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The interplay of magnons and phonons can induce strong temperature variations in the magnetic
exchange interactions, leading to changes in the magnetothermal response. This is a central mech-
anism in many magnetic phenomena, and in the new field of Spin Caloritronics, which focuses on
the combination of heat and spin currents. Boson model systems have previously been developed
to describe the magnon-phonon coupling, but until recently studies rely on empirical parameters.
In this work we propose a first principles approach to describe the dependence of the magnetic
exchange integrals on phonon renormalization, leading to changes in the magnon dispersion as a
function of temperature. The temperature enters into the spin dynamics (by introducing fluctua-
tions) as well as in the magnetic exchange itself. Depending on the strength of the coupling, these
two temperatures may or may not be equilibrated, yielding different regimes. We test our approach
in typical and well known ferromagnetic materials: Ni, Fe, and Permalloy. We compare our re-
sults to recent experiments on the spin-wave stiffness, and discuss departures from Bloch’s law and
parabolic dispersion.

INTRODUCTION

The interaction of ionic vibrational and magnetic de-
grees of freedom (magnon-phonon coupling or MPC)
influences many physical properties in magnetic and
strongly correlated materials. Beyond providing a play-
ground to fundamental science, MPC holds promise in
many applied fields such as nanoelectronics (to boost effi-
ciency and reduce power consumption), sensors and actu-
ators (magneto-thermal response can be combined with
multiple external inputs: B field, T , strain, current...)
or to reduce magneto transport response: spin currents
can experience reduced resistance due to coupling with
coherent acoustic vibrations, giving resonant magnetoe-
lastic deformations. The explicit calculation, and then
engineering, of MPC will be central to the development
of devices operating at room temperature and above.

Since the 1950s, MPC has been studied using model
Hamiltonians1–4. Only very recently Fransson et al.5

have published a more complete theory of MPC inter-
action terms and their possible symmetries. The interac-
tion governs changes in the frequency and relaxation time
of magnons as a function of temperature, and conversely
the change in phonon frequencies and lifetimes with
the magnetic state. Over the past decade the physics
of electrical to spin transport conversion has expanded
dramatically6–10. The new field of Spin Caloritronics
characterizes different transport phenomena, which de-
pend on the coupling between thermal vibrations, charge
and spin11–13. Creative experiments have led to the dis-
covery of new physical effects (Spin Peltier, Spin See-
beck, Spin-dependent Seebeck, etc) which combine tem-
perature gradients, internal and external magnetic fields,
heat currents, charge and spin, and in which energy con-

version depends (at least in part) on intrinsic magnetic
excitations, along with their coupling to phonons and
electrons. Conversely, temperature can also have a strong
direct effect on the magnetic excitations themselves, as
demonstrated, e.g., in Ni deposited on VO2, where heat
drives a softening of a VO2 phonon mode, which couples
to the magnetic response in Ni14.

MPC is much more delicate than electron-phonon cou-
pling, as the quasi-particles can have similar energies and
momenta - neither is a universally small perturbation of
the other. An accurate measurement or calculation of
MPC is pivotal for the correct description of the ther-
modynamical properties of magnetic materials1,15,16: the
free energy will contain magnetic and vibrational con-
tributions, often of the same magnitude. The MPC
strength is maximal when spin-waves and elastic waves
have the same frequency and wave number, i.e. when
there is a crossing in the two dispersion curves17. At the
intersection, the system shows neither a magnon nor a
phonon, but rather a magneto-elastic excitation.

In the following, we present calculations of the com-
bined effects of phononic (Tp) and magnonic (Tm) tem-
peratures on the spin-wave (SW) dispersion, stiffness,
and Curie temperatures of Fe, Ni and disordered Ni81Fe19
(permalloy or simply Py) by combining first principles
methods with model Hamiltonians. Inspired by Ref.3,
we present a theory that includes several effects on the
magnetic exchange couplings. In addition to a first prin-
ciples description of MPC, we also take into account dis-
order within the Virtual Crystal Approximation18 (VCA)
for the electronic ground state and vibrational properties
calculation, and within the Coherent Potential Approxi-
mation19,20 (CPA) to calculate Heisenberg exchange in-
tegrals. This is non-trivial and adds chemical/structural
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disorder into the interplay between the magnetic and
thermal excitations.

As a first step in our analysis, we consider the effect
of Tp on the SW dispersion by means of Linear Spin-
Wave Theory (LSWT). We then take into account the
effects of thermal fluctuations in the magnetic system,
within the quasi-harmonic approximation and the Atom-
istic Spin Dynamics (ASD) formalism21,22, which allows
for thermal noise and SW-SW interactions. In this way,
we can consider separately the effects of the phonon and
magnon temperatures, and study their influence on the
SW energies, and implicitly gauge the MPC strength.
We demonstrate the effect of the phonon temperature on
the magnon dispersion, and show that, in Py, it competes
with the spin fluctuations and renormalizes the acoustic
mode. This introduces an unexpected non-monotonic be-
havior of the magnetic response as a function of T , and
defines an optimal temperature window for SW genera-
tion in spintronics applications.

Several previous works have taken a different approach
by mixing spin and molecular dynamics potentials, com-
bined with parametrized radially dependent magnetic ex-
change integrals, in particular by the Dudarev group23.
This introduces an entropic effect on the magnetic ex-
change couplings, which then affects the total magnetic
response in alloy systems. For Fe, they show very good
agreement with experimental Curie temperatures. The
exchange interactions are strongly simplified, assuming
a 1/r3 functional dependence obtained from fitting two
sets of calculated exchange integrals3,24. These exchange
integrals are truncated to second nearest neighbors, and
do not take into account the detailed and oscillatory be-
havior of the exchange further out, which is relevant in
many different magnetic materials. Here we consider the
full range of exchange integrals, but consider the thermal
vibrational effects in a more averaged way, as described
below.

Our work goes in the same direction as two other first
principles approaches, namely, Refs.4 and25, trying to
fill the gap between the fully ordered ferromagnetic and
the disordered paramagnetic states. In this paper we
show explicitly how temperature reduces the magnetic
exchange amongst the nearest neighbors and increases
the coupling between remote ones. The effective MPC
that we find in Permalloy is consistent with the “phonon
drag” theory of the Spin Seebeck Effect (SSE)26–28. Very
recently29, the temperature dependence of the SW stiff-
ness was determined experimentally for thin films using
ferromagnetic resonance measurements. We show below
that the dependence at very low k (SW stiffness) only
shows the magnon scattering, while the full dispersion
should be sensitive to phonons as well. In general, ther-
mal corrections improve the calculated Curie tempera-
ture with respect to experiment, but with very different
magnitudes for different materials.

The paper is organized as follows: firstly we present our
formalism for the thermal dependence of the magnetic
Heisenberg model, followed by the Linear Spin Wave
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FIG. 1: A schematic showing the methodology used in
this article. The green squares represent the use of a

code or method, the circles represent processing of data
from a code/method and the arrows show the transfer
of data with the text next to the arrow representing
what data is being transferred. All the symbols are

explained in the Methods section.

Theory for disordered systems, and finally, Atomistic
Spin Dynamics and Curie Temperature calculations. The
last sections report our numerical results, discussions and
conclusions.

METHODS

In this section we detail how we calculate the phonons,
magnons, and their effective coupling. The spin dynam-
ics are treated with two formalisms, linear spin wave
theory, and atomistic spin dynamics, which we have ex-
tended, the former for disorder (Appendix A), and both
for finite lattice temperature.

Fig. 1 shows the a schematic of the different approaches
we have followed, which are explained in detail below. All
structures are initially relaxed with abinit30 to give the
ground state lattice parameters. This structure is fed
into phonopy31 whereby the average atomic displace-
ments are calculated as a function of temperature. The
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same lattice parameters are also taken and an atom in
the unit cell is perturbed by ∆x to give a new structure
which is subsequently used by sprkkr32. The sprkkr
code then calculates the Heisenberg exchange parameters
as a function of the perturbation. The size of the dis-
placement as a function of temperature is combined with
the displacement dependent Jij are then combined to
give Jij(Tp). These exchange constants are then used in
both linear spin-wave theory and atomistic spin dynamics
(R-ASD for perturbed Jij and ASD where the perturba-
tion is zero). From (R)-ASD the temperature dependent
magnetization and spin-waves are output and the Curie
temperature and exchange stiffness calculated, respec-
tively. The LSWT does not take into account changes in
the length of the magnetization and therefore only looks
at the effect of the phonon renormalization on the spin-
waves (and then stiffness).

1. Thermal dependent exchange integrals

We parametrize the magnetic Hamiltonian of the sys-
tem, mapping electronic structure calculations on a
Heisenberg Hamiltonian of the form:

H = −
∑
〈iρ,jη〉

J ρηij Sρi · Sηj , (1)

where i and j represent atomic sites and the ρ, η index
refer to the atomic species. In the Hamiltonian eq. (1)
each species is treated with an explicit sublattice. In
this framework, both CPA and VCA consider a disor-
dered, single-atom, species to deal with disorder. J ρηij is
the exchange coupling between spins located at different
sites, and Sρ are the spins associated with a given sub-
lattice. The exchange coupling constants are calculated
as a function of the interatomic positions through the
ab-initio sprkkr code32.

The phonon bath temperature (Tp) is introduced by
calculating, ab-initio, the atomic mean square thermal

displacement
√〈

u2(Tp)
〉

as implemented in phonopy31

and obtained from the quasi-harmonic approximation in
the second quantization formalism. Chemical disorder is
introduced for Py 1) in the J ρηij values using the CPA
method, which returns all possible interactions among
different sites, and 2) in the phonons and thermal dis-
placement using the VCA.

To calculate the effect of temperature on the exchange
integrals, the Heisenberg exchange parameters, J ρηij , are
calculated for a set of distorted unit cells where the atom
at the origin of the cell is displaced from its equilibrium
position in steps from 1% to 5% of the cubic lattice con-
stant, in the x direction. As the unit cells are all cubic,
we only consider one displacement (along the x axis).
Checks for forward and backward displacement, and with
smaller steps (0.5%) were carried out to validate numer-
ical aspects. For each displacement ∆x we calculate the
exchange integrals J ρηij (∆x).

The results are then fit to a second order polynomial
with respect to the displacement:

J ρηij (∆x) ' J F,ρη
ij (0) +

1

2

∂2J F,ρη
ij

∂u2
∆x2 (2)

By choosing ∆x =
√〈

u2(T )
〉

we obtain a temperature

dependent J ρηij (Tp) ≡ J ρηij
(√〈

u2(Tp)
〉)

.

A different CPA formula incorporating thermal dis-
placements and

〈
u2(T )

〉
has recently been implemented

in sprkkr using a Debye approximation in Refs33,34 but
does not yet allow for the calculation of the J ρηij .

The cubic symmetry is broken by the finite displace-
ment and subsequently restored on the exchange integrals
by re-symmetrizing the full Jij matrix with the original
cubic symmetry operations along x, y, and z (we assume
uncorrelated thermal displacements). The renormaliza-
tion is general, in that the Jij variation propagates also
to integrals relative to non displaced atoms - this is also a
novelty compared to most previous calculations (except
supercell approaches) which are two-body, and usually
only vary J with the interatomic distance.

2. Linear Spin Wave Theory

We develop the theory of Linear Spin Waves for binary
disordered systems into Appendix A.

3. Atomistic Spin Dynamics

The dynamics of each spin is governed by the
phenomenological Landau-Lifshitz-Gilbert equation
(LLG)35:

dSi
dt

= − γi
(1 + λ2i )µi

Si × [Hi + λiSi ×Hi], (3)

where λi is the coupling to the magnon thermal bath
which governs return to FM equilibrium. The amplitude
of the magnetic moment is given by µi. The effective
fields, Hi, at the site i are determined using a Heisenberg
Hamiltonian including exchange (as given in Eq. (1)) ex-
tended with anisotropy and Zeeman terms:

HASD = −
∑
〈iρ,jη〉

J ρηij Sρi ·Sηj−
∑
i

Ki(S
ρ
i ·n̂)2−

∑
i

µiS
ρ
i ·B ,

(4)
where Ki is the uniaxial anisotropy constant, assumed
to be rather small in agreement with experimental and
theoretical works36. n̂ is the direction of the easy axis
taken here to be in the z direction. The final term in
Eq. (4) is the Zeeman interaction with the applied mag-
netic field, B. Based on a real space formalism, the
magnetic moments, µi, are assumed to be localized on
a given atomic site, i, with their time-dependence given
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by the phenomenological LLG Eq. (3). The effective field
is given by the derivative of the Hamiltonian with respect
to the spin:

Hi = −∂HASD

∂Si
+ ζi, (5)

and includes stochastic thermal fluctuations, ζi. These
are included by incorporating a Langevin thermostat set
to the desired magnonic temperature, Tm. In the present
work the noise process is assumed to be white because of
the time-scale of equilibrium properties, where the heat
bath (phonon or electron system) acts much faster than
the spin system. The correlators of the process are de-
fined through the fluctuation dissipation theorem as:

〈ζαi (t)〉 = 0

〈ζαi (t)ζβj (t′)〉 =
2λikBTµi

γi
δijδαβδ(t− t′). (6)

The α, β represent cartesian (spin) components and i, j
represent spin indices.

In ASD, unlike LSWT, disorder is taken into account
by having a large supercell with 131,072 single species
atoms placed randomly on a lattice (fcc for Py), such that
the desired composition is reached: Ni and Fe atoms do
not occupy the same sites. For pure Fe and Ni, the values
of the moments were µFe = 2.50µB and µNi = 0.655µB,
respectively. For Py, the magnetic moments were ob-
tained from ground state sprkkr calculations and were
µFe = 2.637µB and µNi = 0.628µB. The phonon bath
temperature is again included through the J ρηij (Tp) pa-
rameters. This gives a renormalized version of the ASD,
to which we give the acronym R-ASD.

4. Curie Temperature

To calculate the temperature dependent magnetization
(and subsequently the Curie temperature) the coupled
LLG equation (3) is solved iteratively in the high damp-
ing limit and time-averages of the components of the spin

ensemble, mρ = 1
Nρ

Nρ∑
i∈ρ

Si(t), are taken as in Ref.37. The

system is initially equilibrated and a further period of
time is then simulated to determine the average magne-
tization, which is monitored until convergence in both
the mean and the variance is obtained.

5. Spin-waves

The temperature-dependent magnon frequencies are
determined by calculating the dynamic structure fac-
tor38:
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FIG. 2: (Color online) Py phonons energies calculated
within DFPT in the harmonic approximation from

VCA compared to experimental results from41.

S(k, ω) =
1

N
√

2π

∑
r,r′

eik·(r−r
′)

∫ +∞

∞
e−iωtC(r− r′, t)dt,

(7)
where C(r − r′, t) = 〈S+(r, 0)S−(, r′, t)〉 is the spin-spin
correlation function of the transverse spin values (Sx
and Sy). The stochastic thermal term allows the spin
system to sample all modes and the resulting spectra
are analyzed to determine the frequencies. The result-
ing magnon dispersion curves and magnetic response are
shown in Fig. 5, panels b and d and commented below.

6. Numerical Details

Thermal displacements
√
〈u2(T )〉 as a function of T

have been calculated from phonopy31 in 2×2×2 super-
cells. The electronic ground state properties and forces
have been calculated through Density Functional The-
ory using abinit30. The Local Density Approximation
and the Generalized Gradient Approximation return very
similar results for the electronic ground state as well for
phonons frequencies. The latter was employed with a
set of FHI pseudopotentials39, with a plane wave en-
ergy cut-off set to 40 Ha, a gaussian electronic smear-
ing of 1 meV, and a 123 Monkhorst Pack grid to sample
the Brillouin Zone40. The ground state energy was con-
verged in all cases below 10−14 Ha. In the case of Py,
the VCA was used to simulate disorder with the exact
ratio (81% of Nickel and 19% of Iron) between species
imposed. Harmonic phonon frequencies have also been
calculated within Density Functional Perturbation The-
ory as implemented in abinit30 and agree well for these
very simple 1 atom unit cells. The phonon dispersion
curve for VCA Py is shown in Fig. 2 in comparison with
experimental results for disordered Ni3Fe from Ref.41.

The magnetic exchange integrals have been obtained
using the Spin Polarized Relativistic Korringa-Kohn-
Rostoker method as implemented in the Munich sprkkr
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code32,42 version 6.3. A generalized gradient approxi-
mation exchange-correlation functional is employed by
Perdew-Burke-Ernzerhof (PBE)43. A Spin-polarized
Scalar-Relativistic (SP-SREL) Hamiltonian was used
with full potential on a Brillouin-zone grid of 22 × 22
× 22 k-points, orbital momentum cut off lmax = 3 and
60 points on the complex energy path. All calculations
were converged to 0.1 mRy of total energy. Temperature
dependent exchange integrals J ρηij (T ) are then obtained
for each possible interaction of atoms in the central unit
cell with all neighbors within a sphere of 3.5 times the
lattice constant. Only one type of interaction is possible
in pure Fe and Ni, whereas three different interactions are
present in Py. Note that the chemical disorder in Py is
described with a VCA approximation while the magnetic
disorder comes from CPA. We used the conventional unit
cells for the calculations: 4 atom fcc for Ni and Py, and
2 atom bcc for Fe.

Anharmonic effects are not considered in this work,
as a first step, justified as follows: (i) harmonic phonon
frequencies agree with experimental results, (ii) the coef-
ficient of thermal expansion for Py is modest at 12 · 10−6

K−1(Ref.44 III/32A) and (iii) the fit of the J to a
quadratic function of displacement has a residual error
below 10−6 for all cases relative displacement of at most
∼ 5% at 1000K. These effects could be included by 1)
generalizing the renormalization of the magnetic coupling
due to several atomic displacements, and 2) by renormal-
izing the frequencies and mean squared displacements;
these avenues will be considered in the future, but given
the final thermalization procedure we expect the results
would be qualitatively unchanged.

RESULTS

1. T-dependent Heisenberg Exchange Integrals

Temperature dependent exchange interactions, as a
function of the reduced distance between atoms and tem-
perature, are displayed in Fig.3 for Fe and Ni (3a top and
bottom) and for Py (3b). For Py, the variation of the
magnetic exchange is shown in all three possible inter-
actions in Py (Fe-Fe, Ni-Ni and Fe-Ni). The amplitude
of the ferromagnetic coupling can either increase or de-
crease with Tp and exchange integrals can even change
sign. For Py, the amplitude of the exchange interaction
between the first and second nearest neighbor interac-
tions decreases with increasing Tp. Further out, the pic-
ture is more complex. The change in amplitude of J
in Fe and Ni is much smaller than Py, in particular for
the Fe–Fe and Fe–Ni inter-sublattice interactions. We
postulate that within the CPA (with several species) the
atomic displacement has a stronger effect on the charge
transfers between Fe and Ni components, and thus on
the local exchange integrals.

The temperature dependence of the different neighbor
interactions is also shown in Fig. 4 for the Fe-Fe, Ni-Ni
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FIG. 3: (Color online) Temperature dependent
Heisenberg exchange integrals (times reduced radius

cubed) vs. reduced radius and for different values of the
phonon temperature.

and Ni-Fe interactions in Py (N.B.: without the 1/r3ij).
It is important to notice that the first-neighbor interac-
tion is generally the one most affected by the coupling
with phonons (conforming with intuition), and that the
J decrease in absolute value.

2. LSWT

To demonstrate the net effect of the phonon temper-
ature on the SW frequencies in Py, we report the SW
modes within LSWT (no thermal bath for the spins) in
Fig. 5 (panel a). In Py, there are two magnon modes38,
one optical and one acoustic, with a form determined
by the mixture of the Ni-Ni, Fe-Fe and Ni-Fe exchange
(cfr. Eqs. A15 and A14). We set 〈S0〉 = 〈S1〉 = 1 and

ν0 = 0.81 and ν1 = 0.19 in the J̃ ρηij definition. Tp pro-
duces an increase in magnon energies at small k, for both
the acoustic and the optical branches, while there is al-
most no change at larger k.
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shown explicitly for the Fe-Fe, Ni-Ni and Ni-Fe
interactions in Permalloy.

3. Atomistic Spin Dynamics

The effect of the spin temperature on the SW spectrum
is introduced with the ASD and R-ASD, and shown in
Fig.5c. The resulting dispersion curve is quite different
from that of the phonons in the LSWT case (Fig.5a),
showing the limits of the linear approximation, and in
particular for higher temperatures. The inclusion of ther-
mal spin fluctuations excites all eigenmodes of the sys-
tem, and softens the magnons as the temperature of
the thermostat increases. The acoustic branch is de-
pressed at a frequency close to 200 meV (difference be-
tween 0K and 600K curves in panel c), near the Brillouin
zone boundary, an effect which is much larger than the
one found considering only phonon effects. The optical
branch shows an opposite behavior in the whole Bril-
louin Zone (Γ→ H) compared to the LSWT, decreasing
in frequency when T = Tp = Tm increases. In Fig.5
(c) and (d) we present the easiest combination of tem-
peratures of the different systems (phonon and magnon),
setting Tm = Tp. This corresponds to the case where the
phonons and magnons are completely equilibrated. Ref26

shows that this is the case for the average global temper-
ature in Yttrium Iron Garnet upon pumping of heat into
either bath. Other cases with Tm 6= Tp are considered
below (Fig. 7).

4. Spin-Wave Stiffness

To compare to experiments, we consider the SW stiff-
ness D (ω− ' Dk2 for small enough frequency), which is
easier to access than the full dispersion. There are sev-
eral ways to extract D; through q → 0 fitting to the dis-
persion; through the temperature dependence of M(T )

presuming Bloch’s law holds; or through the tempera-
ture dependence of ferromagnetic resonance (FMR) fre-
quencies for standing waves in thin films, presuming the
films have bulk-like magnon dispersions. The latter two
were used in Ref.29 and yield very different values (∼
250 vs 450 meV Å2) leading the authors to conclude 1)
that Bloch’s law does not hold and 2) that magnetism is
probably itinerant. We agree with the former, but not
the latter, as shown below. To determine D, we choose a
fitting region up to ka = 1.2, as represented by the ver-
tical dashed line in Fig. 5 panels a and c. The resulting
D(T ) is shown in panels b for LSWT (phonon tempera-
ture only), and d for ASD (magnons only - blue triangles)
and R-ASD (both magnons and phonons - green circles).
As the real dispersion is never purely parabolic outside
Γ, it is normal that different fits disagree.

We observe a monotonic increase of the stiffness with
the temperature for LSWT. The near neighbor exchange
integrals soften in all three channels, whereas from the
fifth neighbohrs out many harden (Fig. 4). We conclude
that, as the temperature increases in LSWT, the weight
of the first neighbors’ Jij becomes less important than
at low temperature: the phonons can have a strong effect
on the long range changes in Jij , which were not taken
into account in previous work.

For ASD, when Tp = 0 (blue triangles in Fig. 5d) the
stiffness monotonically decreases, while in the R-ASD the
introduction of finite Tp induces a non-monotonic trend:
for low T the phonons increase D as for the LSWT, and
at large enough Tm, the magnon dispersion must flat-
ten, and D decreases. The agreement for the “straight”
ASD with the experimental D (red crosses, panel d) is
excellent, showing that purely magnon fluctuations re-
produce the temperature dependence, and there is no
need to invoke questions about itinerant magnetism in
Py discussed in29. The stiffness, however, only contains
very limited information in k: in the experimental setup,
an FMR method uses a standing SW with a wavelength
equal to the film thickness d (100 nm in 29), and is there-
fore sensitive only to a single non-zero k = 2π/d, which
is very close to Γ.

Our lattice thermal effect is strongest for the acous-
tic mode at the zone edge, and our k resolution at the
zone center is limited by ASD supercell size and statis-
tics. Due to 1) a limited phonon supercell and 2) single
atom displacements plus re-symmetrization, our calcula-
tions clearly overestimate the MPC at Γ (MPC should
go to 0 at Γ due to phase space arguments for energy
and momentum conservation). At larger k, the SW dis-
persion becomes non-parabolic (as shown in Fig. 5c) and
this is amplified by magnon and phonon perturbations.
Both increase the higher order polynomial terms in k, but
have opposite effects on the dispersion. The combination
produces a non-monotonic behavior in the magnon fre-
quencies within the R-ASD. From this perspective, neu-
tron scattering or a series of FMR measurements with
smaller film thicknesses or higher harmonics of the stand-
ing waves would yield precious information on the SW



7

0.0

0.2

0.4

0.6

E
n

er
gy

(e
V

)

0 200 400 600

0.5

1.0

1.5

2.0

D
(e

V
Å
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open symbols in (d) are stiffness values extracted using a fit to Bloch’s law (which underestimate, as found in
Ref.29), the red crosses with error bars in (d) represent the fit of D(T ) in Ref.29. Phonon thermal effects are

invisible in the experimental SW stiffness, which probes only the very long wavelength limit.

dispersion, to test our proposal of a strong thermal ef-
fect on the SW dispersion far from the acoustic k ∼ Γ.
Fig. 5d also shows fits of D from M(T ) as dashed lines. In
this case, both ASD and R-ASD produce monotonically
decreasing D(T ) and a strong underestimate as found ex-
perimentally in Ref.29. This difference reflects the limited
validity of Bloch’s law, both in theory and experiment:
M is averaged over k and gives a less accurate value of
D. Even at low T , fitting M(T ) is much less reliable than
FMR, at least for Py. Compared to D, M(T ) always de-
creases with T , and M averages fluctuations over many
length and time scales.

5. Magnetization and Curie Temperature

In this section, we discuss the effect of the temper-
ature dependent exchange interactions J ρηij (Tp) on the
magnetization and Curie temperature, Tc. We have cal-
culated the equilibrium magnetization M(T ) and show
the results in Fig. 6. The ASD Curie Temperature is de-
rived as in Ref.37. We consider here the two cases: ASD
(using J ρηij (0K) values - empty symbols in Fig. 6) and

the R-ASD (using the temperature-dependent exchange
constants, J ρηij (Tp), calculated previously with Tm = Tp)
This magnetization contains the combined effect of the

phononic and magnetic temperatures for the R-ASD case
(closed symbols in Fig. 6).

The Curie temperatures from the different models
used and from theoretical and experimental literature are
given in Table. I. We also report the result in the Mean
Field Approximation (MFA) as in45, considering both the
unperturbed Jij and the temperature dependent Jij(Tp).
Phonon corrections lead to a slight decrease in the ASD
calculated Tc for bcc Fe (from 1344K to 1333K), while
it is increased for fcc Ni (from 409K to 415K). In both
cases introducing the phonon temperature induces an im-
provement, but only by a few percent or less.

In the case of disordered Py our theoretical result out-
classes previous methods: ASD returns Tc=656 K using
Jij(0K), consistent with other works using CPA46, while
within R-ASD, Tc increases to 844 K which considerably
improves the agreement with experiments. This level
of agreement may be fortuitous, but the amplitude of
the correction shows that the renormalization of the ex-
change J ρηij with lattice temperature is crucial. A mean

field calculation with J ρηij (0K) and J ρηij (Tp) also shows a
strong variation of Tc, suggesting the details of the spin
fluctuations are secondary.

We believe the difference in the order of magnitude of
the phonon correction is due to two interrelated factors:
1) the presence of an optical magnon mode in Py en-
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FIG. 6: (Color online) Temperature dependent
magnetization curves of the two sublattices in Py: Fe
(green circle) and Ni (blue triangles) calculated using

ASD (open symbols) and temperature dependent
(closed symbols) exchange constants (R-ASD). Full
lines are Taylor expansion fits48 to extract the Curie

temperatures (vertical lines). The grey area shows the
range of Curie temperatures found experimentally44,49,

while the red vertical lines represent the Curie
temperature from ASD (dashed) and R-ASD (full).

ables more interactions with phonons 2) our method is
biased towards zone edge phonons, which seem to have
a stronger coupling in Py, whereas in Fe and Ni the long
wavelength phonons seem to be dominant. In the future
we will look at mode-resolved MPC and larger KKR unit
cells, to verify these distinctions.

We note that the increase in the Curie temperature
of Py due to the temperature-dependent exchange con-
stants is already visible in their effect on the LSWT dis-
persion without magnetic disorder. In passing, Barker et
al.38 include the reduction of the magnetization directly
in the LSWT, using a mean field analysis, but their Curie
temperature is strongly overestimated.

Finally, other corrections to the DFT/KKR+ASD
framework are needed in general for a quantitative pre-
diction of Tc, e.g. many body effects in the J ρηij 47.

DISCUSSION

In this section we elaborate on the limitations of our
method and directions for further study.

One important aspect of the MPC is adiabaticity: the
(non)conservation of energy in the process of mutual scat-
tering. A review of the problem of adiabaticity in itin-
erant ferromagnets can be found in Ref.53. We have as-
sumed here that the fundamental postulate of their the-
ory holds, i.e. a much faster time-scale of the electronic
degrees of freedom with respect to the slow magnetic sys-
tem, and further postulate that correlations of the fast
ionic motion are negligible. Both of these may be incor-
rect, and further work on the topic is very important for
the fundamentals of magnon phonon coupling.

Fe Ni Py

Other: MFA b 1414 397
This: MFA 1725 455 796

This: MFA(Tp) 1662 452 867
Other: ASD c 650

This: ASD 1344 409 656
This: R-ASD 1333 415 844
Other: RPA a 950 350

Other: R-RPA g 1057 634

Monte Carlo f 1065 615

Experiment 1043d 628.5d 850e

871d

TABLE I: Curie Temperature (in K) calculated from
MFA and ASD compared to previous results: a Random

phase approximation50, b MFA50, c ASD46, Monte
Carlo51. Experimental data are from44d and49e. f 51, g52

The Heisenberg model itself has limits, but should
function for Fe and Py, which present localized mag-
netism. There is no good definition of localized moments
in Ni, but empirically the Heisenberg model seems to
work, and we include it for comparison: our goal here is
to investigate the interplay of vibrational and thermal
effects, and they appear to work in similar ways in Ni.

A commonly proposed mechanism for the Spin See-
beck Effect is the propagation of out-of-equilibrium long-
wavelength phonons in a crystalline substrate below the
sample28. This enables a phonon-drag-like pumping of
acoustic magnons in the magnetic material, and a result-
ing spin current which has a non-local origin. This is
a difficult hypothesis to verify experimentally, and con-
tributed to motivate the present study: is the strength
of the MPC sufficient to justify the observed spin cur-
rent? In Ref.27, a semi-empirical model confirmed this
hypothesis showing that at short wavelengths the mag-
netoelastic modes are mixed and scatter quickly, whereas
at long wavelengths, scattering is weaker. We find in Py
that spin fluctuations affect magnons of all wavelengths,
whereas MPC is particularly strong for intermediate to
short wavelengths (k > 1.2/a), which provides an impor-
tant suggestion for future SSE models.

Our magnon dispersions implicitly contain the MPC
in the temperature dependence of the magnons at dif-
ferent k, but also through the difference in temperature
between the magnonic and phononic baths. For com-
parison, we have calculated of the stiffness, D, for three
different cases, using the same low-k fitting of the spin-
wave spectrum as above. The first case is with a fixed
magnetic temperature (the temperature of the spin ther-
mostat) of Tm=100K and a varying phonon temperature,
Tm (see blue squares in Fig. 7) given by the value on
the x-axis. The second case has a fixed phonon tem-
perature, Tp=100K and a varying temperature of the
magnetic system, Tp (see red diamonds in Fig. 7). The
third case corresponds to the case where the magnetic
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FIG. 7: (Color online) Temperature dependent
exchange stiffness for three different non-equilibrium

cases: 1) fixed magnetic (spin thermostat) temperature
of Tm=100K and a varying phonon temperature, Tp
(blue square points), 2) fixed phonon temperature

Tp=100K and a varying magnetic (red diamond points)
and 3) equal magnetic and phononic temperature (green

circle points). The error bars are estimated from the
error in the non-linear least squares fitting procedure.

and phononic temperature are equal, Tm = Tp (see green
circles in Fig. 7, same in Fig. 5d). The error bars are
estimated from the error in the non-linear least squares
fitting procedure. The trend of the three D(T ) curves is
quite different, and offers therefore a way to distinguish
between strong and weak MPC at low k by comparing to
a “slow” adiabatic measurement. If D rises slowly or de-
creases with Tm, or if it increases strongly with Tp, then
the coupling is weak and thermalization is difficult. We
therefore strongly encourage a systematic experimental
measurement of SW stiffnesses, in order to verify the in-
trinsic MPC for other materials, and validate or expand
the present explanation of the SSE.

CONCLUSION

A new method to calculate the thermal variation of
magnetic exchange couplings is introduced, and the re-
sulting change in the SW frequencies is presented. The
effects of both spin and lattice temperatures, Tm and
Tp, are taken into account, using the ASD method and
phonon-renormalized exchange interactions, respectively.
We show that phonons weaken the exchange interaction
at short distances, and often harden for spins located fur-
ther out, which has a non-trivial effect on the SW disper-
sion. Tp and Tm have competing effects on the magnon
frequencies for Permalloy, which opens perspectives both
for understanding and for tuning thermomagnetic behav-
iors. We compare the LSWT and mean field approaches,
which ignore SW-SW interactions, with the ASD which
includes SW fluctuations. The temperature variation of
the SW stiffness reflects exclusively the zone center dis-
persion, and is well described with spin fluctuations only.
We find that the full dispersion relation changes due to

both lattice and spin fluctuations, an effect which would
require neutron scattering measurements of the disper-
sion to confirm. The agreement of our calculations with
experimental Tc suggests that the recently measured sim-
ple variation of D(T ) belies the complex evolution of the
full dispersion. SW stiffness values will depend strongly
on the methods used to measure them, either relying on
the dispersion, on Bloch’s law, or using ferromagnetic res-
onance measurements. We hope to stimulate further ex-
perimental investigation of the thermal evolution of SWs
in Py and in other materials. This will provide a direct
and simple quantification of the MPC, and is central to
the understanding of spin-caloritronic effects.

Our theory is general and it can be applied to differ-
ent crystal forms, magnetic cations and variations of the
components and alloy fractions. Beyond magnon spec-
trum changes with temperature, it also allows one to as-
sess variations as a function of impurity concentration.
These results open up important perspectives for tailor-
ing alloys, without the need for costly nanostructuring, to
obtain optimal spintronics and spin-caloritronic materi-
als in a desired temperature window. Our results indicate
that phonons can also lead to deviations from Bloch’s law
in measurements of the exchange stiffness54. Natural ex-
tensions include a fully phonon mode and wavevector de-
pendent formalism, to explore in more detail MPC from
first principles.
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Appendix A: Linear Spin Wave Theory for
disordered materials

In this section we derive explicitly the LSWT for an al-
loy, assuming a mixture of both Ni and Fe at each atomic
site, i.e. the site and species exchange constants are
weighted by the composition. We begin by linearizing
the exchange part of the Hamiltonian Eq. (1) assuming
that the x/y oscillations are small with respect to the
spin moment in the quantization direction (taken to be
the z-axis). Writing the dot products in terms of the spin
raising and lowering operators, S±,ρ = Sρx ± iSρy , which
are now species dependent:

Sρi · Sηj =
1

2
[S+,ρ
i S−,ηj + S−,ρi S+,η

j ] + Sz,ρi Sz,ηj , (A1)

where ρ, η are the species. To describe the spin-wave
energies of a two component disordered alloy system we

first write the Hamiltonian explicitly for each set of in-
teractions:

H =
∑
i

∑
j

J̃ 00
ij S

0
i · S0

j +
∑
i

∑
j

J̃ 01
ij S

0
i · S1

j

+
∑
i

∑
j

J̃ 10
ij S

1
i · S0

j +
∑
i

∑
j

J̃ 11
ij S

1
i · S1

j ,
(A2)

where the superscripts (0,1) correspond to each species
pair (ρ, η). We assume that the magnetic moments of
each species occupy the same sites (see below) and the
J ρηij are corrected in the spirit of a VCA to account for

composition, J̃ ρηij = J ρηij νρ, where νρ is the percentage of

the species, ρ. Writing the Sρi ·Sηj products in terms of the
species dependent spin raising and lowering operators,
the Hamiltonian becomes:

H =
∑
i

∑
j

J̃ 00
ij

{1

2

[
S+,0
i S−,0j + S−,0i S+,0

j

]
+ Sz,0i Sz,0j

}
+
∑
i

∑
j

J̃ 01
ij

{1

2

[
S+,0
i S−,1j + S−,0i S+,1

j

]
+ Sz,0i Sz,1j

}
+
∑
i

∑
j

J̃ 10
ij

{1

2

[
S+,1
i S−,0j + S−,1i S+,0

j

]
+ Sz,1i Sz,0j

}
+
∑
i

∑
j

J̃ 11
ij

{1

2

[
S+,1
i S−,1j + S−,1i S+,1

j

]
+ Sz,1i Sz,1j

}
.

(A3)

As we are neglecting the thermal effects arising from fluc-
tuations of the magnetic moments we take the low tem-
perature approximation for the Holstein-Primakoff trans-
formations55:

S+,0
i ≈~

√
2Sa+,0i ,

S−,0i ≈~
√

2Sa−,0i .
(A4)

For ease of notation we take ~=1 and absorb the spin
value, S, in the exchange constant (i.e. setting S = 1).
The transverse components in Eq. (A3) are then re-
placed by the low temperature Holstein-Primakoff trans-
formation and we use the relation, Sz,ρi = S − n̂ρi ,

where n̂ρi = a+,ρi a−,ρi is the number operator. Then,
Szi S

z
j = (S − n̂ρi )(S − n̂ηj ). We neglect terms beyond

first order, and note that the pure powers of S only add
an arbitrary constant to the Hamiltonian. Furthermore,
we can relabel the sum over j by introducing the δ vec-
tor which is the translation between i and a neighbor, j,∑
i

∑
j

→
∑
ij

→
∑
iδ

. For a disordered alloy with only

one type of site, we have Ji,j = Ji,i+δ = Jδ depending
on the relative displacement only. Thus we can write the
Hamiltonian:

H =
∑
i,δ

J̃ 00
δ

{
a−,0i a+,0i+δ + a+,0i a−,0i+δ − a

+,0
i a−,0i − a+,0i+δa

−,0
i+δ

}
+
∑
i,δ

J̃ 01
δ

{
a−,0i a+,1i+δ + a+,0i a−,1i+δ − a

+,0
i a−,0i − a+,1i+δa

−,1
i+δ

}
+
∑
i,δ

J̃ 10
δ

{
a−,1i a+,0i+δ + a+,1i a−,0i+δ − a

+,1
i a−,1i − a+,0i+δa

−,0
i+δ

}
+
∑
i,δ

J̃ 11
δ

{
a−,1i a+,1i+δ + a+,1i a−,1i+δ − a

+,1
i a−,1i − a+,1i+δa

−,1
i+δ

}
.

(A5)

We can then transform to Fourier space through a±,ρi =∑
k

e∓ik·ra±,ρk . Substituting these into Eq. (A5) gives (for

readability we write just the first term, ρ = η = 0):

H00 =
∑
iδkk′

J̃ 00
δ

[
e−i(k−k

′)·rie+ik
′·δa+,0k a−,0k′

+ e+i(k−k
′)·rie−ik

′·δa−,0k a+,0k′

+ e−i(k−k
′)·ria+,0k a−,0k′

+ e−i(k−k
′)·(ri+δ)a+,0k a−,0k′

]
.

(A6)
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Sums over i cause all terms to vanish unless k = k′55 and
thus the sum becomes:

H00 =
∑
kδ

J̃ 00
δ

[
e−ik·δa+,0k a−,0k + e+ik·δa−,0k a+,0k

− 2a+,0k a−,0k

]
. (A7)

We use the identity [a+, a−] = 1 and define γk =∑
δ

e−ik·δ, and J̃k =
∑
δ

J̃δe−k·δ For crystals with a

center of inversion symmetry (FCC, BCC), γk = γ−k,
simplifying Eq.( A7) to:

H00 =
∑
kδ

J̃ 00
δ [γka

+,0
k a−,0k + γka

−,0
k a+,0k − 2a+,0k a−,0k ]

=
∑
kδ

J̃ 00
δ [2γka

+,0
k a−,0k + γk − 2a+,0k a−,0k ]. (A8)

Again, we ignore the arbitrary constant
∑
k

γk, and

take the sum over δ inside. The Hamiltonian given by
Eq. (A8) becomes:

H00 = 2
∑
k

(J̃ 00
k − J̃ 00

0 )a+,0k a−,0k . (A9)

Terms for H01, H10 and H11 can be derived in a similar
way. For brevity they have not been shown explicitly
here but we note that we can write the Hamiltonian as a
matrix product:

H =
∑
k

a+,Tk Ma−k , (A10)

where M is a 2×2 matrix containing the appropriate ex-
change constants and:

a±k =

[
a±,0k

a±,1k

]
. (A11)

The Hamiltonian matrix is rewritten using a Bogoliubov
transformation56, which now mixes the excitations asso-
ciated with Ni-Ni, Fe-Fe and Ni-Fe exchange interactions.

a±,0k =ukα
±
k + vkβ

∓
k ,

a±,1k =ukβ
±
k + vkα

∓
k .

(A12)

With this transform the Hamiltonian can then be written
as:

H =
∑
k

[α+
k β

+
k ]Mk

[
α−k
β−k

]
. (A13)

The elements of the matrix, Mk can be found by com-
paring coefficients of the a±,ρk :

Mk =

[
Ωk,0〈S0〉+ Ξk,00 Ξk,01

Ξk,10 Ωk,1〈S1〉+ Ξk,01

]
, (A14)

where Ωkρ = γ
µρ

∑
R J̃

ρρ
ij (R)[1 − exp(ik ·R)] is the SW

frequency of the individual species (the two possible sub-
lattices). γ is the gyromagnetic ratio, µρ are the spin

moment amplitudes and Ξk,ρη = γ
µρ

∑
R J̃

ρη
ij (R)〈Sη〉.

〈·〉 represent the equilibrium value of reduced magnetisa-
tions for each species (normalised to 1 at T=0K). Here we
ignore spin fluctuations and these values are fixed to 1.
We could artificially introduce a temperature dependence
of the magnetisation in the LSWT but we choose not to
as the ASD gives a better account of spin fluctuations as
it allows for spin-wave interactions.

Upon diagonalization, the solutions to the eigenvalue
equation are given by:

ω±(k) =
1

2

[
TrMk ±

√
(TrMk)2 − 4 det[Mk]

]
,

(A15)
where ± corresponds to the upper (+) and lower (−)
magnon branches, det is the determinant. The result-
ing magnon dispersion curves and magnetic response are
shown in Fig. 5, panels a and c and commented in the
main text.
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4 F. Körmann, B. Grabowski, B. Dutta, T. Hickel,

L. Mauger, B. Fultz, and J. Neugebauer, Phys. Rev. Lett.
113, 165503 (2014).

5 J. Fransson, D. Thonig, P. F. Bessarab, S. Bhattacharjee,
J. Hellsvik, and L. Nordström, Phys. Rev. Materials 1,

074404 (2017).
6 K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa,

and E. Saitoh, Applied Physics Letters 97, 172505 (2010).
7 K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae,

K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778
(2008).

8 K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kaji-
wara, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Journal
of Applied Physics 111, 103903 (2012).

9 H. Adachi, K. Uchida, E. Saitoh, and S. Maekawa, Reports
on Progress in Physics 76, 036501 (2013).

10 J. Flipse, F. K. Dejene, D. Wagenaar, G. E. W. Bauer,
J. B. Youssef, and J. van Wees, B., Phys. Rev. Lett. 113,

mailto:marco.digennaro@unibas.ch
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRevB.15.1489
http://dx.doi.org/10.1103/PhysRev.88.1200
http://dx.doi.org/10.1103/PhysRevLett.83.2062
http://dx.doi.org/10.1103/PhysRevLett.83.2062
http://link.aps.org/doi/10.1103/PhysRevLett.113.165503
http://link.aps.org/doi/10.1103/PhysRevLett.113.165503
http://dx.doi.org/ 10.1103/PhysRevMaterials.1.074404
http://dx.doi.org/ 10.1103/PhysRevMaterials.1.074404
http://dx.doi.org/ http://dx.doi.org/10.1063/1.3507386
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/10.1038/nature07321
http://dx.doi.org/http://dx.doi.org/10.1063/1.4716012
http://dx.doi.org/http://dx.doi.org/10.1063/1.4716012
http://stacks.iop.org/0034-4885/76/i=3/a=036501
http://stacks.iop.org/0034-4885/76/i=3/a=036501
http://link.aps.org/doi/10.1103/PhysRevLett.113.027601


12

027601 (2014).
11 G. Bauer, E. Saitoh, and B. van Wees, Nature Materials

11, 391 (2012).
12 E. Saitoh, G. E. W. Bauer, and B. J. van Wees, Nature

Materials 11, 391 (2012).
13 S. R. Boona, R. C. Myers, and J. P. Heremans, Energy

Environ. Sci. 7, 885 (2014).
14 J. de la Venta, S. Wang, T. Saerbeck, J. Ramı́rez, I. Valmi-

anski, and I. K. Schuller, Applied Physics Letters 104,
062410 (2014).

15 J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys.
30, 1 (1958).

16 H. Sato, Prog. Theor. Phys. 13, 119 (1955).
17 C. Kittel, Phys. Rev. 110, 836 (1958).
18 L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877

(2000).
19 P. Soven, Phys. Rev. 156, 809 (1967).
20 H. Ebert, B. Drittler, and H. Akai, Journal of Magnetism

and Magnetic Materials 104-107, Part 1, 733 (1992).
21 B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson,

Journal of physics: condensed matter 20, 315203 (2008).
22 D. Berkov, The Handbook of Magnetism and Advanced

Magnetic Materials, edited by H. Kronmüller and S. Parkin
(Wiley, Sussex, 2006).

23 P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B
78, 024434 (2008).

24 S. Morán, C. Ederer, and M. Fähnle, Phys. Rev. B 67,
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and S. Blügel, Phys. Rev. B 81, 054434 (2010).

48 N. Kazantseva, D. Hinzke, U. Nowak, R. Chantrell,
U. Atxitia, and O. Chubykalo-Fesenko, Physical Review
B 77, 184428 (2008).

49 S. Mathias, C. La-O-Vorakiat, P. Grychtol, P. Granitzka,
E. Turgut, J. M. Shaw, R. Adam, H. T. Nembach, M. E.
Siemens, S. Eich, C. M. Schneider, T. J. Silva, M. Aeschli-
mann, M. M. Murnane, and H. C. Kapteyn, Proceedings
of the National Academy of Sciences 109, 4792 (2012).

50 M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and
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