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Effects of temperature T (6K-18K) and variable in-situ static disorder on dissipative resistance
of two dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular
magnetic field, B⊥. Quantum contributions to the magnetoresistance, leading to Quantum Positive
MagnetoResistance (QPMR), are separated by application of an in-plane magnetic field. QPMR
decreases considerably with both the temperature and the static disorder and is in good quantitative
agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting
an anomalous polynomial dependence on B⊥: R(B⊥) − R(0)) = A(T, τq)B

η
⊥
, where the power

η ≈1.5±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron
quantum lifetime τq. The scaling factor A(T, τq) ∼ [κ(τq)+β(τq)T

2]−1 depends significantly on both

τq and T , where the first term κ ∼ τ−1/2
q decreases with τq. The second term is proportional to

square of the temperature and diverges with increasing static disorder. Above a critical disorder the
anomalous magnetoresistance is absent and only a positive magnetoresistance, exhibiting no distinct
polynomial behavior with the magnetic field, is observed. Presented model accounts memory effects
and yields η =3/2.

I. INTRODUCTION

Within Boltzman-Drude kinetic theory the magne-
toresistance of two dimensional electrons is absent.1 In
practice 2D electron systems exhibit both a positive
(PMR)2,3 and a negative magnetoresistance (NMR)4–16,
which are attributed to non-Markovian processes in the
dynamics of classical electrons moving in a static disor-
der potential.17–29 In high mobility samples the negative
magnetoresistance is strong and depends considerably on
the temperature and sample size.11,13,14 A recent theo-
retical model relates this NMR to a reduction of the elec-
tron viscousity in magnetic fields.30 Despite significant ef-
forts to understand both PMR and NMR, a quantitative
agreement between the experiments and theory remains
to be quite illusive.
Mentioned above, positive and negative magnetore-

sistances are observed in the high temperature domain
kT ≫ h̄ωc, where ωc is cyclotron frequency. At this con-
dition quantum (Shubnikov-de Haas) oscillations of the
resistance are completely suppressed by the temperature
and the classical electron transport is often assumed to
be dominating. It has been shown, however, that Landau
quantization of the electron spectrum affects significantly
the electron scattering already in the high temperature
domain.31 The spectrum quantization leads to a con-
siderable quantum positive magnetoresistance (QPMR),
which was observed recently at small magnetic fields in
high quality samples.32,33 Thus, the magnetoresistance
may contain contributions from different classical effects
mixed with the quantum contributions. The mix may
lead to a significant discrepancy between experimental
data and the theoretical models in the high temperature
domain. An extraction (separation) of the classical ef-
fects from this mix presents a challenge especially in the

high magnetic field sector, where QPMR is strong.

Recently we have observed that application of a mag-
netic field parallel to the 2D layer suppresses the quantum
contributions to the magnetoresistance.34,35 The sup-
pression correlates with the spin splitting of Landau lev-
els ∆Z and reaches an extremal value at ∆Z ≈ h̄ωc/2 at
which the density of state (DOS) is nearly constant in
small quantizing magnetic fields. This observation opens
a way to quantitatively study contributions to the mag-
netoresistance which are not related to the DOS quanti-
zation. Below we label these contributions as a classical
magnetoresistance. We note, however, that an absence
of the quantization of the density of states may not be
sufficient to eliminate completely quantum mechanical
outcomes as has been shown recently.36

The paper presents an experimental investigation of ef-
fects of temperature and a static disorder on both quan-
tum and classical magnetoresistances. In the experiment
the static disorder is controlled in-situ and varies con-
tinuously. We study a gated, remotely doped GaAs sin-
gle quantum well of width d =13 nm sandwiched be-
tween AlAs/GaAs superlattice barriers. The superlattice
barriers contain X-electrons screening charged dopants37.
This screening enhances both the electron transport mo-
bility and, to a larger extent, the electron quantum life-
time, τq, since the dopants are localized at distance Ld ≈
36 nm from the conducting 2D layer and predominantly
induce a small angle electron-impurity scattering38. A
negative gate voltage depopulates first the nearest screen-
ing electron layer leading to a strong reduction of the
electron quantum lifetime, which is sensitive to the small
angle scattering. The transport time τtr, which is deter-
mined by the large angle scattering, shows significantly
smaller absolute variations.39 The 2D electron density
stays nearly the same in this regime40. Further decrease
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FIG. 1: (color online) Dependencies of the dissipative resis-
tance Rxx of 2D electrons on perpendicular magnetic field
taken at two different angles between magnetic field B and
the normal to the 2D layer: α = 00 and α = 82.50. (a) Rxx

vs B⊥ at gate voltage Vg=0V and different temperatures T :
6.25, 8, 10, 12, 14, 16 and 18 K. (b) Rxx vs B⊥ at temperature
T=6.25K and different gate voltages Vg=0V, and between -
0.2V and -0.7V with step -0.1V.

of the gate voltage depopulates completely the screening
layer and 2D electron density starts to follow the gate
voltage39,40.
Our experiments indicate strong effects of the temper-

ature and the static disorder on both QPMR and the
remaining classical magnetoresistance, which is found to
be negative and demonstrating an anomalous polynomial
behavior at small magnetic fields. The focus of this pa-
per is this negative magnetoresistance. To characterize
the static disorder we use the quantum scattering time
obtained from QPMR.33,34

II. EXPERIMENT AND RESULTS

Studied GaAs quantum well was grown by molecular
beam epitaxy on a semi-insulating (001) GaAs substrate.
Samples were etched in the shape of a Hall bar. The
width and the length of the measured part of the sam-
ples are W = 50µm and L = 250µm. AuGe eutectic
was used to provide electric contacts to the 2D electron
gas. Two samples were studied in magnetic fields up to
9 Tesla applied in-situ at different angle α relative to
the normal to 2D layers and perpendicular to the ap-
plied current. The angle α has been evaluated using Hall
resistance RH = B⊥/(en), which is proportional to the
perpendicular component, B⊥ = B · cos(α), of the total
magnetic field B. The electron density n was evaluated
from the Hall measurements taken at α=00 in classically
strong magnetic fields. Sample resistance was measured
using the four-point probe method. We applied a 133 Hz
ac excitation Iac=1µA through the current contacts and
measured the longitudinal (in the direction of the elec-
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FIG. 2: (a) Dependence of 2D electron density obtained
from Hall resistance on gate voltage Vg . (b) Open sym-
bols present the quantum scattering rate 1/τq , obtained from
analysis of the magnitude of the quantum positive magne-
toresistance shown in Fig.1(b), at different electron densities.
Filled squares present the transport scattering rate 1/τtr, ob-
tained from resistance at B=0T using Drude formula for the
resistivity, at different electron densities. T=6.25 K.

tric current, x-direction) and Hall ac (along y-direction)
voltages (V ac

xx and V ac
H ) using two lockin amplifiers with

10MΩ input impedance. The measurements were done in
the linear regime in which the voltages are proportional
to the applied current. Both samples have demonstrated
a similar magnetoresistance. Below we present data ob-
tained on Sample N1.
Figure 1(a) presents magnetic field dependencies of the

dissipative resistance Rxx of 2D electrons taken at two
different angles α between the magnetic field B and the
normal to 2D electron layer at different temperatures.
At angle α=0o the magnetic field B is perpendicular to
2D layer and in GaAs quantum wells the Zeeman spin
splitting, ∆Z = µgB, is negligibly small in comparison
with the cyclotron energy, ∆c = h̄ωc, where µ is Bohr
magneton and g is electron g-factor. At B⊥ exceeding
∼0.2T the electron spectrum is quantized leading to the
quantum positive magnetoresistance (QPMR).33

An application of in-plane magnetic field suppresses
QPMR.34 The suppression correlates with the increase of
Zeeman term ∆Z in tilted magnetic fields. At α=82.50

the QPMR suppression is in a vicinity of the extremum
related to the condition: ∆Z = ∆c/2, corresponding to
nearly constant electron density of states (DOS) in small
quantizing magnetic fields.34 In accordance with a pro-
posed model, QPMR is absent at this condition34. The
difference between curves taken at these two angles is in
a quantitative agreement with QPMR theory31 , yield-
ing the quantum scattering time, τq.

34 An increase of
the temperature decreases the QPMR considerably. The



3

0.1

1E-3

0.01

0.1

0.0 0.2 0.4 0.6

-0.20

-0.15

-0.10

-0.05

0.00

18K

6.25K

 

 

/
0 

B (T)

(a)
0.5

(b)

 

 

/
0 
 s

ca
le

d

B (T)

6.25K

18K

FIG. 3: (color online) (a) Variations of normalized resistivity
−∆ρ/ρ0 = −(ρ(B⊥) − ρ0)/ρ0 with magnetic field, B⊥, ob-
tained from the dependencies Rxx(B⊥) presented in Fig.1(a)
at angle α=82.5o and different temperatures from T=6.25
K to T=18K. Plotted in log-log scale these variations reveal
a polynomial behavior: ∆ρ/ρ0 = ABη

⊥
at small magnetic

fields for all studied temperatures, where A is a coefficient

and η=1.5±0.1. Dashed line corresponds to -∆ρ/ρ0 ∼ B
3/2
⊥

.
(b) The resistivity variations ∆ρ/ρ0 at different temperatures
scaled to the dependence at T=6.25 K and presented in the

linear scale. Dashed line corresponds to ∆ρ/ρ0 ∼ −B
3/2
⊥

.
Vg=0V.

QPMR reduction is related to the decrease of the quan-
tum scattering time τq at high temperatures due to the

enhancement of electron-electron scattering.33

In Fig.1(a) thick lines demonstrate the magnetoresis-
tance at α=82.5o obtained at ∆Z ≈ ∆c/2 corresponding
to a nearly constant DOS. At Vg=0V the magnetore-
sistance is negative in the studied temperature range.
Higher temperature makes the negative magnetoresis-
tance (NMR) progressively weaker. The notable feature
of the curves is the independence of the magnetoresis-
tance on the angle α at small magnetic fields B⊥ <0.1T.
At these fields the quantization of the electron spectrum
is exponentially suppressed and DOS does not depend on
Landau and Zeeman splittings. The progressively strong
deviation between curves at higher B⊥ indicates the pro-
gressively strong modulations of DOS due to quantization
of the electron spectrum.34

Figure 1(b) presents magnetic field dependencies of
the resistance Rxx taken at two different angles α and
different gate voltages, Vg. This set of curves demon-
strates effect of the static disorder on both QPMR and
NMR. Qualitatively, effects of the temperature and the
static disorder on the magnetoresistance look similar:
an increase of the temperature or disorder reduces both
QPMR and NMR. Below we investigate these effects
quantitatively.

Figure 2(a) presents the 2D electron density n obtained
from an analysis of the Hall resistance at different gate
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FIG. 4: (color online) (a) Dependence of the normalized re-
sistivity ∆ρ/ρ0 = (ρ(B⊥) − ρ0)/ρ0 on magnetic field, B⊥, at
angle α=82.5o and different Vg from 0V (bottom curve) to -1V
(top curve) with step -0.1V. (b) The normalized magnetore-
sistivity ∆ρ/ρ0 at all different gates Vg shown in (a), scaled
to the dependence at Vg=0V, indicates the robustness of the
anomalous polynomial behavior at small B⊥ with respect to
variations of both electron density and the static disorder.

Dashed line corresponds to ∆ρ/ρ0 ∼ −B
3/2
⊥

. T=6.25K.

voltages Vg. In the range between 0V and -0.6 V the
2D electron density changes weakly with the gate volt-
age. In this regime the applied voltage depopulates the
screening layer with X-electrons leading to a substantial
increase of the smooth electrostatic potential of the re-
mote dopants. It results in a strong enhancement of the
small angle scattering and a significant increase of the
quantum scattering rate 1/τq. A comparison of the 1/τq,

obtained from the analysis of QPMR,34 and the transport
scattering rate 1/τtr, obtained from Drude conductivity,
is shown in Fig.2(b). The figure demonstrates that the
absolute variations of the transport scattering rate are
much smaller than the 1/τq variations, pointing toward
the enhancement of the small angle electron scattering in
the system.

Furthermore, the relative variations of the transport
scattering rate are also considerably smaller than the rel-
ative variations of the quantum scattering rate. This in-
dicates presence of a substantial amount of large angle
scatterers, such as rigid impurities localized inside the
quantum well, with a sharp scattering potential nearly
independent on the X-electron screening. Thus Fig.2(b)
suggests that the static disorder contains sharp impuri-
ties embedded into a variable smooth electrostatic back-
ground. At gate voltages less than -0.8V the X-electron
layer is completely depopulated and 2D electron density
follows the gate potential. In this regime the quantum
scattering time does not change significantly, indicating
a weak variation of the static disorder. Below we use
Fig.2 to evaluate the disorder potential at different gate
voltages.
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FIG. 5: (color online) (a) A linear dependence of the scaling
factor KY (T, Vg)=A(T = 6.25K, Vg = 0V )/A(T, Vg) on the
square of the temperature at different gate voltages Vg from
the bottom to the top lines: 0V, -0.4, -0.5, -0.6, -0.7, -0.8
and -0.9V. The dependence is approximated by the following
relation: KY = κ(τq(T = 0K)) + β(τq(T = 0K))T 2, where
the first term κ(τq(T = 0K)) describes effects of the static
disorder only and the second term β(τq(T = 0K))T 2 describes
both temperature and disorder effects. (b) Dependence of
the parameter β on the quantum scattering rate, 1/τq , agrees
with a critical behavior: β ≈ β0(1/τ0 − 1/τq)

γ , where β0 ≈

0.0095±0.0015, 1/τ0 ≈ 1.85±0.15(THz) and γ ≈ −1.43±0.3.
(c) Dependence of the temperature independent term κ on the

disorder reveals the following relation: κ ∼ τ−1/2
q .41

Figure 3(a) presents variations of the normalized mag-
netoresistivity, -∆ρ/ρ0 = −(ρ(B⊥) − ρ0)/ρ0, with mag-
netic field, B⊥, at different temperatures, where ρ0 is
the resistivity at zero magnetic field. The figure demon-
strates that at small magnetic fields the magnetoresistiv-
ity follows a polynomial law: ∆ρ/ρ0 = A(T )Bη

⊥
, where

power η ≈1.5±0.1 and the scaling factor A(T ) depends
on the temperature. The obtained polynomial decrease
of the resistance is anomalous and, to the best of our
knowledge, is beyond existing theories. The figure shows
that at a higher temperature the polynomial behavior ex-
tends to a higher magnetic field. Thus the temperature
promotes this anomalous magnetoresistance. An anoma-
lous polynomial behavior of colossal negative magnetore-
sistance has been seen recently in a 2D electron system
with a power η=1.4 at T=0.25K. This anomalous behav-
ior, however, disappears at high temperatures.14

Figure 3(b) presents the normalized negative magne-
toresistance, ∆ρ/ρ0 at different temperatures scaled ver-
tically to the curve at T=6.25K, using a scaling coeffi-
cient KY (T ) = A(T = 6.25K)/A(T ). The figure shows
that at high temperatures (14K-18K) the scaling exists
up to B⊥ ≈0.5T. A decrease of the temperature down
to 6.25K shrinks the range of the anomalous polynomial
behavior inside the interval (0.03T-0.2T). At T = 6.25K
and B⊥ >0.2T the resistance decreases faster than B1.5

⊥
.

Figure 4(a) presents the normalized negative magne-

toresistance, ∆ρ/ρ0 taken at T=6.25K and different Vg

from 0V (bottom curve) to -1V (top curve). At Vg <-
0.8V a positive magnetoresistance grows up propagat-
ing to a smaller B⊥ at Vg=-1V. Figure 4(b) presents
the anomalous negative magnetoresistance scaled to the
curve at Vg=0V. The figure demonstrates that the
anomalous negative magnetoresistance persists down to
Vg=-1V. In contrast to the temperature effect, the strong
disorder reduces the magnetic field range of the scaling
behavior of NMR. At Vg=-1V and higher temperatures
the magnitude of NMR is very small making quantita-
tive evaluations of the response to be not reliable. At
Vg=-1.1V the negative magnetoresitance is absent and
only a positive magnetoresistance with no distinct poly-
nomial behavior is observed (not shown). This is out of
the scope of this paper.
Figure 5(a) presents the dependence of the scaling co-

efficient KY = A(T = 6.25K,Vg = 0V )/A(T, Vg) on the
square of the temperature for different gate voltages. The
figure shows that the temperature variations of KY is
proportional to T 2 suggesting the electron-electron in-
teraction as the origin of the temperature dependence
of the scaling factor A(T ). We have approximated the
scaling coefficient KY by the following relation:

KY = κ(τq) + β(τq)T
2 (1)

, where κ(τq) is the intersect of the straight lines with the
KY axis while the coefficient β(τq) describes the strength
of the temperature dependent term.
Figure 5(a) shows that the parameter β increases

strongly at low gate voltages indicating tendency to a
divergence. Furthermore the experiments demonstrate
no NMR at Vg=-1.1V indicating β = ∞. These obser-
vations suggest a critical behavior of the coefficient β at
the low gate voltages. Variations of QPMR with angle
α indicate a g-factor enhanced by the e− e interaction34

but no divergence of the g-factor is observed in the stud-
ied range of the gate voltages. This suggests that the
density dependent electron-electron interaction by itself
does not diverge. Below we propose that the critical be-
havior of the parameter β is induced by variations of the
static disorder characterized by the quantum scattering
rate 1/τq:

β = β0(τ
−1
0 − τ−1

q )γ (2)

, where parameter τ−1
0 characterizes the strength of a

critical disorder and γ is the critical exponent. Figure
5(b) presents the coefficient β plotted vs quantum scat-
tering rate τ−1

q in accordance with Eq.(2) in log-log scale,

using β0 = 0.0095± 0.0015, τ−1
0 = 1.8 ± 0.15(THz) and

γ = −1.43 ± 0.3 as fitting parameters. The obtained
agreement supports the proposal.
Figure 5(c) presents the evolution of the coefficient κ

with the static disorder. In a broad range of the disorder
the coefficient κ ∼ τ−1/2

q . This finding suggests that the
anomalous NMR should be significantly enhanced in sys-
tems with a long quantum lifetime. This outcome agrees
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with the observation of a large NMR in high mobility
samples.10–16

III. DISCUSSION

Below we describe a qualitative model leading to the

polynomial negative magnetoresistance ∆ρ ∼ −B
3/2
⊥

.
Theoretical investigations indicate a strong negative
magnetoresistance in 2D electron systems with a static
sharp disorder only.17,18,20–22,26–29 The decrease of the re-
sistance is related to a separation of the 2D electrons in
two groups: wandering electrons performing both a diffu-
sive motion and Hall drift,17,18,20,21 and electrons which
do not collide with impurities and participate only in the
Hall transport.27 An inclusion of the long range smooth
disorder leads to substantial modifications of the negative
magnetoresistance.25,26 Below we discuss the model pre-
sented in Ref.[25]. In this model, 2D electrons perform a
diffusive like motion in the presence of both a sharp disor-
der characterized by a transport scattering time τS , and a
long range smooth disorder characterized by a transport
scattering time τL. During the cyclotron period 2π/ωc

the smooth disorder displaces the cyclotron guiding cen-
ter by a value δ, which is assumed to be larger than the
size of the sharp impurities a:

δ2 = 4πR2
c/(ωcτL) ≫ a2 (3)

, where Rc is the cyclotron radius. The negative mag-
netoresistance is related to a reduction of the electron
exploration rate due to memory effects. To evaluate the
exploration rate a strip of the width 2a is associated with
the particle trajectory. The particle will hit a sharp im-
purity if the center of the latter is located within the
strip. Due to the stochastic motion of the guiding cen-
ter at δ ≫ a, there is a small probability P1 ∼ a/δ that
after the first revolution the strip covers again the start-
ing point. Taking into account the diffusive dynamics
of the guiding center, its rms shift after n revolutions
is δn = δ

√
n, so that the return probability decreases

with n as Pn = P1/
√
n. The total return probability

P = ΣN
n=1Pn ≈ (a/δ)N1/2, where N ≈ (ωcτS)/2π, de-

termines the fraction of the area explored twice leading
to the reduction of the exploration rate and thus to a
negative correction to the resistivity25:

∆ρxx/ρ0 ∼ −(a/δ)(ωcτS)
1/2 ∼ −B2

⊥ (4)

The presented model assumes that the size of the sharp
impurities is much larger than the electron wave length
λF : a ≫ λF and, thus, the strip of the width 2a is
adequate in the counting of the area explored by an elec-
tron. In the opposite limit a ≪ λF a strip with the
width of 2λF has to be used42. Furthermore, in a mag-
netic field the width of a quasiclassical cyclotron orbit is
determined by the magnetic length, lB = (h̄/eB⊥)

1/2.43

Thus at lB > a a strip of the width ∼ lB is more appro-
priate for the counting of the electron exploration rate.

In this case the return probability is P ∼ lB/δ that leads
to the following negative magnetoresistance:

δρxx/ρ0 ∼ −(lB/δ)(ωcτS)
1/2 ∼ −B

3/2
⊥

(5)

The obtained magnetic field dependence agrees with
the dependence shown in Fig.3(a) at small magnetic
fields. Below we provide further justification of the appli-
cability of the model. At B⊥ <0.5T the magnetic length
lB >35 nm and exceeds the typical size a of neutral im-
purities, which is a few nanometers. These impurities,
embedded in the quantum well, provide a strong elec-
tron scattering at a large angle enhancing significantly
the dissipative transport in magnetic fields. To evalu-
ate the relative contributions of the smooth and sharp
disorder to the resistivity we estimate below the correla-
tion length of the smooth disorder ξ and the transport
scattering times τS and τL. The distance Ld ≈36 nm be-
tween Si-doping layer and the quantum well dictates that
the correlation length ξ of the smooth disorder potential
is about 36 nm.24 Another estimation of the correlation
length ξ via the ratio between quantum and transport
scattering times31,33: ξ∗ = (λF /2π)(τtr/τq)

1/2, yields a
considerably smaller value ξ∗=13 nm. We note that the
estimation of ξ∗ is based on the assumption that all scat-
tering events produce small angular deviations of elec-
tron trajectories. In other words, only the smooth dis-
order is accounted in this estimation. The discrepancy
between ξ and ξ∗ suggests the presence of a sharp disor-
der with a correlation length a <36nm. Assuming that
1/τtr = 1/τS + 1/τL and using ξ = (λF /2π)(τL/τq)

1/2,
we have found τL=200 ps and τS=29 ps. Thus the sharp
disorder with a correlation length a < lB provides the
dominant contribution to the electron dissipative trans-
port in magnetic fields less than 0.5T, while the smooth
long range disorder controls the electron quantum life-
time τq. Similar conclusions regarding the static disor-
der have been obtained from the comparison of variations
of the quantum and transport scattering rates with the
gate voltage shown in Fig.2(b). The obtained estimates
and conclusions support the applicability of the presented
model to the studied 2D electron system.
A description of the temperature dependence of the

anomalous magnetoresistance requires further develop-
ment. Below we present an attempt in this direc-
tion. The obtained temperature behavior of the scal-
ing factor KY , presented by Eq.(1), suggests the rele-
vance of the electron-electron scattering. The temper-
ature dependence of the quantum scattering time, ex-
tracted from QPMR shown in Fig.1(a), indicates that the
electron-electron scattering rate is 1/τee≈1(GHz)T 2(K),
which agrees with the rate in other samples.33 Thus the
electron-electron scattering time τee is about 25 ps al-
ready at T=6.25K and ≈3 ps at T=18K. This time is
shorter than the transport scattering time τtr indicating
that electron-electron scattering may have a considerable
impact on the electron transport. Due to the conser-
vation of the total momentum in the electron-electron
scattering, the latter does not contribute directly to the
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dissipative transport of electrons. However, these pro-
cesses may change significantly both the return probabil-
ity P1 = lB/δ via a modification of the parameter δ and
the total return probability P via a modification of the
number of the returns N .
A strong electron-electron scattering, 1/τee ≫

1/τS, 1/τL, produces an additional strong diffusive like
motion of electron cyclotron guiding centers, mixing the
diffusion in smooth and sharp disorder potentials. At
these conditions it is reasonable to assume that the scat-
tering rates, controlling parameters δ, N and, thus, the
memory effects, are the same and have a form 1/τm =
1/τst+1/τ∗ee, where τm is a memory breaking time, τst is a
memory breaking time due to the static disorder, and τ∗ee
is a memory breaking time due to the electron-electron
scattering. A substitution of 1/τm instead of 1/τS and
1/τL in Eq.(3) and Eq.(5) yields:

∆ρxx/ρ0 = −
h̄1/2e3/2B

3/2
⊥

2
√
2πmpF

[
1

τst
+

1

τ∗ee
]−1 (6)

, where m and pF is the electron mass and momentum
at Fermi energy. Eq.(6) indicates that the anomalous
magnetoresistance is proportional to the memory break-
ing time τm. The obtained structure of the temperature
and disorder dependent factor τm is compatible with the
scaling coefficient KY : KY = κ + βT 2 ∼ 1/τst + 1/τ∗ee,
providing 1/τ∗ee ∼ T 2.
A direct comparison of the Eq.(6) with the magnetore-

sistance, shown in Fig.3(b), yields the memory breaking
time τm=5.7 ps at T=6.25K and Vg=0V. The obtained
value is somewhat between an expected value τexm ≈12
ps, following from the relation 1/τexm = 1/τtr + 1/τee,
and the quantum scattering time τq ≈ 3ps. An anal-
ysis of the temperature variations of the scaling coef-
ficient KY , shown in Fig.5(a), yields the following re-
lation for the memory breaking time in GHz, 1/τm =
141+0.89T 2(K) at Vg=0V, resulting in 1/τst=141 (GHz)
and 1/τ∗ee(GHz)=0.89T 2(K).
Far from the critical disorder 1/τ0, at Vg=0V the

e− e induced memory breaking rate 1/τ∗ee is close to the
electron-electron scattering rate obtained from the anal-
ysis of the temperature dependence of QPMR shown in
Fig.1(a): 1/τee(GHz)=(1±0.1)T 2(K)33,34. At the critical
disorder, at Vg=-0.9V the memory breaking rate 1/τ∗ee is
in order of magnitude stronger than the electron-electron
scattering rate extracted from QPMR. It suggests that an
effectiveness of e − e processes, which destroy the mem-
ory effects, increases significantly with the static disorder.
Furthermore the experiment shows no divergency of the
parameter κ ∼ 1/τst indicating again that the presence
of the electron-electron scattering is required to suppress
the anomalous magnetoresistance.
Fig.5(c) shows that the memory breaking rate due to

the static disorder 1/τst is proportional to the τ−1/2
q ,

suggesting that 1/τst = (τqτ
∗

st)
−1/2, where the quantum

scattering time τq accounts a contribution of the small
angle scattering while the time τ∗st ≈13 ps accounts con-
tributions of the large angle scattering events to the mem-
ory breaking rate due to the static disorder. Obtained
results suggest nontrivial, mutual relations between the
small angle scattering, the large angle scattering and the
electron-electron interactions leading to the reduction of
the anomalous negative magnetoresistance.

IV. CONCLUSION

In summary an anomalous polynomial negative mag-
netoresistance of the 2D electrons, ∆ρ ∼ A(τq , T )B

η
⊥

is
observed, where η ≈ 1.5 ± 0.1. The factor A(τq, T ) ∼
[κ(τq)+β(τq)T

2]−1 depends on temperature T and static
disorder characterized by the quantum scattering time
τq. The temperature dependent term is proportional to

T 2 suggesting a dominant contribution of the electron-
electron interactions to the temperature dependence of
the magnetoresistance. The temperature independent
term κ(τq) is found to be proportional to τ−1/2

q and de-
scribes the considerable reduction of the negative mag-
netoresistance by the static disorder. The factor β is
found to be diverging with the static disorder: β ∼
(τ−1

0 − τ−1
q )γ , where the critical exponent γ ≈ 1.4 ± 0.3

and τ−1
0 ≈ 1.85 ± 0.15. Above the critical scattering

rate 1/τ0 the anomalous negative magnetoresistance is
absent and only a positive magnetoresistance, exhibiting
no distinct polynomial behavior with the magnetic field,
is observed.

Presented model of the phenomenon is based on mem-
ory effects accounting for the return probability of the
semiclassical trajectories and leading to the polynomial

magnetic field dependence: ∆ρ ∼ τmB
3/2
⊥

. The temper-
ature dependence of the anomalous magnetoresistance is
compatible with the model, assuming that the memory
breaking time τm has a form: 1/τm = 1/τst+1/τ∗ee, where
τst is memory breaking time due to static disorder and
τ∗ee is the memory breaking time due to electron-electron
scattering.
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