM/dH vs H, defined as HdM/dH

peak, is dependent on 
measurement temperature and occurs at H ~ 500 Oe at T = 129 K. 
 
FIG. 4. Magnetic field dependence of the linear and nonlinear components of the ac magnetic 
response for selected temperatures, Mnω (H, T) at f = 111 Hz. The magnitude of all harmonic 
components are highly dependent on frequency and hence do not display maximum magnitude 
simultaneously. (a) M'1ω(H). The large absolute magnitudes of (b) the third, M3ω, and (c) fifth, 
M5ω, harmonic response show a remarkably similar field dependence to the ac magnetic loss 
term. (d) The magnitude of the ac magnetic loss, M''1ω. The even harmonics (e) M2ω and (f) M4ω, 
have sizeable contributions to the total magnetic response and closely follow the inflection points 
of M''1ω. 
 
FIG. 5. The third harmonic of the ac magnetic response as a function of magnetic field, M3ω (H), 
for f = 25 – 10,000 Hz measured at T = 129 K. 
 
FIG. 6. Magnetic field dependence of the second harmonic of the ac magnetic response measured 
with f = 111 Hz. (a) M2ω(H) measured at 130.5 K. Inset: Real and imaginary components of 
M2ω (H). (b) Surface plot of M'2ω (Η, T). 
 



FIG. 7. Frequency dependence of the linear ac magnetic response at T =129 K. (a) Real and (b) 
imaginary parts of the linear ac magnetic response, M'1ω (H) and M''1ω (H), measured as a 
function of magnetic field. In- and out-of-phase linear susceptibility (d) χ'1ω = M'1ωh and (e) χ''1ω 
= M''1ωh as a function of frequency for the magnetic field corresponding to the dip in M'1ω (H) 
and M''1ω (H) at HdM/dH

peak marked by a blue asterisk in (b). The green line represents a fit of (4) 
and (5) to the low frequency side of the inflection point in χ'1ω and the peak in χ''1ω, respectively, 
which correspond to τ0 = 1/ (2π f0).  The blue lines represent fits on the high temperature side of 
τ0. 
 
FIG. 8. Dynamic parameters as a function of temperature (a) τ0, the characteristic time, and (b) 
χ''0, frequency-independent term, extracted from fits of equation (5) to the low frequency side of 
χ''1ω.  The corresponding magnetic fields are marked by asterisks in Fig. 7(b). 
 
FIG. 9. The third harmonic of the ac magnetic response as a function of temperature and 
magnetic field. (a) Frequency dependence of real component of M3ω (H) for f = 25 – 10,000 Hz. 
Inset: M''3ω. (b) – (d) Surface plots of the real part, M'3ω (H, T), for various frequencies. 
 
FIG. 10. Temperature dependence of the characteristic frequency, f0, corresponding to the 
magnetic fields marked in Fig. 7(b). Inset: χ''1ω vs f for temperatures ranging from T = 129 – 
131.5 K. The peak in χ''1ω at f0 shifts to higher frequency as temperature increases, as indicated 
by the black arrow, toward the tricritical point. 
 
FIG. 11.  Linear and nonlinear magnetic response of the unpolarized CHM state as a function of 
temperature at H = 0 Oe and f = 10,000 Hz.  The kink point at T0 ~ 132.25 K marks the PM-
CHM phase transition.  Non-zero values of M2ω − M5ω appear at T* = 133 K and correspond with 
the inflection point in M1ω that marks the onset of chiral correlations in the fluctuation-
disordered precursor region. 
 
FIG. 12. Temperature dependence of the ac magnetic response measured with an ac field 
amplitude, h = 5 Oe. (a) Real and (b) imaginary parts of M1ω (T) measured as a function of 
temperature with fixed dc fields in the range Hdc = 50 – 1200 Oe and f = 111 Hz. Tm marks the 
PM–FP transition, which shifts to higher temperature with increasing magnetic field. The inset 
shows M2ω which demonstrates the onset of strong FM correlations at Tm. (c) M2ω and (d) M3ω as 
a function of temperature for fixed dc fields in the range Hdc = 50 – 400 Oe at f = 10,000 Hz.  
 
FIG. 13. Determination of the critical values of field and temperature. (a) First derivative of M'1ω, 
M3ω, and M2ω as a function of magnetic field.  HC,1 is defined where the onset of rapid changes of 
slope in the linear and nonlinear magnetic response coincide. HC,1, represents the crossover field 
for the onset of the HNL CSL. HC,2 defines the critical field for the FFM transition. dM3ω/dH and 
dM2ω/dH are multiplied by a factor of 10. (b) Magnetic field dependence of M1ω (T) for Hdc = 400 
– 550 Oe measured for f = 10,000 Hz. As magnetic field decreases, the peak at Tm shifts to lower 
temperature and disappears at the tricritical point. Inset: Example of Lorentzian peak fit used to 
determine an accurate value of Tm. Standard error obtained from fits of each data set range 
between ± 0.012 – 0.045 K. 
 



FIG. 14. H-T phase diagram determined from the linear and nonlinear components of the ac 
magnetic response plotted onto (a) M'1ω(H,T), (b) M''1ω(H,T), (c) - (d) M'nω(H,T) for (n = 2 − 5) at 
f = 10,000 Hz, where Mnω(H,T) refers to the field dependence at fixed temperature. In (a) the 
critical temperatures are labeled: T* = 133 K, T0 = 132.3 K, TTCP = 131.35 K (red dashed line) 
and TC = 130.75 K (black dashed line). Field-dependent anomalies, marked by open symbols, in 
M''1ω (diamonds), M2ω (circles), and M3ω (squares) locate the low field increase at HC,1 (blue), dip 
in magnitude at HdM/dH

peak (blue), and high-field destruction at HC,2 (black) of the magnetic loss 
and higher harmonics corresponding to the HNL CSL. Equivalent temperature-dependent 
anomalies from Mnω(T,Hdc) measurements are marked by closed symbols. The IC-C phase line is 
given by the fall off of M'1ω(H) (stars). Above TTCP, the red symbols mark the lower and upper 
bounds of the anomaly across the linear CSL-PM phase transition. The magnetic loss and 
nonlinear response abruptly fall off at TTCP = 131.35 K given by the intersection of the PM-FP 
line defined by Tm (green/pink squares) and the IC-C phase line determined from the power law 
fit of HC,2 (solid black line).  
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