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Two-dimensional artificial magnetic honeycomb lattice is predicted to manifest several magnetic
phase transitions as a function of reducing temperature. We have performed the analysis of nonlinear
susceptibility to explore the equilibrium nature of phase transition in artificial honeycomb lattice of
ultra-small connected permalloy (Ni0.81Fe0.19) elements, typical length of ' 12 nm. The nonlinear
susceptibility, χn1, is found to exhibit an unusual cross-over character in both temperature and
magnetic field. The higher order susceptibility χ3 changes from positive to negative as the system
traverses through the spin solid phase transition at Ts = 29 K. Additionally, the static critical
exponents, used to test the scaling of χn1, do not follow the conventional scaling relation. We
conclude that the magnetic phase transition, especially to the low temperature spin solid order, is
not conventional in nature at this length scale.

The interplay between magnetic and thermodynamic
characteristics often dictates the nature of phase transi-
tion in a magnetic material. Magnetic materials that
exhibit equilibrium phase transition, such as spin ice
or spin glass, aptly manifest this tendency.1–3 More re-
cently, artificial magnetic honeycomb lattice has emerged
as new venue to explore many equilibrium phenom-
ena of geometrically frustrated magnets in a disorder-
free environment.4–8 The underlying physics in a two-
dimensional honeycomb lattice is controlled by the pe-
culiar moment arrangements of ’two-in & one-out’ (or
vice-versa) or ’all-in or all-out’ configurations on a given
vertex of the lattice.4,6 The two-in & one-out refers to
a situation where two moments, aligned along the el-
ements of the honeycomb lattice, are pointing towards
the vertex and one moment is pointing away from it;
also termed as the quasi-ice rule.9 Theoretical researches
have shown that an artificial magnetic honeycomb lattice
can undergo a series of thermodynamic phase transitions
as a function of reducing temperature from a paramag-
netic phase, consisting of the distribution of ’two-in &
one-out’ (or vice-versa) and ’all-in or all-out’ moment ar-
rangements, to a short-range ordered spin ice state.10,11

For further reduction in temperature, the system tends
to develop a magnetic charge ordered state, which is de-
scribed by the random distribution of chiral vortex loops.
At much lower temperature, a honeycomb lattice is pre-
dicted to develop a novel ground state of spin solid or-
der, described by the periodic arrangements of the vor-
tex magnetic loops of opposite chiralities.12 Each mag-
netic phase transition reduces the overall entropy of the
system. The transition to the spin solid ground state is
expected to be truly thermodynamic in nature, with zero
entropy and magnetization at low temperature.10,13,14

Analysis of nonlinear susceptibility provides an ideal
method to test the equilibrium nature of a magnetic
phase transition.15–17 An equilibrium phase transition
is manifested by the scaling of nonlinear susceptibilities
where the static critical exponents are related to each
other via a conventional relation. To understand the
equilibrium nature of the spin solid order, it is desir-
able to investigate the properties of nonlinear suscep-

tibilities in artificial honeycomb lattice. Previous ef-
forts in accessing the ground state of spin solid order
have mostly focused on the disconnected geometry of the
honeycomb lattice where thin elements, of length vary-
ing between ' 500 nm - 2 µm, are separated enough
to reduce the inter-elemental energy of the lattice.18,19

More recently, we proposed a new sample design to cre-
ate artificial honeycomb lattice of ’connected’ ultra-small
permalloy (Ni0.81Fe0.19) elements, with typical element
dimension of ' 12 nm (length) × 5 nm (width) × 7
nm (thickness).20 Details about the fabrication procedure
can be found elsewhere.21 At this length scale, the esti-
mated inter-elemental energy, ' 12 K, is small enough to
allow temperature to be a feasible tuning parameter to
explore the temperature dependent evolution of magnetic
phases, including the spin solid order. Using magnetic,
neutron reflectometry and small angle neutron scatter-
ing measurements, previously we demonstrated the phase
transition to the long range ordered spin solid state at
low temperature, T ≤ 30 K, in the newly designed hon-
eycomb lattice.20,22 In this report, we show that the de-
velopment of spin solid state is accompanied by a change
in the nature of nonlinear correction to the linear sus-
ceptibility χ1. As the system traverses through the spin
solid transition at Ts ' 29 K, the nonlinear term, χ3,
changes from negative to positive, which is atypical of
magnetic phase transition. Also, a cross-over between
low field and high field regimes is detected, which leads
to two different scaling analysis of non-linear suscepti-
bilities. The estimated static critical exponents do not
follow the conventional scaling relation. Together, these
phenomena suggest that the transition to the spin solid
state is not truly equilibrium in nature in artificial hon-
eycomb lattice of connected ultra-small elements.

In the case of an equilibrium phenomenon, the nonlin-
ear susceptibilities exhibit a scaling behavior according
to the single parameter, given by:3,17,23

χn1(T,H) = H2/δf(τ (γ+β)/2/H) (1)

where τ = (T/Ts)- 1, γ is the static critical exponent
describing the divergent nature of magnetic susceptibil-
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FIG. 1: (color online) Magnetization as a function of field.
Here, magnetization is plotted as a function of field at differ-
ent temperatures. Magnetization data exhibits a cross-over
behavior in field. While the higher temperature susceptibility
is stronger at low field, the magnetization at low temperature
is larger above the cross-over field H ' 0.04 - 0.06 T. Inset
shows the scanning electron micrograph of a typical artificial
honeycomb lattice of ultra-small elements. Magnetic field was
applied inplane to the lattice.

ity as a function of temperature and β is the magnetic
order parameter critical exponent. The determination of
non-linear susceptibility, χn1, plays the key role in this
exercise. The nonlinear susceptibilities are written as the
higher order terms in following equations:17,23

M/H(T ) = χ1(T )− χ3(T )H2 +O(H4) (2)

= χ1(T )− a3(T )χ1
3H2 +O(H4) (3)

χn1(T,H) = 1−M(T,H)/χ1H (4)

where χ1(T) is the linear susceptibility at temperature
T , χ3(T) is the nonlinear susceptibility, coefficient a3 =
χ3/(χ1)3 and χn1 is the net nonlinear susceptibility.

Determination of the critical exponents, γ and β, de-
pends on the asymptotic nature of the arbitrary scaling
function f(x), with the boundary conditions f(x) = Con-
stant as x→ 0 and f(x) = x−2γ/(γ+β) as x→ ∞. The
nonlinear susceptibility, χn1(T , H), is expected to follow
power-law dependence in both T and H with two inde-
pendent static critical exponents γ and δ, respectively.
The power law dependencies are described by the follow-
ing expressions:3,17,

χn1(T ) ∝ τ |γ| (5)

χn1(T ' Ts, H) ∝ H2/δ (6)

The two independent exponents, γ and δ, are related to
the magnetic order parameter critical exponent β via the
following scaling relation:

χ n
1

FIG. 2: (Color online) Nonlinear susceptibility, χn1, as func-
tions of field and temperature. (a) χn1 is estimated using Eq.
2-4 where χ1 is obtained from fitting M vs H plot at low field.
Two features are immediately obvious in this figure: a change
in the sign of overall nonlinear susceptibility across T ' 30 K
and a cross-over regime in field and temperature. As shown
in the inset of the figure, the slope of the curve changes from
negative to positive at some field value. We call it characteris-
tic cross-over field, which increases as temperature decreases.
(b-c) Higher order susceptibility χ3 as a function of tempera-
ture across the cross-over field. χ3 increases as a function of
temperature in high field regime 2 (fig. b) and becomes more
negative in low field regime 1 (fig. c).

|δ| = 1 + |γ/β| (7)

The above scaling relation represents a robust test, ar-
guably, of the true equilibrium phase transition in a mag-
netic system. Magnetization data on the newly designed
artificial permalloy (Ni0.81Fe0.19) honeycomb lattice were
obtained in the field range of 10 - 1500 Oe using a com-
mercial magnetometer. The sample was slowly cooled
from T = 350 K to the desired temperature before collect-
ing the data. Extra care was taken in removing magnetic
hysteresis in the superconducting magnet of the magne-
tometer by cycling the magnetic field in oscillatory mode
several times at T = 350 K before cooling to the measure-
ment temperature. At each field, the system was allowed
to sufficiently relax before collecting the data. In Fig. 1,
we plot the M vs H data at few characteristic tempera-
tures. The total magnetization at higher temperature is
stronger at low field. The trend reverses across the cross-
over field, which also varies with temperature. The linear
susceptibility, χ1(T ), at different temperatures were de-
termined by fitting the M versus H curves at low fields,
see Fig. S1 in the Supplementary Materials.24 We have
analyzed first and second order term in the magnetiza-
tion data. Beyond the second order term, the non-linear
susceptibility becomes much smaller to be of any quan-
titative importance. Therefore, equation (2) reduces to
χ3(T , H) H2= 1 - M(T,H)/χ1H. Hence, χn1(T , H)
becomes (χ3/χ1) (T , H)H2.25
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In Fig. 2a, we have plotted net nonlinear susceptibil-
ities, χn1(T , H), as a function of H2 at different tem-
peratures between T = 10 K and T = 300 K. The plot
of nonlinear susceptibility reveals several very interesting
behaviors in applied field. First, at low temperature, T ≤
25 K, χn1 is negative for the entire field application range.
The negative nonlinear susceptibility suggests that the
higher order correction to the linear susceptibility is very
strong. Surprisingly, negative χn1 is only observed below
the spin solid phase transition. Second, the nonlinear
susceptibility not only becomes positive above T ' 30 K,
but also exhibits an unusual trend at low field. At low
field, χn1 first decreases before manifesting a gradual en-
hancement as the applied field strength increases. Thus,
the slope of the curve changes from negative (regime 1)
in low field to positive (regime 2) in high field. Addition-
ally, the slope of the curve also changes as a function of
temperature at low field: from positive at T ≤ 30 K to
negative at T ≥ 30 K. We summarize these observations
in plot of χ3 vs. T in different field regimes in Fig. 2b-c.
In general, nonlinear correction to the susceptibility only
changes in magnitude, not in sign. This is a puzzling be-
havior in artificial honeycomb lattice. The characteristic
cross-over field, separating the two distinct regimes, de-
creases as the measurement temperature increases (see
inset in Fig. 2a). We also notice that the saturated
value of χn1 increases as temperature increases. The net
magnetization is expected to decrease as temperature re-
duces in artificial honeycomb lattice. First, we analyze
the non-linear susceptibility data above the characteris-
tic field (in regime 2). Even in regime 2, the maximum
value of the field, up to which χn1(T) is linear in H2,
decreases gradually as T approaches Ts. It suggests that
the higher order corrections in the net susceptibility is
still significant.25 The linear portion of χn1(T) at differ-
ent temperatures are fitted with Eq. (3) to extract the
coefficient a3(T).

To verify the equilibrium nature of magnetic phase
transition to the spin solid state, first we extract the ex-
ponent γ using the formalism, described above, in eq.
(5). For this purpose, the nonlinear susceptibility χn1 =
a3χ1

2 is plotted as a function of τ for few different choices
of spin solid transition temperatures Ts ∈ [25, 35] K in
Fig. 3a. We have fitted a fixed number of data points,
in the divergence regime, on each curve using eq.(5). Es-
timated γ is found to vary in the range of [1.7, 2]. The
best fit is obtained for Ts = 29 K, with the corresponding
value of |γ| = 1.9 (see inset in Fig. 3a). The transition
temperature, T s, is very close to the experimental value
of T = 30 K, as estimated from the previous dc suscep-
tibility and electrical measurements.20,21 Also, the static
critical exponent γ is comparable to the value (|γ| ' 2.25)
found in systems manifesting truly thermodynamic phase
transition, such as interacting arrays of nano islands or
spin freezing in canonical and geometrically frustrated
systems.3,15,17,23,26 Similar analysis was performed in the
low field regime (regime 1) below the characteristic cross-
over field. The best fit is obtained for the static critical

FIG. 3: (color online) Estimation of static critical exponents γ
and δ. (a) To estimate the critical exponent γ, the coefficient
a3 (see text for detail) is plotted as a function of τ = (T/Ts)-
1 for different Ts values, across the spin solid transition at T
= 30 K. γ is estimated by fitting the fixed number of points
in the divergence regime of the curve using eq. 5. Best fit to
the experimental data is obtained for the critical exponent |γ|
= 1.9 (inset shows the plot of fitting parameter χ2 vs γ). (b)
Similar analysis is performed for the low field regime 1, with
estimated |γ| = 1.4. In both regimes, best fit corresponds to
spin solid transition at Ts = 29 K. Nonlinear susceptibility
χn1 is plotted as a function of field at temperature near Ts.
Experimental data is fitted using the asymptotic function in
eq. 6 to obtain critical exponent |δ| (c) in high field regime 2,
' 2.4 and (d) low field regime 1, ' 2.5.

exponent |γ| = 1.4, see Fig. 3b. It is not very different
from the magnitude of γ in the high field regime (regime
2). It seems that the cross-over phenomenon, manifested
by the change in the slope of χn1(T) as the system tra-
verses across the transition temperature at a given field,
does not affect the estimation of γ and the transition
temperature, Ts, in the honeycomb lattice of ultra-small
elements.

Next, we determine another critical exponent δ by plot-
ting ln(χn1) versus ln(H) at temperature near the spin
solid transition. The experimental data is fitted using
the asymptotic function in eq. (6). As shown in Fig. 3c,
a good fit to the data is obtained for the critical exponent
δ = 2.4 in regime 2. Similar analysis in regime 1 at low
field yields |δ| = 2.5, which is also similar in magnitude as
found in the high field regime 2. Finally, we test the scal-
ing behavior of non-linear susceptibilities, as described by
equation (1). If the magnetic phase transition to the spin
solid state in artificial honeycomb lattice is indeed a true
equilibrium phase transition, then the nonlinear suscep-
tibilities should exhibit the scaling behavior due to the
estimated critical exponents. According to equation 7,
for critical coefficients |γ| = 1.9 and δ = 2.4, the mag-
netic order parameter critical exponent β is ' 1.4. As
shown in Fig. S2 in the Supplementary Materials,24 the
nonlinear susceptibilities at different temperatures do not
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FIG. 4: (Color online) Scaling analysis of nonlinear suscepti-
bilities in artificial honeycomb lattice. (a) Nonlinear suscepti-
bilities exhibit scaling behavior for |γ| = 1.5, δ = 10 and |β| =
0.1. The critical scaling coefficients do not satisfy the scaling
relation in eq. (7). (b) Similar analysis was performed in the
low field regime 1. Interestingly, the nonlinear susceptibilities
exhibit scaling behavior for the same set of critical exponents,
as in high field regime 2.

exhibit the scaling collapse on one curve for the estimated
exponents. To explore the scaling behavior further, we
vary the critical exponents, γ, δ and β, systematically.
First we discuss the scaling in regime 2. A scaling be-
havior is observed for exponents δ = 10 and |γ| = 1.5,
see Fig. 4a. Although exponent |γ| is similar to the esti-
mated value, scaling collapse of χn1 data only occurs for δ
much larger than the estimated value. At large x values,
some data scatter from the scaling curve due to the large
errors associated with the smaller nonlinear susceptibili-
ties. We also tested the scaling behavior for intermediate
values of δ, 4.75, while keeping the coefficient γ constant.
The scaling of non-linear susceptibilities improves as δ in-
creases. However, the critical exponents do no follow the
scaling relation, outlined in eq. 7.

The scaling behavior was also tested for nonlinear sus-
ceptibilities in low field regime 1. For uniformity, we have
used the estimated static critical exponents of |γ| = 1.4, δ
= 2.5 and |β| = 0.95 for the scaling analysis. As shown in
Fig. S3 of the Supplementary Materials, the non-linear
susceptibilities do not scale for the calculated values of
exponents. To our surprise, χn1 data at different tem-
perature exhibit scaling characteristic for the similar set
of exponents, |γ| = 1.4, δ = 10 and |β| = 0.1, that are
used to obtain scaling collapse in the high field regime
2, see Fig. 4b. Once again, the critical exponents do
not satisfy the scaling relation in eq. (7). It further con-
firms that the magnetic phase transition to the spin solid
state is not thermodynamic in nature. The observed con-
sistencies in the estimation of critical exponents as well
as in the scaling analysis in two different regimes of χn1
constitute a unique aspect of the spin solid phase tran-
sition. It suggests that the nonlinear correction to mag-
netic susceptibility in spin solid phase is subtly similar to
that in the high temperature phases. The discrepancies

between the estimated values of the static critical expo-
nents and that used for the scaling manifestation can be
attributed, arguably, to the formation of small ferromag-
netic clusters with short-range order at intermediate tem-
peratures, which ultimately enhances χn1 considerably
and led to strong but non-critical background temper-
ature dependence. Similar behavior was previously ob-
served in magnetic systems that exhibit non-equilibrium
phase transition.27

Our investigation of the equilibrium nature of mag-
netic phase transition in artificial honeycomb lattice has
revealed two important properties that are not conven-
tional in nature: first, the nonlinear susceptibility ex-
hibits a cross-over behavior in both temperature and
magnetic field. The slope of χn1, which is used to de-
termine the strength of the non-linear correction to the
overall magnetic susceptibility, is found to change from
negative, at low field, to positive, at high field. Also,
the net nonlinear susceptibility, χn1, changes from pos-
itive to negative in temperature. This cross-over occurs
across the spin solid phase transition temperature at T '
30 K. A magnetic phase transition is not known to de-
pict such contrasting characteristic across the transition
temperature. Clearly, the underlying magnetism in ar-
tificial honeycomb lattice does not fit congruently with
the conventional understanding. Second, the experimen-
tal data do not exhibit scaling behavior for the estimated
values of critical exponents. Rather, a scaling collapse of
χn1 requires much larger value of the critical exponent
δ; not typically observed in a magnetic material with
equilibrium phase transition. Also, the static critical ex-
ponents do not satisfy the conventional thermodynamic
scaling relation. The overall scaling behavior suggests a
non-conventional nature of the transition, which can be
arising either due to the finite spin dynamics in the sys-
tem or, a distribution of relaxation times in short-range
ordered magnetic clusters, such as spin ice order or the
vortex loop type magnetic correlation across one hon-
eycomb. A distribution of relaxation times in magnetic
clusters is known to cause non-conventional scaling be-
havior. The presence of spin dynamics or the distribution
in spin relaxation rate, especially at low temperature, will
result in finite entropy accumulation. It is worth point-
ing out that the large element size honeycomb lattice,
with much larger dipolar interaction energy, may exhibit
different non-linear magnetic response. Further research
works are highly desirable to fully understand the per-
plexing observations reported here as well as to explore
the implication to large element size honeycomb lattice,
especially in the disconnected structure.
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