Electromagnetic effects induced by a time-dependent axion field
Katsuhisa Taguchi, Tatsushi Imaeda, Tetsuya Hajiri, Takuya Shiraishi, Yukio Tanaka, Naoya Kitajima, and Tatsuhiro Naka
Phys. Rev. B 97, 214409 — Published 11 June 2018
DOI: 10.1103/PhysRevB.97.214409
Electromagnetic effects induced by time-dependent axion field

Katsuhiro Taguchi1, Tatsushi Imaeda2, Tetsuya Hajiri3, Takuya Shiraiishi1, Yukio Tanaka2, Naoya Kitajima4, and Tatsuhiko Naka4,5

1Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
2Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
3Department of Materials Physics, Nagoya University, Nagoya 464-8603, Japan
4Department of Physics, Nagoya University, Nagoya 464-8602, Japan
5Kobayashi Masukawa Institute for the Origin of Particles and the Universe, Nagoya 464-8602, Japan

(Dated: May 30, 2018)

We studied the dynamics of the so-called θ-term, which exists in topological materials and is related to a hypothetical field predicted by Peccei-Quinn in particle physics, in a magnetic superlattice constructed using a topological insulator and two ferromagnetic insulators, where the ferromagnetic insulators had perpendicular magnetic anisotropies and different magnetic coercive fields. We examined a way to drive the dynamics of the θ-term in the magnetic superlattice through changing the inversion symmetry (from an anti-parallel to a parallel magnetic configuration) using an external magnetic field. As a result, we found that unconventional electromagnetic fields, which are magnetic field-induced charge currents and vice versa, are generated by the nonzero dynamics of the θ-term.

I. INTRODUCTION

In the context of high-energy physics, an axion is an additional scalar degree of freedom, which gives a natural solution to the charge conjugation parity problem in the standard model of particle physics2,3. In the cosmological context, it can also take the role of dark matter in the present universe, and the axion detection experiment is currently one of the most exciting fields of study. The axion couples with electromagnetic fields E and B as follows:

$$\mathcal{L}_a = \frac{\alpha}{2\pi g} \frac{a(t)}{f_a} E \cdot B,$$

where α is a fine structure constant, g is a coefficient of $\mathcal{O}(1)$, $a(t)$ is the (time-dependent) axion field, and f_a is the so-called Peccei-Quinn scale. Because of an extremely small value of $a(t)/f_a \lesssim 10^{-19}$ in the present universe, it is difficult to detect the signature of a dark-matter axion.

Intriguingly, a Lagrangian similar to Eq. (1) can be realized in topological materials:

$$\mathcal{L}_a = \frac{e^2}{2\pi \hbar} \theta E \cdot B,$$

where e is an elementary charge, and the term proportional to θ is the so-called θ-term. This is analogous to $a(t)/f_a$ in Eq. (1), but θ is basically a static constant in the time-reversal symmetry. The finite θ can be realized in the family of topological insulators (TIs), which includes magnetic-doped TIs2,3, multilayers of magnetic TIs4,5, Weyl semimetals (WSs)6,7, and superlattices8,9. In the presence of θ, characteristic electromagnetic effects10–13, anomalous Hall effects14–18, chiral magnetic effects19–23, and Kerr effects24–28, have been intensively studied.

One of the most interesting physical phenomena driven by the θ-term is the electromagnetic effect via the dynamics of θ (i.e., $\partial_t \theta$), which could be analogous to the axion. So far, the unconventional optical effect29 and electric field-induced magnetic field30 have been discussed under a nonzero $\partial_t \theta$, whose dynamics is caused by magnetic fluctuations, in materials with breaking time-reversal and inversion symmetries. Then, the time-average of $\partial_t \theta$ becomes zero, and its manipulation by an external field might be difficult.

In this work, we discuss a way to drive the dynamics of the θ-term using an external magnetic field and consider the electromagnetic effects via $\partial_t \theta$ in a magnetic superlattice while breaking both the time- and inversion-reversal symmetries. The magnetic superlattice we consider is constructed using a TI and two ferromagnetic insulators (FIs) [FI1/TI/FI2/spacer] n [Fig. I(a)], where FI1 and FI2 have perpendicular magnetic anisotropies and different magnetic coercive fields. Here, to clearly define the θ-term, we consider the axion insulator phase realized in the FI/TI superlattice [Fig. I(b)]. Then, θ can correspond to magnetic configurations of the FIs, where the inversion-reversal symmetry is preserved or broken corresponding to parallel (P) or antiparallel (AP) magnetic configurations. These configurations could be controlled by an external magnetic field because of the different magnetic coercive fields. Through this control, the nonzero $\partial_t \theta$ is induced during the AP\rightarrowP process. Furthermore, we found unconventional electromagnetic effects under a nonzero $\partial_t \theta$. Unlike the conventional (static) electromagnetic effects, a dynamical magnetic field-induced charge current is generated and vice versa.

This paper is organized as follows. In Sec. II, we consider the model of the superlattice. This is preparation for considering the time-dependent axion dynamics. Next, in Sec. III we show the wave equation by using the Lagrangian including the θ-term. Besides, we also provide how to drive the time-dependent axion field in the superlattice. In Sec. IV, we consider the unconventional electromagnetic effect in the presence of the time-dependent axion field. The chiral magnetic effect without using an
III. ELECTROMAGNETIC EFFECT VIA $\delta \theta$

A. Wave equation

The electromagnetic effects in the AI phase can be given by

$$\mathcal{L} = \mathcal{L}_{\text{Maxwell}} + \mathcal{L}_\theta + \mathcal{L}_e$$

$$= \frac{1}{2} \left[\epsilon E^2 - \frac{1}{\mu} B^2 \right] + \frac{e^2}{2\epsilon_0 h} (\theta_0 + \delta \theta) \mathbf{E} \cdot \mathbf{B} + j_e \cdot \mathbf{A}. $$

(10)

Here, \mathcal{L}_e denotes the gauge coupling between charge current j_e and vector potential \mathbf{A}. ϵ and μ are the electrical permittivity and magnetic permeability of the medium,
respectively. \(\theta_0 \) (\(= 0 \) or \(\pi \)) is a static value and \(\delta \theta \) denotes the deviation from \(\theta_0 \). Below, we simply consider \(\delta \theta \) in the linear response of \(d_5 \) and \(d_4 \sim \Delta_+ \). Then, \(\delta \theta \) is given by:

\[
\delta \theta = \tan^{-1} \left[\frac{M_-}{\Delta_+} \right].
\]

The Maxwell equations are given by:

\[
\nabla \times E = -\partial_t B \quad \quad \nabla \times B/\mu = \epsilon \partial_t E + j_e + j_\theta, \tag{12}
\]

where \(j_\theta = -[(\nabla \delta \theta) \times E + (\partial_t \delta \theta) B]c\alpha/\pi \) is a charge current due to \(\delta \theta \), and \(c \) is the velocity of light. Then, the wave equation becomes:

\[
(\partial_t^2 - c^2 \nabla^2) B = \frac{1}{\epsilon} \nabla \times (j_e + j_\theta). \tag{13}
\]

The right-hand side of the above equation indicates the source term for the wave equation. The first term is conventional but the second term, which depends on \(\nabla \delta \theta \) and \(\partial_t \delta \theta \), is unconventional and is given by \(\nabla \times j_\theta/\epsilon = -\frac{c\alpha}{\pi} \left[(\nabla \cdot E) \nabla \delta \theta - (\nabla^2 \delta \theta) \cdot \nabla E \right] - \frac{c\alpha}{\pi} \partial_t \delta \theta (\epsilon \partial_t E + j_e + j_\theta) \). In particular, for \(\nabla \delta \theta = 0 \) and \(\nabla \times j_e = 0 \), the wave equation becomes:

\[
(\partial_t^2 - c^2 \nabla^2) B = -\frac{c\alpha \mu}{\pi} \partial_t \delta \theta (\epsilon \partial_t E + j_e + j_\theta). \tag{14}
\]

B. Dynamics of \(\delta \theta \)

To drive the nonzero dynamics of \(\theta \) (\(\partial_t \delta \theta \)), we focus on magnetic configurations in the superlattice. Here, we assume that the magnetizations of FI1 and FI2 have perpendicular magnetic anisotropies and different magnetic coercive fields \(b_1 \) and \(b_2 \), as illustrated in Fig. II(c). Then, an external magnetic field \(B_{ex} = B_{ex} \hat{z} \) along the layered direction can trigger a change in the magnetic configurations (\(\hat{z} \) is a unit vector). For example, first we set the AP magnetic configuration, which can be generated through the \(1 \rightarrow 2 \rightarrow 3 \) process, with \(b_1 < B_{ex} < b_2 \), as shown in Fig. II(c). Then, the AP magnetic configuration becomes stable even when \(B_{ex} = 0 \). After \(B_{ex} \neq 0 \) is applied, the \(M_2 \) values of the FIs are changed by \(B_{ex} \), and the magnetic configuration can be dynamically changed from the AP configuration to the P magnetic configuration via the \(3 \rightarrow 4 \) process. The changes in the magnetic configurations are caused by the change in the magnetization of FI2, which is switched from the \(-z \) to the \(+z \) direction during \(3 \rightarrow 4 \). The above process could drive the nonzero \(\partial_t \delta \theta \).

The magnetization switch can be phenomenologically understood using the Bloch equation for the magnetization motion as \(\partial_t M_2(t) = \frac{[M_2(t = 0) - M_2(t)]}{\tau_1} \), where \(\tau_1 \) is the characteristic relaxation time of the magnetization switching, which depends on the material. To solve this equation, we assume the initial condition \(M_2(t = 0) = -M_2 \) with \(M_2 > 0 \), as illustrated in Fig. II(d). Then, we have \(M_2(t) = M_2[1 - 2 \exp(-t/\tau)] \) for \(M_2 \rightarrow M_2(t) = [M_1 - M_2(t)]/2 \) [Fig. II(d)]. As a result, \(\partial_t \delta \theta \) is given by Eq. II as follows:

\[
\partial_t \delta \theta(t) = \frac{\Delta_+ M_2 \exp(-t/\tau)}{\Delta_+ + M_2^2(t)} \frac{1}{\tau}. \tag{15}
\]

Using the \(\partial_t \delta \theta \) [Fig. II(c)], we consider the following three cases. Below, we simply focus on the time-dependence of \(\theta \) and \(\partial_t \theta \), and we ignore \(c^2 \nabla^2 B \) and set \(\nabla \delta \theta = 0 \).

IV. \(\partial_t \delta \theta \)-INDUCED MAGNETIC FIELD AND CHARGE CURRENT

We consider the responses by the dynamical \(\theta \) term \(\partial_t \delta \theta(t) \) during the \(3 \rightarrow 4 \) process under a static external magnetic field \(B_{ex} = B_{ex} \hat{z} \), which is applied at \(t = 0 \). Here, we focus on the unconventional magnetic field \(B_{\theta}(t) \) via a nonzero \(\partial_t \delta \theta \), which can be defined and decomposed as \(B(t) \equiv B_{ex} + M_+ + B_{\theta}(t) \). Then, the time-evolution of \(B_{\theta}(t) \) is given from \(\partial_t^2 B_{\theta}(t) = \frac{\alpha^2}{\pi^2} (\partial_t \delta \theta)^2 B_{\theta}(t) \):

\[
\partial_t^2 B_{\theta} = \frac{\alpha^2}{\pi^2} (\partial_t \delta \theta)^2 (B_{ex} + M_+) - \partial_t^2 M_+. \tag{16}
\]

![FIG. 2: (Color online) Dynamical \(\theta \) term induces magnetic field \(B_{\theta} \) and charge current \(j_\theta \). (a) Illustration of \(B_{\theta} \) (red arrows) and \(j_\theta \) (orange arrows) in the presence of the dynamical \(\theta \) term during the \(3(t \leq 0) \rightarrow 4(t > t_1) \) process. \(B_{ex} \) is an external magnetic field and \(M_+ = |M_1 + M_2| \hat{z} \) corresponds to the total magnetization of the FIs. (b) Time-dependence of \(B_{\theta} \) and (c) time-dependence of \(j_\theta \). We use the parameters \(\Delta_+ = 0.1 \text{ eV} \), \(M_1 = 10 \text{ meV} \), \(\tau_1 = 1 \text{ ns} \), \(\epsilon = 8.8 \times 10^{-11} \text{ F/m} \), and \(B_{ex} = 0.1 \text{ T} \).](image)
To solve this, we use the following final and initial conditions:

$$B_0(t \to +\infty) = 0$$
$$\partial_t B_0(t = 0) = -\partial_t M_z(t)|_{t=0},$$

where the former indicates the removal of a divergent solution, and the latter is determined from Eq. (17), $\partial_t B(t) = -\nabla \times E$ at $t = 0$, while assuming $\nabla \times E \to 0$ at $t = 0$.

Figure 2 illustrates the dynamical θ-term that induces magnetic field B_θ. The nonzero B_θ is only generated during the $3 \to 4$ process. Furthermore, from Eq. (12), the $\partial_t \delta \theta$ couples with the external magnetic field and drives the charge current $j_0 = -[\partial_t (\delta \theta)] B_{ex} c/\pi$ only during $3 \to 4$, as described in Fig. 2. This magnetic-field induced charge current can be regarded as a kind of chiral magnetic effect [24, 25].

Next, we discuss the magnetic field via $\partial_t \delta \theta$ in the presence of both the magnetic field $B_{ex} = B_{ex} \hat{z}$ and the charge current $j_e = j_e \hat{z}$, which is spatially uniform. Then, the time-revolution of $B_\theta = B_\theta \hat{z}$ becomes

$$\partial_t^2 B_\theta = \frac{\alpha^2}{\pi^2} (\partial_t \delta \theta)^2 (B_{ex} + B_{cx} + M_+) - \partial_t^2 M_+$$

$$- \frac{\alpha \mu_0}{\pi} \partial_t \delta \theta j_e.$$

$$B_\theta \equiv B_\theta(j_e = 0) + B_\theta(j_e \neq 0) \text{ is generated not only by the coupling between } \partial_t \delta \theta \text{ and } B_{ex} \text{ but also by the coupling between } \partial_t \delta \theta \text{ and } j_e. \text{ The former } B_\theta(j_e = 0) \text{ is given in Fig. 2. \ The latter } B_\theta(j_e \neq 0) \text{ will be dominant when the magnitude of } j_e \text{ is sufficiently large (Fig. 3). It should be noted that during the } 3 \to 4 \text{ process, the charge current via the chiral magnetic effect } j_\theta \text{ is also generated, and the charge current } j_e \text{ includes } j_\theta \text{ as } j_e \to j_e + j_\theta. \text{ However, the magnitude of } j_\theta \text{ is smaller than the sufficient value of current (e.g., } 10^7 \text{ A/m}^2 \text{) [see Fig. 2(c)]. Hence, the small } j_\theta \text{ hardly affects } B_\theta. \text{ Finally, we consider the axion response when the charge current is applied perpendicular to } B_{ex}. \text{ We consider } B_\theta \text{ in the presence of the external magnetic field } B_{ex} = B_{ex} \hat{z} \text{ and the charge current } j_e = j_e \hat{z}. \text{ Then, we have}$$

$$\partial_t^2 B_{\theta, z} = \frac{\alpha^2}{\pi^2} (\partial_t \delta \theta)^2 (B_{\theta, z} + B_{ex} + M_+) - \partial_t^2 M_+,$$

$$\partial_t^2 B_{\theta, x} = -\frac{\alpha \mu_0}{\pi} \partial_t \delta \theta j_e.$$

The induced magnetic field $B_\theta = B_{\theta, z} \hat{z} + B_{\theta, z} \hat{z}$ is solved under the initial condition [Eq. (17)], and it can be decomposed into two terms. $B_{\theta, z}$ is the same magnetic field $B_\theta(j_e = 0)$ parallel to B_{ex} [Fig. 3(a)], and $B_{\theta, x}$ corresponds to the same magnetic field $B_\theta(j_e \neq 0)$ parallel to j_e [Fig. 3(b)].

It should be noted that $B_{\theta, x}$ is the current-induced magnetic field. The direction of $B_{\theta, x}$ is parallel to the applied charge current direction, which is different from that of the charge currents via Ampère’s law. In addition, $B_{\theta, x}$ is regarded as a kind of electromagnetic effect (current-induced magnetic field) or Edelstein effect. The conventional current-induced magnetic field [22, 23] is represented by $B_m = \chi_{mn} j_{e,n}$, where B_m is an induced magnetic field, $j_{e,n}$ is a static charge current, and $\chi_{mn}(m, n = x, y, z)$ is a coefficient that is usually determined by the characteristic parameters in an equilibrium state in materials. Hence, χ_{mn} is static. On the other hand, $B_{\theta, x}(t)$ is described by the form $B_{\theta, x} = \chi_{\theta, x,n}(t) j_{e,n}$, where the coefficient $\chi_{\theta, x,n}$ is represented from Eq. (20):

$$\chi_{\theta, x,n}(t) = -\frac{\alpha \mu_0}{\pi} \delta_{x,n} \left[t \int_0^t dt \delta \theta(t_1) + c_1 t + c_2 \right].$$

Here, c_1 and c_2 are arbitrary constants determined by the initial condition. Because the theta-term $\delta \theta$ is dynamical, $\chi_{\theta, x,n}$ is dynamical, unlike the conventional χ_{mn}.

![FIG. 3: (Color online) Time-dependence of magnetic field B_{ex} and charge current j_e along the external magnetic field $B_{ex} = B_{ex} \hat{z}$ and the charge current $j_e = j_e \hat{z}$. Then, we have](image_url)

$$\partial_t^2 B_{\theta, z} = \frac{\alpha^2}{\pi^2} (\partial_t \delta \theta)^2 (B_{\theta, z} + B_{ex} + M_+) - \partial_t^2 M_+,$$

$$\partial_t^2 B_{\theta, x} = -\frac{\alpha \mu_0}{\pi} \partial_t \delta \theta j_e.$$

The induced magnetic field $B_\theta = B_{\theta, z} \hat{z} + B_{\theta, x} \hat{z}$ is solved under the initial condition [Eq. (17)], and it can be decomposed into two terms. $B_{\theta, z}$ is the same magnetic field $B_\theta(j_e = 0)$ parallel to B_{ex} [Fig. 3(a)], and $B_{\theta, x}$ corresponds to the same magnetic field $B_\theta(j_e \neq 0)$ parallel to j_e [Fig. 3(b)].

It should be noted that $B_{\theta, x}$ is the current-induced magnetic field. The direction of $B_{\theta, x}$ is parallel to the applied charge current direction, which is different from that of the charge currents via Ampère’s law. In addition, $B_{\theta, x}$ is regarded as a kind of electromagnetic effect (current-induced magnetic field) or Edelstein effect. The conventional current-induced magnetic field [22, 23] is represented by $B_m = \chi_{mn} j_{e,n}$, where B_m is an induced magnetic field, $j_{e,n}$ is a static charge current, and $\chi_{mn}(m, n = x, y, z)$ is a coefficient that is usually determined by the characteristic parameters in an equilibrium state in materials. Hence, χ_{mn} is static. On the other hand, $B_{\theta, x}(t)$ is described by the form $B_{\theta, x} = \chi_{\theta, x,n}(t) j_{e,n}$, where the coefficient $\chi_{\theta, x,n}$ is represented from Eq. (20):

$$\chi_{\theta, x,n}(t) = -\frac{\alpha \mu_0}{\pi} \delta_{x,n} \left[t \int_0^t dt \delta \theta(t_1) + c_1 t + c_2 \right].$$

Here, c_1 and c_2 are arbitrary constants determined by the initial condition. Because the theta-term $\delta \theta$ is dynamical, $\chi_{\theta, x,n}$ is dynamical, unlike the conventional χ_{mn}.

![FIG. 4: (Color online) Magnetic field $B_\theta = B_{\theta, z} \hat{z} + B_{\theta, x} \hat{z}$ induced by dynamics of θ under charge current along x direction ($j_e = j_e \hat{x}$). (a) Time-dependence of $B_{\theta, z}$ with several $|M_1/M_2|$ [see also Fig 2(b)]. (b) Time-dependence of $B_{\theta, x}$ at $j_e = \pm 10^7 \text{ A/m}^2$ with $|M_1/M_2(t = 0)| = 1.2$. The parameters are the same as those used in Fig. 2 (inset) Illustration of the magnetic fields due to the dynamics of θ.](image_url)
V. DISCUSSION

Finally, we discuss an experimental instrument for the obtained results in the response to the dynamics of θ. Although we consider the model in the superlattice [FI1/TI/FI2/spacer]$_n$, to study a simple model of $\partial_t \theta$, the number of ferromagnetic metals is practically larger than that of the FIs. Recently, for example, an axion-insulator multilayer constructed of a TI film and Cr-doped TI film with different magnetic coercive fields was experimentally studied. A superlattice of tailored axion-insulators could be used for the model we considered. In such materials, it is expected that the manipulation of the magnetic configurations of FIs (AP and P) is driven by an external magnetic field along the layered direction, as illustrated in Fig. 2(a). As a result, the dynamics of θ can be driven via the AP \rightarrow P process. Then, three electromagnetic effects occur during the process. First, the chiral magnetic effect, which is a magnetic field-induced charge current, could be expected. In other words, in the absence of an applied charge current, the chiral magnetic effect, which is caused by the dynamical θ-term and applied magnetic field, drives a charge current of $\approx 10^{4}$ A/m2 [Fig. 2(c)], which could be detectable. Second, another electromagnetic effect is $B_{\theta, z}$, which is driven by the dynamics of the θ-term and the external magnetic field $B_{\theta, z}$. The magnitude of $B_{\theta, z}$, for example, becomes ≈ 20 mT during a few tens of τ_1 [Fig. 2(a)]. We expect that it could be difficult to distinguish $B_{\theta, z}$ from the total magnetic field B [Fig. 2(a)] because the magnetic fields are in the same direction. Third, the obtained electromagnetic effect is the current-induced magnetic field $B_{\theta, x}$, which occurs when we apply the charge current. Under the in-plane charge current $j_x, B_{\theta, x}$, which is along the applied current direction, reaches $\approx \pm 10$ mT when $M_1 = M_2 = 10$ meV and $d_1 = 0.1$ eV with $j_x = \pm 10^7$ A/m2. This current-induced magnetic field could be measurable by manipulations of the current direction. It should be noted that under the in-plane charge current, a spin-transfer-torque-induced magnetic field could also be generated by the coupling between the applied current and magnetizations on the surfaces of the TIs. However, this magnetic field could be much smaller than that of $B_{\theta, x}$, which would make it experimentally negligible.

VI. CONCLUSION

In this paper, we have theoretically studied a way to drive the dynamics of θ in a magnetic superlattice with an axion insulator phase. As a result, we have shown the unconventional electromagnetic effects via $\partial_t \theta$: The dynamical magnetic field-induced charge current, which is a kind of chiral magnetic effect, and the current-induced magnetic effect, which is a kind of Edelstein effect, have been discussed. The obtained results, including the artificial control of $\partial_t \theta$ by an external field, could be analogous to the time-dependent axion field $a(t)/f_a$ in dark-matter axion physics.

Acknowledgments

This work was supported by the institute for advanced research (IAR) in Nagoya University through a Grant-in-Aid. In addition, this work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas, Topological Material Science (No. JP15H05853), and a Grant-in-Aid for Challenging Exploratory Research (Grant No. JP15K13498 and 16K13803) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT). K.T. also gives thanks for the support of the Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST) [JPMJCR14F1]. N.K. acknowledges the support by Grant-in-Aid for JSPS Fellows.

