
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase transition in SU(N)×U(1) gauge theory with many
fundamental bosons

Ankur Das
Phys. Rev. B 97, 214429 — Published 25 June 2018

DOI: 10.1103/PhysRevB.97.214429

http://dx.doi.org/10.1103/PhysRevB.97.214429


PHASE TRANSITION IN SU(N)× U(1) GAUGE THEORY WITH MANY
FUNDAMENTAL BOSONS

Ankur Das
Physics & Astronomy - University of Kentucky

Here we study the Renormalization group flow of SU(N)×U(1) gauge theory with M -fundamental
bosons in 4 − ε dimension by calculating the beta functions. We found a new stable fixed point in
the zero mass plane for M > Mcrit by expanding upto O(ε). This indicates a second order phase
transition. We also calculated the critical exponents in both ε expansion and also in the large-M
expansion.

I. INTRODUCTION

Phase transitions in gauge theories are very interest-
ing because gauge theories appear as effective theories in
many physical problems. Historically, in particle physics
gauge theories have been studied in detail because of their
potential application to phenomenology. More recently,
there are several examples of emergent gauge degrees of
freedom in condensed matter physics1–7. Phase transi-
tions in those theories hold very rich physics. We will be
concerned solely with continuous gauge symmetries.

The simplest example of a phase transition in a con-
tinuous gauge theory is in U(1) gauge theory with
a single boson. This is the Ginzburg-Landau theory
of superconductor-insulator transition8. Fluctuations
around mean field were first studied by Coleman and
Weinberg9, who found that in d = 4 the theory un-
dergoes a first-order phase transition. This conclusion
was verified independently by Halperin, Lubensky and
Ma(HLM)10, who also carried out a ε expansion in
d = 4 − ε dimensions to first order in ε. They also
showed d = 3 by integrating out the gauge degrees of
freedom that the transition becomes weakly first order.
Generalizing to M complex boson fields they found for
M > Mcrit = 182.95 two more fixed points appear, as
shown in Fig. 1. It is seen that for M > Mcrit there is
a stable fixed point in the zero mass plane indicating a
second order phase transition. Halperin, Lubensky, and
Ma also calculated the critical exponents for the transi-
tion in the ε expansion and in fixed dimension d = 3 in
the large-M approximation.

The case of a SU(2) gauge field coupled to M funda-
mental bosons has been studied more recently by Arnold
and Yaffe.11. They found a picture very similar Fig.
1 in the ε expansion. To O(ε) they found that for
M > Mcrit = 359 there are two charged fixed points.
One of them is attractive in the b− g2 plane, again indi-
cating a second-order phase transition. The SU(2)×U(1)
case is known as the electroweak phase transition.

It is known from several numerical studies12–14 in lat-
tice gauge theory that in the case of M = 1 there exists a
critical ratio of the couplings such that for b/g2 > C there
is no phase transition at all and for b/g2 < C the tran-
sition is first order. The second order phase transition
exists only if b/g2 = C. The reason is that for b/g2 > C
no symmetry is broken in the SU(2) transition.

FIG. 1. Flow diagram in the u−e2(= α) plane for M > Mcric.
As one can see there are 4 fixed points(The fixed points are
also plotted in black dots). One can see the Gaussian fixed
point and the well known and famous WF fixed point. But
there are two new charged fixed points there which are present
only for M > Mcric. One of them is a stable fixed point.
There exist also a charged fixed point which is not stable in
this plane. This is what was found by Halperin-Lubansky-
Ma10.

But this picture changes in a very significant way
when more than one species/ flavors of boson are intro-
duced (these transform as higher representations under
the gauge group). In that case as Fradkin and Shenker15

show in lattice gauge theory, a phase transition does oc-
cur for all the values of the ratio of couplings. In a gauge
theory with a non-trivial center, the center survives for
higher representations in unitary gauge if the boson is
in the adjoint representation. Introducing M species of
bosons leads to a global U(M) symmetry16. In the uni-
tary gauge the SU(N) gauge symmetry breaks down but
this U(M) symmetry survives. The phase transition cor-
responds to spontaneous breaking of this U(M) symme-
try.

In this paper, we study SU(N)×U(1) theory with M
flavors of bosons. Such a theory arises in a completely
different context, the study of SU(M) antiferromagnets
on a square lattice1.
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The Hamiltonian of this model is,

H =
J

M

∑
〈i,j〉

Ŝβα(i)Ŝαβ (j) (1)

Where Ŝβα(i) are the generators of SU(M) and 〈i, j〉
represents nearest neighbour sum on this bipartite square
lattice. The representation of the spins sitting in two
sublattices (A and B) can be described using the two
integers describing the Young tableau, nc and M . The
representation of the spins is described in Fig. 2. For the
A sublattice the number of boxes in the column of the
young tableau is N where for the B sub-lattice the boxes
in the column are M −N . The number of boxes in every
row is fixed to be nc.

FIG. 2. The representation in terms of Young Tableau of
SU(M) Lie group of the spins on sub-lattice A and B. The
number of boxes in every row is nc where the number of boxes
in the column for the A sub-lattice is N and M − N for B
sub-lattice

Now, we introduce boson (Schwinger boson17,18) oper-
ators bαa(i) for sublattice A and b̄αa(j) on each sublattice
B with the constraint,

b†αa(i)bαb(i) = δbanc, no sum on i (2a)

b̄αa†(j)b̄αb(j) = δbanc, no sum on j (2b)

Now we represent the spin operator using the Schwinger
bosons. To calculate the partition function one can use
the coherent states of these boson operators and rep-
resent the partition function as a path integral over
the coherent states. Then by introducing a Hubbard-
Stratonovich field one can break the four boson term
and can introduce Lagrange multiplier to put constraint
Eqns. 2. Now expanding these new fields around the
mean field approximation one can see that these fluctu-
ations have a gauge field component. Using this one can
write down the action around the mean field. After that
one needs to integrate out the gapped fields to reach the
final action. One can then try to integrate the boson
fields out to find the coupling constant dependence on
the boson number. Then a gradient expansion of this
action will lead to SU(N)× U(1) action with M funda-
mental boson. This tells us that the gauge group of the
spins on the lattice gives the boson flavor when we ex-
pand around the mean field. Also, the representation of
the spins is defined by N gives us the gauge group of the
action around the mean field.1

The phases SU(M) antiferromagnet are known for
N = 1. We want to check how the order of the
phase transition depends on the number of flavor for the
SU(N)×U(1). We want to check this in two ways. First,
we can try to integrate out the gauge field which we will
do for M = 1 and N = 2 to show that for a single
flavor in fundamental representation there is no second
order transition at least for N = 2. Next, as we want
to study the theory that arises from the SU(M) anti-
ferromagnets. We will study the RG flow of this theory
for arbitrary M and N and the fixed point structure of
the theory,

S[ψ, ~A, ~W a] =

∫
d3x

[∣∣(∂µ − iyAµ − igT aW a
µ )ψ

∣∣2
+

1

4
FµνFµν +

1

4
GaµνGaµν + a|ψ|2 +

b

2
|ψ|4

]
(3)

We will study this model in the ε = 4 − d expan-
sion in O(ε). It is known in the U(1) case a higher
order analysis in ε can change the RG flow of the the-
ory qualitatively.11,19,20 The RG beta-functions are not
convergent for ε = 1. These beta functions can be asymp-
totic in nature for ε = 1, this has not yet been proved.20

If the beta functions are asymptotic then one can per-
form an analytic continuation of the beta functions (e.g.
by the method of Padé approximation and Borel resum-
mation). Using these methods it has been found that a
stable fixed point does exist for ε = 1 and the critical
value of M is modified. For M = 1 it has been seen that
some flow can still escape to the negative ψ4 coupling.19

So there is a possibility that for all values of M there can
be second order phase transition.

The first order transition for ε = 1 in ε expansion has
also been studied before using renormalized thermody-
namic quantities.21,22

The U(1) theory has also been studied by expanding
at ε = d− 2 upto order O(ε) and it has been found that
the transition is second order and a stable fixed point
exists for all M .23 Thus first order ε = 4 − d expansion
may not be valid for all values of M .

The beta functions can be calculated in several ways.
One of them is functional renormalization group. The
effective action Γ is defined as the Legendre transform
of W [J ] = lnZ[J ] = ln

∫
Dϕe−S[ϕ]+

∫
Jϕ (This is a

schematic variable representation, ϕ means all fields in-
volved in the theory).

Γ[φ] = sup
J

(∫
Jϕ−W [J ]

)
(4)

This gives,

0 =
δ

δJ

(∫
Jφ−W [J ]

)
⇒ φ =

δW [J ]

δJ
=

1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉J
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Thus φ corresponds to the expectation value of the ϕ

and also δΓ[φ]
δφ = J meaning that Γ[φ] governs the dy-

namics of the field expectation values taking account all
the fluctuations.

Parallel to this definition, we can define an IR regu-
lated functional

eWk[J] =

∫ Λ

Dϕe−S[ϕ]−∆Sk[ϕ]+
∫
Jϕ (5)

where,

∆Sk[ϕ] =
1

2

∫
ddq

(2π)d
ϕ(−q)Rk(q)ϕ(q). (6)

Rk is known as the regulating function. The interpolating
effective action is defined as

Γk[φ] = supJ

(∫
Jϕ−Wk[J ]

)
−∆Sk[φ]. (7)

It should satisfy Rk→0 = 0 which in turn implies Γk→0 =

Γ. Lets use a notation Γ
(n)
k [φ] = δnΓk[φ]

δφ...δφ . Now by defining

t = ln k
Λ one can show by taking derivative,

∂tΓk[φ] =
1

2
Tr

[
∂tRk

(
Γ

(2)
k [φ] +Rk

)−1
]

(8)

This is the RG flow equation. Now we want to study a
gauge model. Here we have three different fields. The
scalar field, the U(1) gauge field and the SU(N) field.
The generating functional for this case will be,

eWk[J,Laµ,Kµ;Āµ,B̄aµ] =

∫
DϕDaµDbaµ

exp−
{
S[ϕ, aµ, b

a
µ; Āµ, B̄aµ] + ∆Sk[ϕ, aµ, b

a
µ; Āµ, B̄aµ]

+ (GF )U(1) + (GF )SU(N)

−
∫

(J∗ϕ+ Jϕ∗ +Kµa
µ + Laµbaµ)

}
(9)

where (GF ) means a gauge fixing term. For the non-
abelian case, this will contain a contribution from the
ghost fields.24 And by ∆Sk we means sum of all the con-

tributions from scalar field ∆Ssk, U(1) gauge part ∆S
U(1)
k

and SU(N) gauge part ∆S
SU(N)
k . Now one can define

the Γk similarly as before. From all this similar to the
previous case one can write down the flow equation as,

∂tΓk[ψ,Aµ, B
a
µ; Āµ, B̄aµ] =

1

2
STr

[
(Γ(2) +Rk)−1(∂tRk)

]
.

(10)
Here I have used two notations, one is that field de-

pendencies on the RHS has been suppressed. Second
the meaning of STr (Supertrace) is the ghost fields con-
tributes with a negative sign.24 Now this equation will
be gauge invariant if the background gauge field trans-
forms the same way the as the dynamical gauge field.
This forms the basis for the functional renormalization
analysis for gauge theories.24–32

Functional renormalization group (FRG) is a very spe-
cial method as these flow equations are non-perturbative.
However, one can reproduce the perturbative results to a
given order of ε from the full FRG equations for Landau-
Ginzburg theory of superconductors.26 The critical ex-
ponents of the superconductor-insulator phase transition
are also different in these two methods (FRG and ε-
expansion) and also the qualitative behavior of the flows
changes significantly. FRG shows that the stable fixed
point exists for all values of M25,30 which is not seen in ε-
expansion.10 This suggests that for the type-II supercon-
ductor with sufficiently strong scalar coupling will have
a second order phase transition. Recently, it has been
found that FRG approach can find corrections to scal-
ing in the critical theory of deconfined criticality which
agrees well with some quantum Monte Carlo studies.27

The phase transition in SU(M) magnets(Heisenberg
model) has been studied numerically before. Kawashima
and Tanabe33 found evidence of emergent U(1) symme-
try of the ground state space of the SU(M) Heisenberg
model with the fundamental representation. Beach et
al.34 developed a quantum Monte Carlo algorithm to
simulate this model for continuous M in total singlet ba-
sis and found a phase transition between Neél and VBC
columnar phase occurring at Mc = 4.57(5). They also
identified the phase transition to be second order with
critical exponents, z = 1 and β/ν = 0.81(3).

II. EFFECT OF GAUGE FLUCTUATIONS

First, we will try to integrate out the gauge field to see
what happens for M = 1(in the Unitary gauge) to the
action defined as,

S[ψ, ~A, ~W a] =

∫
d3x

[∣∣(∂µ − iyAµ − igT aW a
µ )ψ

∣∣2
+

1

4
FµνFµν +

1

4
GaµνGaµν + a|ψ|2 +

b

2
|ψ|4

]
(11)

Where,

Fµν = ∂µAν − ∂νAµ (12)

Gaµν = ∂µW
a
ν − ∂νW a

µ + gfabcW
b
µW

c
ν (13)

and as usual,

a =
a′(T − Tc)

Tc
(14)

This, in pure U(1) case leads to a weak-first order
phase transition as the gauge field around mean field ap-
proximation of the order parameter picks up a mass(in
other words this will give us Meissner effect with a pen-
etration depth defined by the mass).10

The ψ field has N components. Now, the minimum
of this action is when all the fluctuations of fields are
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zero and |ψ| = const. This value of the constant is well
known, i.e.

|ψ| = ±
√
−a
b

(15)

Now for N = 2 one can choose a gauge to make, ψ1 = 0
and ψ2 =

√
−a/b.

Now the question comes of the Ginzburg-Criteria. Now
we can expand the ψ field around the mean field point,
i.e. ψ1(x) = ψ1R(x) + iψ1I(x) and ψ2 =

√
−a/b +

ψ2R(x) + iψ2I(x). Then by putting this back into the
action, we get that only the ψ2R(x) field become mas-
sive with mass 2|a|. Then one can calculate the partition
function. The calculation of the partition function can be
done in the momentum space much more easily. But the
partition function is not good enough as it’s not measur-
able. So one needs to calculate some physical quantities
for the analysis. The expectation is that the correction
term to the physical quantity from the fluctuation of the
fields must be smaller than the value calculated from the
mean field approximation. That leads to the condition
known as the Ginzburg-Criteria. This calculation is ex-
actly similar to the U(1) case. In our case, we can calcu-
late the average energy or the specific heat. This result
gives exactly same relation as the U(1) case,

T − Tc
Tc

<
1

32π2

b2T 2
c

a′
. (16)

In the case of superconductor theory we actually know
the microscopic theory(BCS theory) and from there one
can exactly find these coefficients a, b in terms of mi-
croscopic parameters.8 This ensures that the Ginzburg
Criteria is met and we can actually use constant Mean
Field solution. In our case, we don’t know the micro-
scopic parameter values but for now, we will assume that
the ψ(order parameter) fluctuation is very small and we
can use the mean field value of the field.

Next, we need to consider the case where we choose
a specific gauge and want to calculate the effect of the
gauge field fluctuations. Again we will do it for N = 2.
We choose the gauge such that ψ1 = 0 and ψ2 = v. For
N = 2 the generators are,

T a =
1

2
σa. (17)

We find that the mass matrix of the fields is not diagonal-
ized. After the mass matrix diagonalization, we find that
there will be 3 gauge fields with mass and one massless
gauge field but interacting with each other. The mas-
sive fields are W 1

µ ,W
2
µ with mass square, m2

1 = m2
2 =

(1/2)g2v2 and Zµ with mass square, m2
Z = v2(g2 +

4y2)/2. We will also have a massless field Bµ. The defi-
nition of Bµ and Zµ is,

Bµ = sin θWAµ + cos θWW
3
µZµ = cos θWAµ − sin θWW

3
µ

(18)

where, sin θW = g/
√
g2 + 4y2 and cos θW =

2y/
√
g2 + 4y2.

As mentioned before we want to calculate,

exp(−S(ψ)/T ) =

∫
DBDZDW i exp

[
−S[ψ, ~A, ~W a]/T

]
.

(19)
For our gauge we find that,

dS

dv
= 2(vol)av+2(vol)bv3+(g2/4)〈W i

µ

2〉v+(g2/4+y2)〈Z2
µ〉v.

(20)

To calculate these averages we have used only the lead-
ing order of the propagator. In this case, the W i

µ fields
and Zµ fields are both massive. Thus their propagator
will be (upto the leading order),

〈W i
µ(r)W jµ(r)〉 = (vol)

∫
d3k

(2π)3

δijδµν(δµν − kµkν/k2)

k2 +m2
i

(21)

〈Zµ(r)Zµ(r)〉 = (vol)

∫
d3k

(2π)3

δµν(δµν − kµkν/k2)

k2 +m2
z

(22)
Keeping our calculation to the leading order we can ex-
actly calculate these integrals just like the U(1) case.10

〈W i
µ

2〉 =
2(vol)

π2

[
Λ− miπ

2

]
(23)

〈Zµ2〉 =
2(vol)

π2

[
Λ− mZπ

2

]
(24)

where Λ is some momentum UV cutoff of the Momentum.

Putting all this to Eqn.20 and integrating over v we
get,

S

vol
=

(a+
3Λ

2π2

)
v2 +

b

2
v4 −

3
(

2g +
√
g2 + 4y2

)
v3

4
√

2π


(25)

This introduces a v3 term describing a weak first order
phase transition exactly like in U(1)-case.10. From this
one can calculate the size of the phase transition etc.

III. BETA FUNCTIONS AND FIXED POINTS

The more general way to find β-function is to carry
out RG calculations in d = 4− ε and for general N using
dimensional regularization. we define here for simplicity
of the calculations α1 = y2 and α2 = g2.35–37

Thus the beta functions are,38
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βα1 =εα1 −
α2

1NM

24π2
(26)

βα2
=εα2 −

α2
2

48Nπ2
(M − 22N) (27)

βa =a

[
2− b(NM + 1)

8π2
+

3α2

8π2

(
N2 − 1

2N

)
+

3α1

8π2

]
(28)

βb =εb− b2(NM + 4)

8π2
− 3α2

1

4π2
− 3α2

2(N3 +N2 − 4N + 2)

32π2N2

− 3α1α2

π2N
(N − 1) +

3bα1

4π2
+

3bα2

4π2

(
N2 − 1

2N

)
.

(29)

One can easily see from the structure of the β-function
that for N = 1, βα1

, βa, βb completely decouples from the
α2 and as one can check that it has the correct structure
for U(1) gauge theory with multiple scalar.10,37 Next one
can look into the fixed point structure of this theory.
There are 8 possible fixed points of these β-functions.
Two of them are the old Gaussian and the Wilson-Fisher
fixed point and fixed points where there is no SU(N) or
U(1) charge.10 As before the U(1)-charged fixed points
do not exist for NM < 182.952. There are four more
fixed points that arise in the theory and one of them is
critical as that one is completely stable in all direction
except for the temperature (mass) direction. This point
is doubly charged. But this fixed point does not exist
for M < Mcrit. This Mcrit is different for different values
of N . For example for N = 2, Mcrit = 1277.47. There
are two singly charged (SU(N) charge) fixed points also.
This SU(N) charged fixed points also have some critical
value of M as a function of N . As previously calculated
for N = 2 this critical value is 359.11

FIG. 3. RG flow diagram for the N = 2 and M = 1500 where
all the attractive point exists. As we can see here there are
8 fixed point and one attractive in all direction(other than
mass). That fixed point denotes the second order phase tran-
sition of the system

FIG. 4. RG flow diagram for the N = 2 and M = 1100 where
all the attractive point does not exist and as we can see that
the flow does not have any more 8 fixed points. The attractive
doubly charged fixed point is now gone and all flow with any
non-zero initial charge flows to negative mass denoting a first
order phase transition

IV. CRITICAL EXPONENTS

The critical exponents of this phase transition can be
easily calculated in the regular way and we can see that
ν → 1 and η → 0 as M →∞ for ε = 1. In terms of fixed
point value of the parameters(a∗ = 0, b∗, α∗1, α

∗
2)39

1

ν
= 2− b∗(N + 1)

8π2
+

3α∗1
8π2

+
3α∗2
8π2

(
N2 − 1

2N

)
(30)

η = −
[

3α∗1
4π2

+
3α∗2
8π2

(
N2 − 1

2N

)]
(31)

As we have seen these beta functions has a very interest-
ing structure of fixed points (we have M > N). There
are 8 fixed points but not all of them exists at every value
of M and N . The M and N comes from the microscopic
theory.1. For N = 1 the theory contains only the abelian
gauge field. The question one needs to ask is for what
values of N and M there exist a doubly charged critical
point. We can easily find out the relation between N and
Mcric. That relation is quadratic,

Mcrit = 607.765 + 174.594N + 106.058N2 (32)

The Region on the N −M plane for which the theory
has a critical point is in the shaded region of Fig. 5

This critical exponents can also be calculated also in
fixed dimension(d = 3) in the large M limit. Where the

coupling constants are b ∼ O(1/M), y ∼ O(1/
√
M), g ∼

O(1/
√
M). This method is similar to what is described

by Ma40. From this calculation we get for M - complex
fields in fundamental representation of SU(N),

η = − 1

NM

[
2.0264 + 2.1615(N2 − 1)

]
(33)

ν = 1− 4.86

NM
− 4.32

NM
(N2 − 1) (34)

This result matches with the already known results for
N = 1.10,41
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FIG. 5. Shaded region on N −M plane for which the theory
has a critical point

V. DISCUSSION AND CONCLUSION

From this analysis, we found that for SU(M) anti-
ferromagnets there is a temperature driven phase tran-
sition for a very large M compared to N(representation
of the spin as defined in the introduction). This critical
value Mcrit can be calculated for as a function of N .

The critical exponents of this second order phase tran-
sition are calculated in both ε expansion and in the large-
M expansion. The next question is what are the phases
that lie on either side of the phase transition. But we
should be careful in attaching more deep meaning to
this method as mentioned in the introduction that it
has been observed that higher order corrections in ε can
alter the qualitative structure of the RG flow for more

simpler gauge group U(1).11,19 Also as one expects that
beta functions are probably asymptotic in nature thus
one needs to do some analytic continuation for correct
results.20 It might be insightful to do an RG for d = 2+ε
dimensions expanding in order of ε as it already gives a
very interesting result for U(1) case.23 All this we expect
to do in future as they have potential to give very inter-
esting results and correction to current understanding.

As discussed in the introduction that functional renor-
malization group is a non-perturbative method which
produces a qualitatively different result than the ε-
expansion for U(1)-gauge theory with many complex
scalar fields.25–27,30 It will be interesting to analyze our
theory using FRG in future.

It has already been discovered numerically that for
M = 1 there is no electro-weak phase transition at all for
large value of b/g2.12–14 For largeM there is a phase tran-
sition. This phase transition corresponds to the breaking
of the leftover symmetry(U(M) flavor symmetry).15,16 It
is known that those phases are connected to conventional
Higgs and confinement phases.15 The lattice limit of the
order parameters still remains an open question.

We analyzed this theory with no topological terms.
The critical exponents can also be calculated with a topo-
logical term; the U(1) case has been calculated recently41

but SU(N) × U(1) case still remains open. I plan to
study in future the effect of the topological term in this
Lagrangian.
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