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We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by chang-
ing its static strain environment with a nano-electro-mechanical system. This allows deterministic
and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step
towards multi-qubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing
large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes
where the spin-orbit interaction results in a large strain suseptibility of order 100 THz/strain for spin
transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical
resonator.

I. INTRODUCTION

Solid state emitters such as color-centers and epitax-
ially grown quantum dots provide both electronic spin
qubits and coherent optical transitions, and are optically
accessible quantum memories. They can therefore serve
as building blocks of a quantum network composed of
nodes in which information is stored in spin qubits and
interactions between nodes are mediated by photons1–4.
However, due to the effects of their complex solid state
environment, most quantum emitters do not simultane-
ously provide long coherence time for the memory, and fa-
vorable optical properties such as bright, spectrally stable
emission. The negatively charged silicon vacancy center
in diamond (SiV−, hereafter simply referred to as SiV)
has been recently identified as a system that can over-
come these limitations, since it provides excellent optical
and spin properties simultaneously. Its dominant zero-
phonon-line (ZPL) emission and stable optical transition
frequencies resulting from its inversion symmetry5–7 have
recently been used to realize single-photon switching8

and a fibre-coupled coherent single-photon source9 in a
nanophotonic platform. Further, recent demonstrations
of microwave10 and all-optical11 control of its electronic
spin, as well as long (∼10 ms) spin coherence times at
mK temperatures12, when electron-phonon processes in
the center are suppressed,10,13 make the SiV a good mem-
ory qubit.

Scaling up these demonstrations to multi-qubit net-
works requires local tunability of individual emitters, as
well as the realization of strong interactions between
them. In this work, we control local strain in the
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SiV environment using a nano-electro-mechanical sys-
tem (NEMS), and show wide tunability for both opti-
cal and spin transition frequencies. In particular, we
demonstrate hundreds of GHz of optical tuning, suffi-
cient to achieve spectrally identical emitters for photon-
mediated entanglement1,2. Further, we characterize the
strain Hamiltonian of the SiV and measure high strain
susceptibilities for both the electronic and spin levels.
Building on this strain response, we discuss a scheme
to realize strong coupling of the SiV spin to coherent
phonons in GHz frequency nanomechanical resonators.
While phonons have been proposed as quantum trans-
ducers for qubits,14,15 experiments with solid-state spins
have been limited to the classical regime of large dis-
placement amplitudes driving their internal levels16–24.
The high strain susceptibility of the SiV ground states
can enable MHz spin-phonon coupling rates in existing
nanomechanical resonators. Such a spin-phonon interface
can enable quantum gates between spins akin to those in
ion traps25–27, and interfaces with disparate qubits28,29.

II. STRAIN TUNING OF OPTICAL
TRANSITIONS

The SiV center is an interstitial point defect in which a
silicon atom is positioned midway between two adjacent
missing carbon atoms in the diamond lattice as depicted
in the inset of Fig. 1(a). Its electronic level structure
at zero strain is shown in Fig. 1(a). The optical ground
state (GS) and excited state (ES) each contain two dis-
tinct electronic configurations shown by the bold hori-
zontal lines. Physically, each of the two branches in the
GS and ES corresponds to the occupation of a specific
E-symmetry orbital by an unpaired hole.30 At zero mag-
netic field, the degeneracy of these orbitals is broken by
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FIG. 1. (a) Electronic level structure of the SiV center (molec-
ular structure shown in inset) at zero strain showing ground
and excited manifolds with spin-orbit eigenstates. The four
optical transitions A, B, C, and D at zero magnetic field,
and splittings between orbital branches in the ground state
(GS) and excited state (ES), ∆gs and ∆es respectively are
indicated. In the presence of a magnetic field, each orbital
branch splits into two Zeeman sublevels. A long-lived qubit
can be defined with the sublevels of the lower orbital branch
in the GS. (b) Schematic of the diamond cantilever device and
surrounding electrodes. Diamond crystal axes relative to the
cantilever orientation are shown. Four possible orientations
of the highest symmetry axis of an SiV are indicated by the
four arrows above the cantilever. Under application of strain,
these can be grouped into axial (red) and transverse (blue)
orientations. Molecular structure of a transverse-orientation
SiV as viewed in the plane normal to the cantilever axis is
shown below, and crystal axes that define the internal co-
ordinate frame of the color center are indicated. The z-axis
is the highest symmetry axis, which defines the orientation of
the SiV. (c) SEM image of diamond cantilever NEMS device.

spin-orbit (SO) coupling leading to frequency splittings
∆gs = 46 GHz, and ∆es = 255 GHz respectively. Due to
inversion symmetry of the defect about the Si atom, the
wavefunctions of these orbitals can be classified according
to their parity with respect to this inversion center.5,30

Thus, the GS configurations correspond to the presence
of the unpaired hole in one of the even-parity orbitals
eg+, eg−, while the ES configurations have this hole in
one of the odd-parity orbitals eu+, eu−. Here the sub-

scripts g, u refer to even (gerade) and odd (ungerade)
parity respectively, and +, − refer to the orbital angular
momentum projecton Lz. This specific level structure
gives rise to four distinct optical transitions in the ZPL
indicated by A, B, C, D in Fig. 1(a). Upon application of
a magnetic field, degeneracy between the SO eigenstates
is further broken to reveal two sub-levels within each or-
bital branch corresponding to different spin states of the
unpaired hole (S = 1/2). In this manner, a qubit can be
defined on the two sublevels of the lowest orbital branch
in the ground state.

To control local strain in the environment of the SiV
center, we use a diamond cantilever, shown schematically
in Fig. 1(b) and in a scanning electron microscope (SEM)
image in Fig. 1(c). Electrodes are fabricated, one on top
of the cantilever, and another on the substrate below the
cantilever to form a capacitive actuator. By applying a
specific DC voltage to these electrodes, we can deflect the
cantilever to achieve a desired amount of static strain at
the SiV site. The fabrication procedure based on angled
etching of diamond31,32 and device design are discussed
in detail elsewhere33. The diamond sample with can-
tilever NEMS is maintained at 4 K in a Janis ST-500
continuous-flow liquid helium cryostat. We perform op-
tical spectroscopy on SiVs inside the cantilever by reso-
nantly exciting the transitions shown in Fig. 1(a) with a
tunable laser, and collecting fluorescence in the phonon
sideband. Mapping the response of these transitions as
a function of voltage applied to the device allows us to
study the strain response of the SiV electronic structure.

The diamond samples used in our study have a [001]-
oriented top surface, and the long axis of the cantilever
is oriented along the [110] direction. There are four pos-
sible equivalent orientations of SiVs - [111], [1̄1̄1], [11̄1],
[1̄11] - in a diamond crystal, indicated by the four arrows
above the cantilever in Fig. 1(b). Since the cantilever
primarily achieves uniaxial strain directed along [110],
this breaks the equivalence of the four orientations, and
leads to two classes indicated by the blue and red colored
arrows in Fig. 1(b). The blue SiVs, oriented perpendic-
ularly to the cantilever long-axis, predominantly experi-
ence uniaxial strain along their internal y-axis (see inset
of Fig. 1(b)). On the other hand, the red SiVs are not
orthogonal to the cantilever long-axis, and experience a
non-trivial strain tensor, which includes significant strain
along their internal z-axis. For simplicity, we refer to
blue SiVs as ‘transverse-orientation’ SiVs, and red SiVs
as ‘axial-orientation’ SiVs. This nomenclature is used
with the understanding that it is specific to the situation
of predominantly [110] uniaxial strain applied with our
cantilevers.

Two distinct strain-tuning behaviors correlated with
SiV orientation are observed as shown in Fig. 2. Orienta-
tion of SiVs in the cantilever is inferred from polarization-
dependence of their optical transitions at zero strain.30

With gradually increasing strain, transverse-orientation
SiVs show an increasing separation between the A and
D transitions with relatively small shifts in the B and C
transitions as seen in Fig. 2(a). This behavior has been
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FIG. 2. Tuning of optical transitions of (a) transverse-
orientation SiV (blue in Fig. 1(b)), and (b) axial orienta-
tion SiV (red in Fig. 1(b)). Voltage applied to the device is
indicated next to each spectrum.

observed on a previous experiment with an ensemble of
SiVs.34 On the other hand, axial-orientation SiVs show
a more complex tuning behavior in which all transitions
shift as seen in Fig. 2(b).

In the context of photon-mediated entanglement of
emitters, typically, photons emitted in the C line,
the brightest and narrowest linewidth transition are of
interest8. Upon comparing Figs. 2(a) and (b), we note
that this transition is significantly more responsive for
axial-orientation SiVs. Particularly in Fig. 2(b), we
achieve tuning of the C transition wavelength by 0.3 nm
(150 GHz), approximately 10 times the typical inhomo-
geneity in optical transition frequencies of SiV centers
in bulk diamond6,35, and 5 times that of the typical in-
homogeneity in nanofabricated structures (Appendix A).
Thus, NEMS-based strain control can be used to deter-
ministically tune multiple on-chip or distant emitters to
a set optical wavelength. In particular, integration of
this NEMS-based strain-tuning with existing diamond
nanophotonic devices8,9,36–38 can enable scalable on-chip
entanglement and widely tunable single photon sources.
Besides static tuning of emitters, dynamic control of the

voltage applied to the NEMS can be used to counteract
slow spectral diffusion, and stabilize optical transition
frequencies39.

III. EFFECT OF STRAIN ON ELECTRONIC
STRUCTURE
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FIG. 3. (a) Dominant effect of Eg-strain on the electronic
levels of the SiV. (b) Dominant effect of A1g-strain on the
electronic levels of the SiV. (c) Normalized strain-tensor com-
ponents experienced by transverse-orientation SiV (red in Fig.
1(b)), and (d) axial orientation SiV (blue in Fig. 1(b)) in the
SiV co-ordinate frame upon deflection of the cantilever. (e)
Variation in orbital splittings within GS (green dots) and ES
(blue dots) upon application of Eg-strain. The x-axis refers to
the magnitude of Eg-strain, which is approximately given by
|εxx− εyy| for our device. Data points are extracted from the
optical spectra in Fig. 2(a). Solid curves are fits to theory in
text. (f) Tuning of mean optical wavelength with A1g strain
due to the uniaxial component εzz. Data points are extracted
from the optical spectra in Fig. 2(b). Solid line is a linear fit
as predicted by theory in text. Appendix C details the fitting
procedure used in panels (e) and (f).

Following previous work on point defects,30,40,41 we
employ group theory to explain the effect of strain on
the SiV electronic levels, and extract the susceptibilities
for various strain components.

III.1. Strain Hamiltonian

In this section, we describe the strain Hamiltonian of
the SiV center, and summarize the physical effects of var-
ious modes of deformation on the orbital wavefunctions.
A more detailed group-theoretic discussion of the results
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in this section is provided in Appendix B and in Ref.30.
Based on the symmetries of the orbital wavefunctions, it
can be shown that the effects of strain on the GS (eg)
and ES (eu) manifolds are independent and identical in
form. For either manifold, the strain Hamiltonian in the
basis of {|ex ↓〉, |ex ↑〉, |ey ↓〉, |ey ↑〉} states (pure orbitals
unmixed by SO coupling as defined in Ref.30) is given by

Hstrain =

[
εA1g

− εEgx
εEgy

εEgy
εA1g

+ εEgx

]
⊗ I2 (1)

The spin part of the wavefunction is associated with
an identity matrix in Eq. (1) because lattice deforma-
tion predominantly perturbs the Coulomb energy of the
orbitals, which is independent of the spin character. Each
εr is a linear combination of strain components εij , and
corresponds to specific symmetries indicated by the sub-
script r.

εA1g
= t⊥(εxx + εyy) + t‖εzz

εEgx
= d(εxx − εyy) + fεzx (2)

εEgy
= −2dεxy + fεyz

Here t⊥, t‖, d, f are the four strain-susceptibility pa-
rameters that completely describe the strain-response of
the {|ex〉, |ey〉} states. These parameters have different
numerical values in the GS and ES manifolds. From the
Hamiltonian 1, we see that Egx and Egy strain cause
mixing and relative shifts between orbitals, and modify

the orbital splittings within the GS and ES manifolds as
depicted in Fig. 3(a). On the other hand, A1g strain
leads to a uniform or common-mode shift of the GS and
ES manifolds, and only shifts the mean ZPL frequency
as depicted in Fig. 3(b).

By decomposing the strain applied in our experiment
into A1g and Eg components, we can confirm the ob-
servations on tuning of transverse- and axial-orientation
SiVs in Fig. 2. Strain tensors for transverse- and
axial-orientations of emitters obtained from finite ele-
ment method (FEM) simulations are plotted in Figs.
3(c), (d) respectively. As expected from the cantilever
geometry in Fig. 1(a), transverse-orientation SiVs pre-
dominantly experience εyy and hence an Eg deformation.
The Eg-strain response predicted in Fig. 3(a) leads to
the strain-tuning of mainly A and D transitions seen in
Fig. 2(a). On the other hand, axial-orientation SiVs ex-
perience both εzz and εyz as shown in Fig. 3(d), which
leads to simultaneous Eg and A1g deformations. Indeed,
a combination of the strain responses in Figs. 3(a), (b)
qualitatively explains the strain-tuning behavior of the
transitions in Fig. 2(b).

III.2. Estimation of strain-susceptibilities

We now quantitatively fit the results in Fig. 2 with
the above strain response model. Adding SO coupling
(HSO = −λSOLzSz) to the strain Hamiltonian in Eq.
1, we get the following total Hamiltonian in the {|ex ↓
〉, |ex ↑〉, |ey ↓〉, |ey ↑〉} basis.30

Htotal =

 εA1g
− εEgx

0 εEgy
− iλSO/2 0

0 εA1g
− εEgx

0 εEgy
+ iλSO/2

εEgy + iλSO/2 0 εA1g + εEgx 0
0 εEgy − iλSO/2 0 εA1g + εEgx

 (3)

Here, λSO is the SO coupling strength within each
manifold: 46 GHz for the GS, and 255 GHz for the ES.
Diagonalization of this Hamiltonian gives two distinct
eigenvalues

E1 = α− 1

2

√
λ2

SO + 4(ε2Egx
+ ε2Egy

)

E2 = α+
1

2

√
λ2

SO + 4(ε2Egx
+ ε2Egy

) (4)

Each of these corresponds to doubly spin-degenerate
eigenstates in the absence of an external magnetic field.
Noting that Eqs. (4) are valid within both GS and ES
manifolds, but with different strain susceptibilities, we
obtain the following quantities that can be directly ex-
tracted from the optical spectra in Fig. 2.

∆ZPL = ∆ZPL,0 +
(
t‖,es − t‖,gs

)
εzz + (t⊥,es − t⊥,gs) (εxx + εyy) (5)

∆gs =
√
λ2

SO,gs + 4 [dgs(εxx − εyy) + fgsεyz]
2

+ 4 [−2dgsεxy + fgsεzx]
2

(6)

∆es =
√
λ2

SO,es + 4 [des(εxx − εyy) + fesεyz]
2

+ 4 [−2desεxy + fesεzx]
2

(7)

The quantities on the left hand side, ∆ZPL the mean ZPL frequency, and ∆gs, ∆es the GS and ES orbital split-
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tings are written as a function of strain. The subscripts
‘gs’ and ‘es’ for the various strain susceptibility parame-
ters refer to the values of the respective parameters in the
GS and ES manifolds respectively. ∆ZPL,0 is the mean
ZPL frequency at zero strain. Extracting all three fre-
quencies in Eqs. (5-7) as a function of strain from the
optical spectra measured in Fig. 2, we fit them to the
above model in Figs. 3(e), (f), and estimate the strain-
susceptibilities. The fitting procedure described in detail
in Appendix C gives us

(
t‖,es − t‖,gs

)
= −1.7±0.1 PHz/strain

(t⊥,es − t⊥,gs) = 0.078±0.009 PHz/strain

dgs = 1.3±0.1 PHz/strain

des = 1.8±0.2 PHz/strain

fgs = −1.7±0.1 PHz/strain

fes = −3.4±0.3 PHz/strain (8)

IV. CONTROLLING ELECTRON-PHONON
PROCESSES

At 4 K, dephasing and population relaxation of the
SiV qubit defined with the |eg+ ↓〉′, |eg− ↑〉′ states (′

denoting modified SO eigenstates due to strain) is known
to be dominated by electron-phonon processes shown in
Fig. 4(a)10,13. In accordance with our observations on
response to static Eg-strain in the previous section, we
expect that AC strain generated by thermal Eg-phonons
at frequency ∆gs < kBT/h is capable of driving the GS
orbital transitions. Since we can tune the splitting ∆gs by
applying static Eg-strain with our device, we have control
over these electron-phonon processes, and can engineer
the relaxation rates of spin. In particular, by making
∆gs � kBT/h, we have shown that spin coherence can be
improved significantly.33 Here, we elucidate the physical
mechanisms behind such improvement in spin properties
with strain control.

When a thermal phonon randomly excites the SiV cen-
ter from the qubit manifold to the upper orbital branch,
say from |eg+ ↓〉′ to |eg− ↓〉′ as shown by the blue upward
arrow in Fig. 4(a), the energy of the ↓ projection of the
qubit suddenly changes by an amount h∆gs. After some
time in the upper branch, the system randomly relaxes
back to the lower manifold through spontaneous emis-
sion of a phonon as shown by the blue downward arrow
in Fig. 4(a). In this process, the spin projection is con-
served, since phonons predominantly flip only the orbital
character. However, a random phase is acquired between
the ↓ and ↑ projections of the qubit due to phonon ab-
sorption and emission, as well as faster precession in the
upper manifold. The dephasing rate is determined by
the upward phonon transition rate γup(∆gs). Both this
rate and the downward transition rate γdown(∆gs) can be
calculated from Fermi’s golden rule and are given by

γup(∆gs) = 2πχρ∆3
gsnth(h∆gs/kBT ) (9)

γdown(∆gs) = 2πχρ∆3
gs(nth(h∆gs/kBT ) + 1) (10)

where χ is a constant that encapsulates averaged in-
teraction over all phonon modes and polarizations and
nth(hν/kBT ) is the Bose-Einstein distribution. It is in-
structive to view these rates as a product of the phonon
density of states (DOS), a linear electron-phonon cou-
pling13 and the occupation of phonon modes. In the
above expressions, the first part 2πχρ∆3

gs contains the

bulk DOS of phonons, which scales as ∼ ∆2
gs and the

electron-phonon coupling, scaling as ∼ ∆gs. On the other
hand, nth(hν/kBT ) is the number of thermal phonons in
each mode for a bath temperature T . Note that the +1
term in the downward rate in Eq. (10) corresponds to
spontaneous emission of a phonon, a process that is in-
dependent of temperature.

Fig. 4(b) shows the theoretically predicted behavior
of upward and downward rates as a function of ∆gs at
temperature T = 4 K. Here, we calculate both transition
rates with corrected exponent in Eqs. (9) and (10), ap-
proximately 1.9 rather than 3, to take into account the
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FIG. 4. (a) Illustration of dephasing and population de-
cay processes for the SiV qubit. Blue arrows show spin-
conserving transitions responsible for dephasing. Red arrow
shows a spin-flipping transition driving decay from |eg+ ↓〉′ to
|eg− ↑〉′. Processes suppressed at high strain are crossed out.
(b) Calculated rates for spin-conserving upward and down-
ward phonon processes. Both rates are normalized to their
values at zero strain. (c) Reduction in CPT linewidth with
increasing GS splitting ∆gs. Inset shows an example of a CPT
spectrum taken at ∆gs = 460 GHz. The two resonances in
the spectrum are due to the presence of a neighboring nu-
clear spin33. Linewidths of both are plotted and indicated
as Dip 1 and Dip 2 in the main plot. (d) Reduction in spin
relaxation rate (1/T1) with increasing GS splitting ∆gs as ex-
tracted from pump-probe measurements. Solid line is a fit to
the resonant two-phonon relaxation model in Appendix D for
∆gs above 200 GHz where this model is valid. Dotted line is
an extrapolation of the fit into the low strain regime.
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geometric factor associated with the cantilever33. We
observe that the upward rate shows a non-monotonic be-
havior, approaching its maximum value around h∆gs ∼
kBT . In the h∆gs < kBT regime, the increasing DOS
term dominates, and causes γup to increase. However,
when h∆gs � kBT , thermal occupation of the modes
is approximated by Boltzmann distribution nth(∆gs) =

exp
(
−h∆gs

kBT

)
, and this exponential roll-off dominates the

polynomially increasing DOS. Therefore, γup decreases
exponentially, when sufficiently high strain is applied.
In contrast, the downward rate monotonically increases
with the GS-splitting, because it is dominated by the
spontaneous emission rate, which simply increases poly-
nomially with the DOS. Fig. 4(c) shows experimentally
measured improvement of spin coherence using coherent
population trapping (CPT) in this high strain regime33.
Above ∆gs of 400 GHz, the CPT linewidth saturates
at ∼1 MHz, indicating a secondary dephasing mecha-
nism such as the 13C nuclear spin bath in diamond. Our
data is supported by similar 1/T ∗2 measured at 100 mK
where the thermal occupation of relevant phonon modes
is negligible12.

Population decay or longitudinal relaxation of the
qubit shown by the red arrows in Fig. 4(a) is driven
by spin-flipping phonon transitions, which occur with a
small probability due to perturbative mixing of spin pro-
jections. A detailed analysis of various decay channels is
presented in Appendix D. At high strain, it can be shown
that the decay rate is approximately 4 (dg,flip/dg)

2
γup,

where dg,flip is the strain susceptibility for a spin-flipping
transition such as |eg+ ↓〉′ → |eg+ ↑〉′. Thus it is a frac-
tion of the spin-conserving transition rate γup shown in
Eq. 9. The factor dg,flip/dg scales as ∼ 1/∆gs accord-
ing to first order perturbation theory. As a result, we
expect exponential decrease in the population decay rate
with a different polynomial pre-factor compared to the
spin decoherence rate. Fig. 4(d) shows this decreasing
trend with increasing ∆gs fit to this two-phonon relax-
ation model. As strain is increased, spin T1 increases
six-fold to a value of 2.5 µs at the highest GS splitting of
450 GHz.

V. STRAIN RESPONSE OF SPIN TRANSITION

So far, we have seen that static Eg-strain in the SiV
environment can significantly impact spin coherence and
relaxation rates by modifying the orbital splitting in the
GS. In this section, we discuss additional effects of this
type of strain on the SiV spin sublevels that arise from SO
coupling. Particularly, we can tune the spin transition
frequency, ωs by a large amount (a few GHz) at a fixed
external magnetic field by simply controlling local strain.
At the same time, we discuss how the magnitude of local
strain strongly determines the ability to couple or control
the SiV qubit with external fields such as resonant strain
or microwaves at frequency ωs, and resonant laser-fields
in a Λ-scheme.

The strain-response of the spin transition is measured
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FIG. 5. (a) Splitting of the C transition into the four transi-
tions C1, C2, C3, and C4 in the presence of a magnetic field.
Spin transition frequencies on the lower orbital branches of
the GS and ES are ωs, ω′s respectively. (b) Response of tran-
sitions C1, C2, C3, and C4 upon tuning GS splitting ∆gs

with Eg-strain. (c) Calculated response of optical transi-
tions C1, C2, C3, and C4 to Eg-strain in presence of 0.17
T B-field aligned along the [001] direction. Shaded regions
on the left and right ends indicate the regimes in which the
GS orbitals are determined by SO coupling and strain respec-
tively. (d) Strain response of spin transition frequencies upon
tuning of ground state orbital splitting ∆gs with Eg-strain.
SO regime data points are extracted from the optical spectra
in Fig. 5(b). High strain regime data points are obtained
from CPT measurements on the SiV studied in Fig. 4 (error
bars for these points are smaller than data markers). Solid
(dashed) line is calculated spin transition frequency on the
lower orbital branch of GS (ES) from Fig. 5(c).

by monitoring the four Zeeman-split optical lines arising
from the C transition as shown schematically in Fig. 5(a).
In Fig. 5(b), we apply a fixed magnetic field B =0.17
T aligned along the vertical [001] axis with a perma-
nent magnet placed underneath the sample, and gradu-
ally increase the GS splitting of a transverse-orientation
SiV by applying strain. With increasing strain, each of
the four Zeeman-split optical transitions moves outwards
from the position of the unsplit C transition at zero mag-
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netic field. In particular, the spin-conserving inner tran-
sitions C2 and C3 overlap at zero strain, but become
more resolvable with increasing strain. Thus, all-optical
control of the spin11 relying on simultaneous excitation
of a pair of transitions C1 and C3 (or C2 and C4) form-
ing a Λ-scheme requires the presence of some local strain.

The strain-tuning behavior of Zeeman split optical transi-
tions can be theoretically calculated by diagonalizing the
GS and ES Hamiltonians in the presence of a magnetic
field. Upon adding Zeeman terms to the Hamiltonian in
equation 3, and switching to the basis of SO eigenstates
{eg− ↓, eg+ ↑, eg+ ↓, eg− ↑}, we obtain

Htotal =

−λSO/2− γLBz − γsBz 0 εEgx
γsBx

0 −λSO/2 + γLBz + γsBz γsBx εEgx

εEgx
γsBx λSO/2 + γLBz − γsBz 0

γsBx εEgx
0 λSO/2− γLBz + γsBz

 (11)

Here we have discarded the A1g and Egy strain terms,
since the transverse-orientation SiVs in our experiments
experience predominantly Egx strain. We have also as-
sumed that the transverse component of the magnetic
field is entirely along the x-axis of the SiV. The gyromag-
netic ratios are γs = 14 GHz/T, γL = 0.1(14) GHz/T,
where the pre-factor of 0.1 is a quenching factor for the
orbital angular momentum.30 The result of our calcu-
lation is shown in Fig. 5(c). In the low strain regime
indicated by the region with the shaded gradient, we re-
produce the experimental behavior in Fig. 5(b), and ob-
tain good quantitative agreement with the variation in
the spin transition frequency ωs in Fig. 5(d).

Physically, this behavior of the spin transitions arises
as strain and SO coupling compete to determine the or-
bital wavefunctions. From the Hamiltonian in equation
11, we can see that the eigenstates begin as SO eigen-
states {eg− ↓, eg+ ↑, eg+ ↓, eg− ↑} at zero strain, and end
up as the pure orbitals {egx ↓, egx ↑, egy ↓, egy ↑} at high
strain (εEgx � λSO/2). At zero strain, the effective mag-
netic field from SO coupling quantizes the electron spin
along the z−axis. In this condition, the off-axis B-field
does not affect the spin transition frequency ωs to first or-
der, so ωs ∼ 2(γs +γL)Bz = 3.1 GHz. As the strain εEgx

is increased far above the SO coupling λSO and the eigen-
states approach the pure orbitals, the spin quantization
axis approaches the direction of the external magnetic
field, and ωs approaches 2γsB = 4.8 GHz. Since SO cou-
pling in the ES is stronger, this limit is attained at higher
values of strain than in the GS as shown by the dashed
line in Fig. 5(d). In the limit of very high strain, the tran-
sitions C2 and C3 also become strictly spin-conserving,
and optical pumping-based initialization and readout of
the qubit10,42 are no longer possible. Instead, initial-
ization by measurement and single-shot readout12 of the
spin through resonant excitation of one of these spin-
cycling transitions can be implemented, as long as these
transitions remain optically resolvable from each other.
Once local strain is even further increased to the point
where SO coupling is merely perturbative, the difference
in GS and ES spin transition frequencies becomes vanish-
ingly small, eventually leading to overlapping C2 and C3
optical transitions as depicted on the right hand side of
Fig. 5(c). For instance, for the magnetic field of 0.17 T

used in these experiments, these transitions will become
separated by their linewidth (∼200 MHz) at a ground
state splitting of 700 GHz. If the local strain is increased
beyond this limit, all-optical control and single-shot read-
out of the qubit12 will become impossible unless higher
magnetic field is applied to increase the separation be-
tween these transitions.

The rapid variation of the spin transition frequency ωs

in the low-strain regime of Fig. 5(d) provides the first
hint that the SiV spin sublevels can be very sensitive to
oscillating strain generated by coherent phonons. The
interaction terms due to strain and the off-axis magnetic
field predicted by the Hamiltonian in equation 11 are
depicted visually in Fig. 6(a). In particular, at zero
strain, the presence of the off-axis magnetic field perturbs
the eigenstates of the qubit to first order as

|eg− ↓〉′ ≈ |eg− ↓〉+
γsBx

λSO,gs
|eg− ↑〉 (12)

|eg+ ↑〉′ ≈ |eg+ ↑〉+
γsBx

λSO,gs
|eg+ ↓〉 (13)

This perturbative mixing with opposite spin-character
can now allow resonant AC strain at frequency ωs to
drive transitions between the qubit levels. For a small
amplitude of such AC strain εAC

Egx
, we can calculate the

strain susceptibility of the spin transition dspin in terms
of the GS orbital strain susceptibility dg in Eq. 8.

dspin =
〈eg− ↓′ |Hstrain|eg+ ↑′〉

εAC
Egx

dgs =
2γsBx

λSO,gs
dgs (14)

Since dg is very large (∼1 PHz/strain), even with the
presence of the pre-factor γsBx/λSO,gs, the qubit levels
themselves can have a relatively large strain-response.
For the present case of B=0.17 T along the [001] axis, we
get dspin/dgs = 0.085 yielding dspin ∼ 100 THz/strain.
An exact calculation of dspin for arbitrary local static
strain using the Hamiltonian in equation 11 is shown in
Fig. 6(b). As static strain in the SiV environment is
increased far above the SO coupling, the AC strain sus-
ceptibility approaches zero. Thus we can conclude that
coupling the SiV qubit levels to resonant AC strain re-
quires (i) low static strain εEg � λSO,gs/2 and (ii) a
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non-zero off-axis magnetic field Bx. The qubit levels can
also parametrically couple to off-resonant AC strain with
a different susceptibility tspin, and this is discussed in Ap-
pendix E. A similar analysis predicts the response of the
qubit levels to resonant microwave magnetic fields in Ap-
pendix F.

VI. PROSPECTS FOR A COHERENT
SPIN-PHONON INTERFACE
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FIG. 6. (a) Illustration of mixing terms introduced by Eg-
strain and an off-axis magnetic field in the GS manifold. (b)
Calculated susceptibility of the qubit for interaction with AC
Eg-strain resonant with the transition frequency ωs (interac-
tion shown in inset). This AC strain susceptibility is max-
imum at zero strain for the pure SO eigenstates. At high
strain, it falls off as 1/∆gs. Color variation along the curve
shows the GS splitting ∆gs corresponding to the value of static
Eg-strain at the SiV. Both the static and AC strain are as-
sumed to be entirely in the Egx component. (c) SEM image of
an optomechanical crystal nanobeam cavity43 along with an
FEM simulation of its 5 GHz flapping resonance. Displace-
ment profile and a cross-sectional strain profile of the mode
are shown with arbitrary normalization.

Our results on the strain response of the electronic and
spin levels of the SiV indicate the potential of this color
center as a spin-phonon interface. The diamond NV cen-
ter spin, the most investigated candidate in this direc-
tion has an intrinsically weak strain susceptibility (∼ 10
GHz/strain) since the qubit levels are defined within the
same orbital in the GS configuration of the defect44.
While using distinct orbitals in the ES can provide much
larger strain susceptibility (∼ 1 PHz/strain)45,46, such
schemes will be limited by fast dephasing due to spon-
taneous emission and spectral diffusion. In comparison,
the SiV center provides distinct orbital branches within
the GS itself. Further, the presence of SO coupling dic-

tates that the qubit levels |eg− ↓〉, |eg+ ↑〉 correspond
to different orbitals. As a result, one achieves the ideal
combination of high strain susceptibility and low qubit
dephasing rate.

The effects of various modes of strain and the rich elec-
tronic structure of the SiV allow a variety of spin-phonon
coupling schemes. Here, we focus on direct coupling of
the spin transition to a mechanical resonator at frequency
ωs enabled by Eg-strain response of the spin discussed
in the previous section. An alternative approach utiliz-
ing propagating phonons of frequency ∼ λSO coupled to
the GS orbital transition is discussed elsewhere47. Our
scheme would require diamond mechanical resonators of
frequency ωs ∼ few GHz, which have already been real-
ized in both optomechanical43,48 and electromechanical
platforms21–23,49. Fig. 6(c) shows the strain profile re-
sulting from GHz frequency mechanical modes in an op-
tomechanical crystal cavity. Since this structure achieves
three-dimensional confinement of phonons on the scale
of the acoustic wavelength, it provides large per-phonon
strain. For an SiV located ∼20 nm below the top surface,
when a magnetic field B = 0.3 T is applied along the [001]
direction, the qubit levels are resonant with the 5 GHz
flapping mode, and has a single-phonon coupling rate
g ∼0.8 MHz. In order to achieve this maximal value of g,
SiV centers can be generated in the high strain region
of the resonator by previously demonstrated targeted
ion implantation techniques8,33,50. At mK temperatures,
given the low SiV spin dephasing rate γs ∼ 100 Hz12, even
modest mechanical quality-factors Qm ∼ 103 measured
previously43 are sufficient to achieve strong spin-phonon
coupling. At 4 K, despite the higher spin dephasing rate
γs ∼ 4 MHz51,52 and thermal occupation of mechanical
modes nth ∼ 20, high spin-phonon co-operativity can be
achieved if previously observed 4 K quality factors for sil-
icon optomechanical crystals53, Qm ∼ 105 can be repli-
cated in diamond. This form of spin-phonon coupling
can also be implemented in other resonator designs such
as surface acoustic wave cavities22,23,54, wherein piezo-
electric materials are used to transduce the mechanical
motion with microwave electrical signals instead of opti-
cal fields.

VII. CONCLUSION

In conclusion, we characterize the strain response
of the SiV center in diamond with a NEMS device.
The implications of our results are two-fold. First,
the large tuning range of optical transitions we have
demonstrated establishes strain control as a technique to
achieve spectrally identical emitters in a quantum net-
work. Strain tuning is particularly relevant here since
inversion-symmetric centers with superior optical prop-
erties do not have a first order electric field response,
thereby negating the feasibility of direct electrical tuning.
Second, the intrinsic sensitivity of the SiV qubit to strain
makes it a promising candidate for coherent spin-phonon
coupling. This can enable phonon-mediated quantum in-
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formation processing with spins14,15. The development of
a phononic two-level system29,55 will also allow determin-
istic quantum nonlinearities for phonons56, thereby over-
coming inefficiencies in probabilistic schemes used to gen-
erate single phonon states in cavity optomechanics57,58.
Further, the use of optomechanical and electromechani-
cal resonators towards this goal suggests the possibility of
coherently interfacing diamond spin qubits with telecom
and microwave photons respectively.

Appendix A: Inhomogeneous distribution in
nanofabricated devices

SiV centers in nanofabricated structures show a larger
inhomogeneous distribution of their optical transitions
from those in bulk diamond due to additional strain vari-
ations introduced by the fabrication procedure. We an-
alyzed the distribution of optical transition frequencies
for SiV centers in a photonic crystal nanobeam cavity8

in order to compare our strain tuning capability against
realistic inhomogeneity in a nanoscale device that can be
used as a node in a quantum network. C transitions in
the device are identified by using an algorithm that as-
signs sets of four transitions to single SiV centers by ex-
amining pairwise frequency differences between all tran-
sitions. Fig. 7 shows the inhomogeneous distribution of
C transitions identified in this manner.
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FIG. 7. Histogram of C transition frequencies for SiV centers
in a nanophotonic cavity. Mean frequency of 406.933 THz is
indicated. Standard deviation is estimated to be 31 GHz.

Appendix B: Group theoretical description of strain
response

The response of the electronic levels of trigonal point-
defects in cubic crystals to lattice deformations was
treated theoretically by Hughes and Runciman40. A so-
lution of this problem for the specific case of the SiV has
been previously carried out using group theory30 with
some errors. Here, we reconcile these two treatments,

and present a model for the response of the SiV elec-
tronic levels to strain (and stress). In what follows, we
use x, y, z to refer to the internal basis of the SiV (see
inset of Fig. 1(b). eg. for a [111] oriented SiV, we have
x : [1̄1̄2], y : [1̄10], z : [111]), and X,Y, Z to refer to the
axes of the diamond crystal, i.e. X : [100], Y : [010], Z :
[001]. We use σ and ε for the stress and strain tensors in
the SiV basis, and σ̄ and ε̄ to refer to them in the crystal
basis. We also neglect the spin character of the states in-
volved, since we are only concerned with changes to the
Coulomb energy of the orbitals.

When the applied stress is small, in the Born-
Oppenheimer approximation, the effect of lattice defor-
mation is linear in the strain components and is captured
by a Hamiltonian of the form40 -

Hstrain =
∑
ij

Vijεij (B1)

Here i, j are indices for the co-ordinate axes. Vij are
operators corresponding to particular stress components,
and act on the SiV electronic levels. Group theory can
be used to rewrite this Hamiltonian in terms of basis-
independent linear combinations of strain components
adapted to the symmetries of the SiV center. Each of
these combinations can be viewed as a particular ‘mode’
of deformation, and the effect of each mode on the orbital
wavefunctions, each with its own symmetries can be de-
duced using group theory. More technically, such defor-
mation modes are obtained by projecting the strain ten-
sor onto the irreducible representations of D3d, the point
group of the SiV center.40 This transformation gives

Hstrain =
∑
r

Vrεr (B2)

where r runs over the irreducible representations. De-
ducing the operators Vr simply requires computing the
direct products of irreducible representations.30 It can be
shown that strain and stress tensors transform as the irre-
ducible representation,A1g +Eg

30 which has even parity
about the inversion center of the SiV. Since the ground
states of the SiV transform as Eg (even), and the excited
states transform as Eu (odd), lattice deformations do not
couple the ground and excited states with each other to
first order. As a result, we can describe the response of
the ground and excited state manifolds independently.
In particular, Hstrain is identical in form for both mani-
folds, but will involve different numerical values of strain-
response coefficients. Therefore, we drop the subscripts g
and u used to refer to the ground and excited states, and
simply work in the doubly-degenerate basis {|ex〉, |ey〉}.
The interaction Hamiltonian can be shown to comprise
three deformation modes -

Hstrain = α

[
1 0
0 1

]
+ β

[
−1 0
0 1

]
+ γ

[
0 1
1 0

]
(B3)
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Strain term Susceptibility Relation to Hughes-Runciman coefficients

εxx + εyy t⊥ (c11 + 2c12)A1 − c44A2

εzz t‖ (c11 + 2c12)A1 + 2c44A2

εxx − εyy d (c11 − c12)B + c44C

εxy −2d

εzx f
√

2 (c44C − 2(c11 − c12)B)

εyz f

TABLE I. Various strain-modes, and their susceptibilities in terms of the Hughes-Runciman stress-response coefficients40. The
constants cij are the elastic modulus components of diamond - c11=1075 GPa, c12=149 GPa, c44=567 GPa59.

The components α, β, γ corresponding to εr in Eq.B2 are
given by the following linear combinations40

α = A1(ε̄XX + ε̄Y Y + ε̄ZZ) + 2A2(ε̄Y Z + ε̄ZX + ε̄XY )

β = B(2ε̄ZZ − ε̄XX − ε̄Y Y ) + C (2ε̄XY − ε̄Y Z − ε̄ZX)

γ =
√

3B(ε̄XX − ε̄Y Y ) +
√

3C (ε̄Y Z − ε̄ZX)

The coefficients A1,A2,B,C completely determine the
strain-response of the {|ex〉, |ey〉} manifold. It can be
shown that α transforms as A1g, and {β, γ} transform as
{Egx, Egy}.

To gain more physical intuition for these three defor-
mation modes, we can write α, β, γ in the SiV basis us-
ing the unitary transformation R = Rz(45◦)Ry(54.7◦),
where Rz(θ), and Ry(φ) correspond to rotations by θ
and φ about the z- and y-axes respectively. Upon trans-
formation, we get

α = t⊥(εxx + εyy) + t‖εzz ≡ εA1g

β = d(εxx − εyy) + fεzx ≡ εEgx
(B4)

γ = −2dεxy + fεyz ≡ εEgy

Here t⊥, t‖, d, f are the four strain-susceptibility pa-
rameters. They are related to the original stress-response
coefficients of Hughes and Runciman40 according to the
expressions in Table I. Further, to explicitly indicate the
symmetries of these deformation modes, we hereafter
switch to the notation εA1g for α, εEgx for β, and εEgy

for γ in line with the description in Eq. (B2).

At this juncture, we contrast Eqs. (B4) with the re-
cent results in Ref.30 (Eqs. 2.80-2.82). Our analysis pre-
dicts a non-zero response to uniaxial strain along the high
symmetry axis εzz in A1g deformation, and to the shear
strains εzx and εyz in Eg deformations.

Appendix C: Extraction of strain susceptibilities

To extract all the values {t⊥, t‖, d, f} for both ground
and excited state manifolds, in principle, strain needs
to be applied at least in three different directions for a
given SiV. This procedure gives a set of overdetermined
equations in these parameters.40 However, the devices
in this study can only induce two types of strain profiles
as shown in Fig. 3(c) and (d). In particular, for a given
SiV in either the ‘axial’ or the ‘transverse’ class, the
relative ratio between strain-tensor components remains
constant when voltage applied to the cantilever is swept.
This condition makes it difficult to estimate the relative
contributions of t‖ and t⊥ to εA1g

, and of d and f to εEg
.

To get around this issue, we follow an approximate ap-
proach. From Fig. 3(d), we observe that in the case of
an axial SiV, εzz � (εxx + εyy) is always true. There-
fore, we can use the response of the axial SiV in Fig.
2(b) to approximately estimate

(
t‖,es − t‖,gs

)
by neglect-

ing (εxx + εyy) in Eq. (5). Fig. 3(f) plots the mean ZPL
frequency of the axial SiV in Fig. 2(b) vs. εzz estimated
from FEM simulation. The slope of the linear fit yields

(
t‖,es − t‖,gs

)
.

(
t‖,es − t‖,gs

)
= −1.7±0.1 PHz/strain (C1)

Likewise, in the case of the transverse SiV in Fig. 3(c),
we can conclude that |εxx − εyy| � max{εzx, εyz, εxy}.
With this class of SiVs, we can approximately estimate
{dgs, des} by neglecting {εzx, εyz, εxy} in Eqs. (6,7). The
significant strain term then is |εxx−εyy|. Fig. 3(e) fits the
GS and ES splittings of the transverse SiV in Fig. 2(a)
vs. |εxx − εyy| estimated from FEM simulation. Fitting
yields

dgs = 1.3±0.1, des = 1.8±0.2 PHz/strain
(C2)

Once we extract
(
t‖,es − t‖,gs

)
from an axial SiV, we

can use this value to further extract (t⊥,es − t⊥,gs) by
fitting Eq. (5) to the tuning behavior of the mean ZPL
frequency of the transverse SiV. This procedure yields

(t⊥,es − t⊥,gs) = 0.078±0.009 PHz/strain (C3)



11

We immediately note that
(
t‖,es − t‖,gs

)
is more than

an order of magnitude larger than (t⊥,es − t⊥,gs). This
implies that εzz tunes the mean ZPL frequency much
more effectively than (εxx + εyy). This can be intuitively
explained by examining the spatial profile of the GS and
ES orbitals (Table 2.7 of Ref.30). Since the GS and ES
correspond to even (g) and odd (u) eigenstates of SiV’s
D3d point symmetry group respectively, the charge den-
sity distributions of the orbitals egx, eux (and egy, euy)
are similar in any transverse plane normal to the z-axis.
As a result, we would expect that the common mode en-
ergy shift resulting from the strain-mode εxx+εyy is very
similar for the GS and ES manifolds, i.e. t⊥,gs ≈ t⊥,es.
On the other hand, the energy shift from εzz is expected
to have opposite signs for the GS and ES manifolds
due to the change in wavefunction parity along the z-axis.

As the last step, we estimate the values fgs, fes. This is
done by substituting the fitted values of dgs and des from
Eq. (C2) in Eqs. (6,7), which then become single variable
expressions in fgs, fes respectively. The resulting expres-
sions can be fit to the response of the axial orientation
SiV, which experiences significant εyz (see Fig. 3(d)).
This gives

fgs = −1.7± 0.1, fes = −3.4± 0.3 PHz/strain
(C4)

The above error bars for the strain susceptibility pa-
rameters are a sum of standard deviations from the fit
procedure and from straggle in the SiV implantation
depth (10% from SRIM calculations). We note that ad-
ditional error might arise due to the fact that the device
geometry cannot be replicated exactly in FEM simula-
tions for strain estimation.

Appendix D: Spin relaxation (T1) model

Eg-phonons predominantly drive spin-conserving tran-
sitions between the GS orbitals of the SiV i.e. between
{|eg− ↓〉′, |eg+ ↓〉′}, and {|eg+ ↑〉′, |eg− ↑〉′} respectively.
However, in the presence of an off-axis magnetic-field,
and non-zero static strain, the eigenstates of the GS man-
ifold are no longer pure SO or strain eigenstates, and all
transitions between the four states within the GS man-
ifold become allowed for Eg-phonons. In this scenario,
the various channels for spin-relaxation from |eg− ↓〉′ to
|eg+ ↑〉′ are:

• Direct single-phonon relaxation: Via a single
phonon of frequency ωs resonant with the spin-
transition as shown in Fig. 8(a)

• Resonant two-phonon relaxation: Via two phonons
resonant with a level in the upper orbital branch
as an intermediate state as shown in Fig. 8(b).
The spin-flip can be caused by either the emitted
phonon (left) or the absorbed phonon (right).
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FIG. 8. Various pathways for a phonon-mediated spin-flip
(a) Direct relaxation via a single phonon resonant with the
|eg− ↓〉′ → |eg+ ↑〉′ spin-transition. (b) Two possible channels
for a resonant two-phonon process involving the upper orbital
branch. (c) Off-resonant two-phonon processes.
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• Off-resonant two-phonon relaxation: Via two
phonons with a virtual level as an intermediate
state as shown in Fig. 8(c). The effective driv-
ing strength will be reduced from its value in the
resonant process by an amount corresponding to
the detuning from the upper orbital branch.

Using Fermi’s golden rule, the transition rates for these
relaxation channels can be calculated. The results are
summarized in Table II, and are plotted versus GS split-
ting ∆gs in Fig. 9.

We see that spin relaxation at 4 K is dominated by
a two-phonon process involving the upper ground state
orbital branches as intermediate states. In literature,
this is frequently referred to as an Orbach process.60

The experimentally observed behavior of spin T1 in Fig.
4(d) of the main text is well-explained by the scaling
of such a process with the GS splitting ∆gs shown in
Table II. Intuitively, we may understand the dominance
of the Orbach process in terms of the phonon DOS
∝ ∆nexp (−h∆/kBT ) being maximized around the fre-
quency ∆ ∼ kBT/h. We can similarly argue that the
single and off-resonant two-phonon channels become rel-
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Mechanism Rate Relevant regime Expected scaling of rate

Single-phonon 2π
(

dspin

dgs

)2

χρω3
snth(ωs) kBT/h� ωs B2

⊥∆−2
gs ω

3
sexp(−hωs/kBT )

Resonant two-phonon 4
(

dgs,flip
dgs

)2

γup kBT/h ∼ ∆gs B2
⊥∆gs[exp(h∆gs/kBT )− 1]−1

Off-resonant two-phonon 8π3
(

dgs,flip
dgs

)2

χ2ρ2ω2
s

(
kBT
h

)3

kBT/h� ∆gs B2
⊥∆−2

gs ω
2
sT

3

TABLE II. Summary of spin-relaxation mechanisms
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FIG. 10. Calculated susceptibility of the qubit levels for in-
teraction with off-resonant AC Eg-strain that modulates the
transition frequency ωs (interaction shown in inset). Color
variation along the curve shows the GS splitting correspond-
ing to the value of static Eg-strain at the SiV. Both the
DC and AC strain are assumed to be entirely in the Egx-
component.

evant in other temperature regimes indicated in Table
II, where the phonon DOS is maximized in a frequency
range relevant for those processes.

Appendix E: Dispersive strain-coupling to qubit
levels

From Eqs. (12, 13), we concluded that in the the low
strain limit, the eigenstates of the SiV qubit |eg− ↓〉′,
|eg+ ↑〉′ are linearly mixed by Eg-strain, and hence suit-
able for resonant driving by AC strain at frequency ωs.
This type of mixing also indicates that static Eg-strain
would cause a quadratic shift in the spin-transition fre-
quency ωs. Such a quadratic response to an external
field can always generate a linear AC response in the
presence of a ‘bias’ field. Thus in the presence of non-
zero static Eg-strain, ωs must also experience a linear
modulation with off-resonant AC strain. This is partic-
ularly useful for parametric coupling of the qubit levels
to off-resonant mechanical resonators as demonstrated
previously with NV centers18–20,24. A calculation of the
magnitude of modulation in the spin transition frequency
for a given AC strain εAC

Egx
yields the susceptibility tspin
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FIG. 11. Variation of g-factor for transverse magnetic field
(orthogonal to the SiV internal z-axis) as a function of pre-
existing static Eg-strain. Color variation along the curve
shows the GS splitting corresponding to the value of static
Eg-strain at the SiV. Static magnetic field that splits the spin
sublevels is applied along the [001] direction, while microwave
magnetic field resonantly driving the spin transition is applied
along the SiV x-axis (interaction shown in inset). Static strain
is assumed to be entirely of Egx-character.

for dispersive spin-phonon coupling, which can be of the
same order of magnitude as dspin.

tspin =
〈eg+ ↑′ |HAC

str |eg+ ↑′〉 − 〈eg− ↓′ |HAC
str |eg− ↓′〉

εAC
Egx

dgs

(E1)

tspin is calculated as a function of pre-existing static
Eg-strain, and plotted in Fig. 10. Its magnitude is max-
imized at a moderately strained GS splitting of 50 GHz,
and falls off as static strain is further increased. This
non-monotonic behavior arises from the fact that tspin
is a result of linearizing the quadratic response due to
dspin, and therefore scales as the product of dspin and
static strain in the environment. Thus there is an opti-
mal static strain condition to maximize tspin.
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Appendix F: Microwave magnetic response of the
SiV qubit

At zero strain, qubit transitions cannot be driven by
resonant microwave magnetic fields at frequency ωs. This
is because a magnetic field cannot flip the orbital charac-
ter of the pure SO eigenstates |eg− ↓〉, |eg+ ↑〉 as evinced
by the Hamiltonian 11. However, just as a transverse
magnetic field allows a strain susceptibility for the qubit
levels as shown by Eqs. (12-14), we can argue that the
presence of non-zero static strain induces a response to
transverse magnetic fields. This is necessary for coher-
ent control of the SiV spin with microwave fields10,12.
Fig. 11 shows this effect through a calculation of the
effective g-factor for magnetic field applied in the SiV
transverse plane. It is zero at zero strain, and saturates
as strain is increased far beyond the SO coupling. In the
high strain regime, the system behaves like a free elec-
tron spin quantized along [001], the direction of the static
magnetic field.
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M. Atatüre, Phys. Rev. Lett. 119, 010503 (2017).

5 A. Gali and J. R. Maze, Physical Review B 88, 235205
(2013).

6 T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell,
M. Schreck, H. Sternschulte, D. Steinmüller-Nethl,
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