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We consider quantum rings realized in materials where the dynamics of charge carriers mimics
that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband
structure is developed that applies to a range of currently available 2D systems, including graphene,
transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the
scattering-matrix approach to calculate the electronic two-terminal conductance through the ring
and investigate how it is affected by Dirac-electron interference. The interplay of pseudo-spin chiral-
ity and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally
accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the az-
imuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of
the observed transport effects, including the unique behavior exhibited by the lowest ring subband
in the normal and topological (i.e., band-inverted) regimes. Our work provides a unified approach
to characterizing confined Dirac electrons, which can be used to explore the design of valley- and
spintronic devices based on quantum interference and the confinement-tunable geometric phase.

I. INTRODUCTION

Quantum rings1 are a paradigmatic system for study-
ing topological effects in condensed matter. In par-
ticular, coherent electron transport through ballistic
rings and similar multiply connected conductors can
be used to reveal phenomena associated with geo-
metric phases,2,3 including the Aharonov-Bohm4–6 and
Aharonov-Casher7–10 effects as well as non-Abelian gen-
eralizations.11,12 Besides the coupling of charge carriers
to effective gauge fields, quantum confinement in the ring
structure turns out to also importantly affect coherent-
electron interference,13–15 which further increases possi-
bilities for its experimental control and application for
novel electronic-device functionalities.

Our present work is motivated by the recent interest
in two-dimensional (2D) materials with Dirac-like charge
carriers such as single-layer graphene,16–18 single-layer
transition-metal dichalcogenides,19,20 and quantum wells
in narrow-gap semiconductors21,22 such as HgTe23,24 and
InAs/GaSb.25,26 These condensed-matter realizations of
2D Dirac electrons necessarily carry a two-valued fla-
vor degree of freedom27. Ring structures in single-
layer graphene have previously been studied by analytical
and numerical solution of continuum-model-based Dirac
equations28–34 and also numerical tight-binding calcula-
tions.32–36 The bound states in a ring conductor real-
ized in narrow-gap semiconductor quantum wells were
also considered.37,38 Very recently, a theoretical study of
quantum rings in MoS2 has been performed.39 Experi-
mental realizations have been achieved in HgTe/HgCdTe
quantum wells,40 graphene41–45 and MoS2.

46

In contrast to previous theoretical studies that have
largely focused on the specifics of various materials sys-

tems, we present a broadly applicable and systematic
description of the electronic structure and quantum-
interference effects in 2D-Dirac-electron quantum-ring
conductors based on a completely general subband-k · p
approach. We obtain an effective Hamiltonian for the az-
imuthal motion of ring-confined Dirac-like charge carriers
that provides deeper insight into characteristic features
of the electronic subband structure and allows to ex-
plore physical implications for quantum-transport effects.
Complementing existing work that has largely focused
on persistent currents in isolated Dirac rings28–32,38 or
studied transport through a particular Dirac-ring realiza-
tion numerically,34,35 we present analytic results for the
two-terminal conductance. In typical experiments40–45

and previous numerical studies,34,35 the entire structure
consisting of the ring conductor and external leads was
made out of the same material. This motivated us to dis-
cuss in detail the case of flavor-conserving scattering of
Dirac electrons at the ring-lead junctions. We identify a
purely confinement-induced contribution to the geomet-
ric phase, which turns out to have opposite sign for the
two flavors of 2D Dirac electrons propagating in the ring.
We use this observation to explore possible uses of ring
conductors as flavortronic devices.47

The remainder of this Article is organized as follows.
We start by introducing the generic model Hamiltonian
describing two-flavor 2D-Dirac electrons in a variety of
materials in Sec. II. The general subband-k·p description
of Dirac-electron rings is developed in Sec. III. As part of
the derivation, the radial hard-wall-confinement problem
for Dirac electrons is solved (Sec. III A) and an effective
Hamiltonian for the azimuthal motion of charge carriers
in the ring is obtained (Sec. III B). Armed with the un-
derstanding of Dirac-ring subband structure, Sec. IV dis-
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cusses how quantum-interference effects are exhibited in
the conductance through the ring. Our scattering-matrix
approach is introduced in Sec. IVA, and the fully general
two-terminal transmission function for a clean ring with
flavor-conserving scattering at the ring-lead junctions is
presented. Possible applications of Dirac rings as fla-
vortronics devices are explored in Sec. IVB. We summa-
rize our conclusions in Sec. V, and relevant mathematical
details are given in the Appendices.

II. TWO-FLAVOR 2D-DIRAC HAMILTONIAN

The motion of electrons in 2D materials is described
by an envelope-function Hamiltonian that can be written
in the generic two-flavor 2D-Dirac form48

H =

(

H(k) 0
0 H∗(−k)

)

≡
(

H(+) 0
0 H(−)

)

, (1a)

H(±) = ±γ (k± σ− + k∓ σ+) +
∆(k)

2
σ3 + ǫ(k)σ0 , (1b)

where σ± = (σ1 ± i σ2)/2 are ladder operators for the
eigenstates of the diagonal Pauli matrix σ3 that corre-
spond to the k = 0 conduction and valence-band states,
σ0 is the 2 × 2 identity matrix, and k± := kx ± i ky in
terms of Cartesian components of the in-plane wave vec-
tor k ≡ (kx, ky). The parameter γ characterizes the inter-
band coupling, and the gap and electron-hole-asymmetry
terms are of the general form

∆(k) = ∆0 +
2γ

k∆
k2 , (2a)

ǫ(k) = ǫ0 + ξ
γ

k∆
k2 , (2b)

with contributions quadratic in k arising generically due
to the influence of remote bands.21,49 The parameter k∆
is the wave-vector scale at which remote-band contribu-
tions ∝ k2 to the gap become comparable to the inter-
band coupling ∝ γk, and the dimensionless number ξ is a
measure of broken electron-hole symmetry. As ǫ0 consti-
tutes an irrelevant uniform shift in energy, we set ǫ0 = 0
for convenience. The values of parameters in the Hamil-
tonian (1b) for specific materials are given in Table I.
Systems with ∆0 > 0 are ordinary, i.e., nontopological,
insulators. In contrast, ∆0 < 0 signifies the band inver-
sion occurring in topological insulators.50

Switching to polar coordinates r = (r, ϕ), we take k ≡
i∇ to be an operator in real-space representation and
note the relation

k± = e±iϕ/2 (kr ± i kϕ) e
±iϕ/2 , (3)

with the Hermitian operators52

kr = −i
(

∂r +
1

2r

)

, (4a)

kϕ = −i ∂ϕ
r

. (4b)

As the Hamiltonians H(±) commute with total angular

momentum J
(±)
z = −i~σ0 ∂ϕ ± ~σ3/2, it is useful to

switch to a representation of diagonal J
(±)
z using the

transformation

U±(ϕ) = exp(∓i σ3 ϕ/2) . (5)

It is straightforward to obtain

H(τ) = Uτ (ϕ)
(

H(τ)
r +H(τ)

ϕ

)

U†τ (ϕ) , (6)

where τ = ± labels the two flavors of 2D-Dirac electrons,
and

H(τ)
r = τ γ kr σ1 +

∆0

2
σ3 +

γ

k∆
(σ3 + ξ σ0) k

2
r , (7a)

H(τ)
ϕ = γ kϕ σ2 +

γ

k∆
(σ3 + ξ σ0)

(

k2ϕ − τ σ3
kϕ
r

)

(7b)

describe their motion in radial and azimuthal coordi-
nates. The expressions (7) form the basis for our further
study of quantum states in ring conductors.

III. RING-CONFINED DIRAC ELECTRONS

We assume the ring structure to be defined by an axi-
ally symmetric mass confinement53

HV =

(

V (r)σ3 0

0 V (r)σ3

)

. (8)

Because of the axial symmetry of the potential V (r), the
2× 2 Schrödinger equations

[

H(τ) + V (r)σ3

]

|Ψ(τ)〉 = E |Ψ(τ)〉 (9a)

can be written as

Uτ (ϕ)
[

H(τ)
r +H(τ)

ϕ + V (r)σ3

]

U†τ (ϕ) |Ψ(τ)〉 = E |Ψ(τ)〉 ,
(9b)

motivating the separation Ansatz

|Ψ(τ)〉 = eilϕ Uτ (ϕ)
1√
2πr

|Φ(τ)
l 〉 , (10)

TABLE I. Parameters in the effective 2D-Dirac Hamiltonians
for electrons in some representative single-layer (SL) atomic
crystals and semiconductor quantum wells (QW).

γ (eVÅ) ∆0 (eV) k∆ (Å−1) ξ

SL graphenea 6.4 . 0.01 0.17 0.026

SL MoS2
b 3.0 1.7 0.91 0.89

HgTe/CdTe QWc 3.7 −0.020 0.053 0.74

InAs/GaSb QWd 0.37 −0.016 0.0056 0.088

a Refs. 18 and 51
b Ref. 20
c Ref. 50, p. 64 (HgTe well width: 7.0 nm)
d Ref. 50, p. 65 (InAs/GaSb well widths: 10 nm/10 nm)
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where we introduced the azimuthal quantum number
l. This transforms Eq. (9b) into the Schrödinger equa-
tion for a confined Dirac particle in one spatial dimen-
sion,21,54–57

[

H(τ)
1D + V (r)σ3 + V(τ)

l (r)
]

|Φ(τ)
l 〉 = E

(τ)
l |Φ(τ)

l 〉 , (11)

with

H(τ)
1D = −iτ γ σ1

d

dr
+

∆0

2
σ3−

γ

k∆
(σ3 + ξ σ0)

d2

dr2
(12a)

and the centrifugal-barrier contribution

V(τ)
l (r) = γ

l

r

{

σ2 +
1

k∆r
[l (σ3 + ξ σ0)− τ (σ0 + ξ σ3)]

}

.

(12b)
In the spirit of subband-k · p theory,58,59 we start by

considering Eq. (11) for l = 0,60

[

H(τ)
1D + V (r)σ3

]

|Φ(τ,n)
0 〉 = E

(τ,n)
0 |Φ(τ,n)

0 〉 , (13)

and then use the eigenstates |Φ(τ,n)
0 〉 as a new basis to

calculate the ring-subband dispersions E
(τ,n)
l . Here the

radial quantum number n = ±1,±2, . . . labels the ring

subbands with the usual convention E
(τ,n)
0 > E

(τ,n′)
0 for

n > n′. A general eigenstate with l 6= 0 is thus expressed
as a superposition of basis states,

|Φ(τ,n)
l 〉 =

∑

n′>0

(

a
(τ,n)
ln′ |Φ(τ,n′)

0 〉+ b
(τ,n)
ln′ |Φ(τ,−n′)

0 〉
)

,

(14)

with coefficients a
(τ,n)
ln′ and b

(τ,n)
ln′ that need to be deter-

mined by solving the eigenvalue equation

H
(τ)
l

















a
(τ,n)
l1

b
(τ,n)
l1

a
(τ,n)
l2

b
(τ,n)
l2
...

















= E
(τ,n)
l

















a
(τ,n)
l1

b
(τ,n)
l1

a
(τ,n)
l2

b
(τ,n)
l2
...

















, (15)

with the new Hamiltonian matrix

H
(τ)
l =













(

H
(τ)
l

)

1,1

(

H
(τ)
l

)

1,2
. . .

(

H
(τ)
l

)

2,1

(

H
(τ)
l

)

2,2
. . .

...
...

. . .













(16a)

whose 2× 2 sub-blocks are given by

(

H
(τ)
l

)

n,n′ =





E
(τ,n)
0 δnn′ +

〈

V(τ)
l (r)

〉(τ)

n,n′

〈

V(τ)
l (r)

〉(τ)

n,−n′

〈

V(τ)
l (r)

〉(τ)

−n,n′ E
(τ,−n)
0 δnn′ +

〈

V(τ)
l (r)

〉(τ)

−n,−n′



 . (16b)

Here 〈O〉(τ)n,n′ ≡ 〈Φ(τ,n)
0 |O|Φ(τ,n′)

0 〉 for any operatorO, and
δnn′ is the Kronecker symbol.
In the electron-hole-symmetric case (i.e., when ξ = 0),

the energy-reflection symmetry61

σ2

[

H(τ)
1D,ξ=0 + V (r)σ3

]

σ2 = −
[

H(τ)
1D,ξ=0 + V (r)σ3

]

(17)
holds, implying the relations

E
(τ,−n)
0,ξ=0 = −E(τ,n)

0,ξ=0 , (18a)

|Φ(τ,−n)
0,ξ=0 〉 = σ2 |Φ(τ,n)

0,ξ=0〉 . (18b)

As a result, all matrix elements in Eq. (16b) can then
be expressed in terms of matrix elements between eigen-
states for positive energies with labels n, n′ > 0,

〈O〉(τ)n,−n′

ξ=0−→ 〈Oσ2〉(τ)n,n′ , (19a)

〈O〉(τ)−n,n′

ξ=0−→ 〈σ2O〉(τ)n,n′ , (19b)

〈O〉(τ)−n,−n′

ξ=0−→ 〈σ2Oσ2〉(τ)n,n′ , (19c)

which simplifies further calculations.

In general, Eq. (15) can be solved only numerically. It
turns out, however, that a hierarchy of relative impor-
tance emerges among the 2×2 sub-blocks in Eq. (16a) in
the limit of narrow rings, which can be exploited to ob-
tain useful approximate analytical results. We develop
this approach in the following using the specific situa-
tion of a hard-wall confinement. As a first step, the l = 0
eigenstates are determined, as discussed in Sec. III A. We
then use these states as basis states for calculating the
l 6= 0 eigenstates of a hard-wall-confined ring structure
according to the procedure outlined formally in Eqs. (14)
and (15). Identification of the most important couplings
in Eq. (16a) then yields an effective model for the az-
imuthal motion of ring-confined two-flavor 2D-Dirac elec-
trons given in Sec. III B.
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A. Hard-wall-confined quantum ring: l = 0 states

To be specific, we now assume a hard-wall potential

V (r) =

{

0 for R− W
2 < r < R+ W

2

∞ elsewhere
, (20)

where W and R denote, respectively, the ring’s width
and average radius. We find the l = 0 eigenstates, i.e.,
solutions of Eq. (13), for this potential by forming a gen-

eral superposition of same-energy eigenstates of H(τ)
1D and

applying hard-wall boundary conditions at the inner and
outer ring radii. See Appendix A for details of the cal-
culation.
Figure 1 illustrates the dependence of the l = 0 ring

energies on the gap parameter ∆0, with the latter nor-
malized to the size-quantization energy EW = γ/W > 0.
Identical energies are obtained for the two series of bound
states distinguished by the flavor quantum number τ =
±. The n = ±1 subbands behave qualitatively differ-
ently from the other subbands (those having |n| > 1)
in that they can lie below the 2D-Dirac gap edges for
sufficiently negative values of ∆0, in which case they cor-
respond to hybridized quantum-spin-Hall edge states.63

In particular, the energy gap between the lowest conduc-
tion (n = +1) and valence (n = −1) subbands vanishes
in the limit −∆0 ≫ EW . As we will see below, the
low-energy electron dynamics in this limit turns out to
be ultrarelativistic, massless-1D-Dirac-like. In contrast,
subbands with |n| > 1 have gapped energy dispersions

n=1

n=−2
n=−3

n=−1

n=2
n=3

FIG. 1. Spectrum of l = 0 bound-state energies for a hard-
wall-confined ring structure as a function of the 2D-Dirac gap
parameter ∆0 measured in units of the size-quantization en-
ergy EW = γ/W . Solid (dashed) red, blue and black curves
correspond to subbands with n = 1, 2, and 3 (n = −1, −2,
and−3), respectively. The thin dotted green lines indicate the
position of the 2D-Dirac gap edges ±|∆0|/2. Except for ∆0,
band-structure parameters used in the calculation were fixed
at values applicable to a 7-nm HgTe quantum well,62 and we
set k∆W = 26.6. [For reference, the 7-nm HgTe quantum-well
gap satisfies ∆0/(2EW ) = −5.48.] All energy levels are two-
fold degenerate in the flavor degree of freedom distinguished
by τ = ±. The n = ±1 levels lying below the 2D-Dirac gap
edges constitute hybridized quantum-spin-Hall edge states.

that satisfy E
(τ,±n)
0 ≷ ±max{EW , |∆0|/2} and therefore

exhibit nonrelativistic, ordinary-Schrödinger-like behav-
ior in sufficiently narrow rings for any value of ∆0.

The situation simplifies considerably in the ordinary-
2D-Dirac limit where ∆(k) → ∆0 and ǫ(k) → 0. Firstly,
the subband energies for l = 0 become electron-hole-

symmetric; i.e., E
(τ,n)
0 = −E(τ,−n)

0 . Secondly, the bound-
state energies measured in units of EW have a universal
dependence on ∆0/(2EW ). Figure 2 shows pertinent re-
sults for the n = 1, 2 and 3 subband states. All energy
levels are again two-fold degenerate in the flavor quantum
number τ . The lowest-subband state becomes evanes-
cent56 for ∆0/2 < −EW , indicating that the system is
topological.50 The fact that the transition to the inverted
regime in the quantum-ring system occurs only for suffi-
ciently negative values of the 2D-Dirac gap ∆0 provides
another, particularly clean, example for how size quan-
tization generally competes with the band inversion in
topologically nontrivial systems.64,65

B. Effective Hamiltonian for the azimuthal motion

Having derived the basis states applicable to a hard-
wall quantum-ring confinement, the form of the Hamilto-
nian matrix (16a) can be analyzed in greater detail. The

diagonal 2 × 2 sub-blocks
(

H
(τ)
l

)

n,n
essentially represent

azimuthal dynamics involving only the two subbands la-
beled by ±n for fixed n > 0. In contrast, the off-diagonal

2× 2 sub-blocks
(

H
(τ)
l

)

n,n′ with n 6= n′ embody the cou-

pling between such pairs of subbands. Here we discuss
the particular form of both kinds of sub-blocks for hard-
wall-confined quantum rings.

n=1

n=3
n=2

FIG. 2. Spectrum of l = 0 bound-state energies for a
hard-wall-confined ring structure in the ordinary-Dirac limit
[∆(k) = ∆0 and ǫ(k) = 0] as a function of the 2D-Dirac gap
parameter ∆0 measured in units of the size-quantization en-
ergy EW = γ/W . Red, blue and black curves correspond to
subbands with n = 1, 2, and 3, respectively. The dotted lines
indicate E = |∆0|/2, revealing the evanescent character of the
lowest-energy state for ∆0/2 < −EW . All levels are two-fold
degenerate in the flavor quantum number τ .
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A detailed consideration (see Appendix B) motivates
the parameterization of diagonal sub-blocks in Eq. (16a)
for a hard-wall ring confinement in the general form of
a Hamiltonian governing azimuthal motion. It can be
written as the sum of two parts,

(

H
(τ)
l

)

n,n
=
(

K
(τ)
l

)

n,n
+
(

L
(τ)
l

)

n,n
, (21)

such that the part
(

K
(τ)
l

)

n,n
contains the most relevant

leading terms while corrections, e.g., due to electron-hole

asymmetry, are subsumed into
(

L
(τ)
l

)

n,n
. Making the

leading dependences on the ring aspect ratioW/R as well
as on 2D-Dirac flavor τ and electron-hole asymmetry ξ
explicit, we write

(

K
(τ)
l

)

n,n
= −EW

(

W

R

)2
K

(n)
0

2
τ l η0 + EW

W

R
K

(n)
1 l η1 +

1

2

[

E
(τ,n)
0 − E

(τ,−n)
0

]

η3 , (22a)

(

L
(τ)
l

)

n,n
=

{

1

2

[

E
(τ,n)
0 + E

(τ,−n)
0

]

+ EW

(

W

R

)2
[

ξ L
(n)
0A

k∆W
l2 − L

(n)
0B

k∆W
τ l

]}

η0

+EW

(

W

R

)2
{

L
(n)
3A

k∆W
l2 − L

(n)
3B

2
τ l

}

η3 . (22b)

Here ηj are Pauli matrices acting in the 2 × 2 subspace

where |Φ(τ,±n)
0 〉 are the basis states, i.e., these states cor-

respond to the eigenstates of η3 with eigenvalue ±1. The

dimensionless quantities K
(n)
j and L

(n)
j contain relevant

parameter dependencies and are given most generally in
terms of matrix elements as

K
(n)
0 = −τ

〈

σ2W/r
〉(τ)

n,n
+
〈

σ2W/r
〉(τ)

−n,−n
(W/R)2

, (23a)

K
(n)
1 =

〈

σ2W/r
〉(τ)

n,−n
W/R

, (23b)

L
(n)
0A =
〈

(σ3 + ξσ0)(W/r)
2
〉(τ)

n,n
+
〈

(σ3 + ξσ0)(W/r)
2
〉(τ)

−n,−n
2ξ(W/R)2

,

(23c)

L
(n)
0B =
〈

(σ0 + ξσ3)(W/r)
2
〉(τ)

n,n
+
〈

(σ0 + ξσ3)(W/r)
2
〉(τ)

−n,−n
2(W/R)2

,

(23d)

L
(n)
3A =
〈

(σ3 + ξσ0)(W/r)
2
〉(τ)

n,n
−
〈

(σ3 + ξσ0)(W/r)
2
〉(τ)

−n,−n
2(W/R)2

,

(23e)

L
(n)
3B = τ

〈

σ2W/r
〉(τ)

−n,−n −
〈

σ2W/r
〉(τ)

n,n

(W/R)2
+

〈

(σ0 + ξσ3)(W/r)
2
〉(τ)

n,n
−
〈

(σ0 + ξσ3)(W/r)
2
〉(τ)

−n,−n
(W/R)2

.

(23f)

More explicit expressions for these are available66 but, as
they are lengthy and unilluminating, we do not present
them here. One important feature is that all the func-
tions given in Eqs. (23a-f) remain finite in the limit
W/R → 0, i.e., the explicit factors W/R in Eqs. (22a)
and (22b) constitute the leading behavior in the limit of

narrow rings. The contribution
(

L
(τ)
l

)

n,n
vanishes in the

ordinary-Dirac case where ∆(k) → ∆0, ǫ(k) → 0, i.e.,
k∆W → ∞ and ξ → 0. In the same limit, and assuming
also a small ring aspect ratio W/R → 0, we obtain

K
(n)
0 → 1 + ∆0/(2EW )

[

E
(τ,n)
0 /EW

]2
+∆0/(2EW )

, (24a)

K
(n)
1 → 1 . (24b)

The universal dependence of the quantity K
(n)
0 on sys-

tem parameters in this limit is plotted for the three lowest
positive-energy subbands in Fig. 3, revealing a qualita-
tively different behavior of the n = 1 subband. In par-

ticular, K
(n)
0 for the higher subbands (i.e., for n > 1)

vanishes at the point ∆0/2 = −EW where the transition
between normal and topological ring-subband structure

occurs. The contrasting behavior ofK
(1)
0 is manifested in

its opposite monotonicity and absence of any sign change.

Understanding the behavior of K
(n)
0 is relevant because,

as discussed in greater detail in Sec. IV, this quantity de-
termines the confinement-induced geometric phase that
features prominently in the quantum-interference contri-
bution to the Dirac-ring conductance.

The expression given in Eq. (22a) constitutes the min-
imal complete model Hamiltonian governing azimuthal
motion in a Dirac-electron quantum-ring subband. It be-
comes accurate in the limit of small electron-hole asym-
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n=2

n=1

n=3

FIG. 3. Universal system-parameter dependence of the quan-

tity K
(n)
0 for the ordinary-Dirac case [∆(k) → ∆0, ǫ(k) → 0]

in the narrow-ring limit (W/R → 0) according to Eq. (24a).
The red (blue, black) curve shows the result for n = 1 (2, 3).
Note the qualitatively different behavior of the n = 1 sub-
band in the inverted regime where ∆0/2 < −EW . All curves

for K
(n)
0 with n > 1 cross at the point (−1, 0) and exhibit an

associated sign change.

metry ξ, yielding the approximate subband dispersions

E
(τ,±n)
l ≈ EW

{

−
(

W

R

)2
K

(n)
0

2
τ l

±

√

√

√

√

(

E
(τ,n)
0

EW

)2

+

(

W

R

)2

K
(n)
1

2
l2

}

. (25)

The terms ∝ η1 and ∝ η3 from Eq. (22a) are the
most familiar,28–30,33 as they constitute the expected one-
dimensional Dirac form. In particular, the ring confine-
ment induces an effective-gap contribution ∝ η3 that is
generally the largest term, even if the 2D material that
hosts the Dirac-ring structure has a vanishing band gap
(as is the case, e.g., for graphene). The only possible ex-
ception is the lowest (n = 1) subband deep in the inverted

regime when ∆0/2 ≪ −EW , as then E
(τ,1)
0 −E(τ,−1)

0 → 0.
See Figs. 1 and 2 for an illustration. The fact that the
size-quantization energy appears like a mass gap in the
ring subband energies was implicit in thorough treat-
ments of graphene rings31,32 but has sometimes been
overlooked in simplified models.28–30,33 The contribution
∝ η0 embodies the breaking of flavor symmetry due to
the ring confinement. For the case of graphene, where the
flavor degree of freedom corresponds to electrons from
the different valleys τK, this was discussed in Refs. 32
and 34. Note that, although the term ∝ η0 is nominally
higher-order in W/R than the term ∝ η1, both terms
contribute at the same order (quadratic in W/R) to the

energy dispersions [cf. Eq. (25)] for finite E
(τ,n)
0 −E(τ,−n)

0 .

The contributions collected in
(

L
(τ)
l

)

n,n
[cf. Eq. (22b)]

are sub-leading in the sense that they are proportional
to the electron-hole asymmetry ξ or suppressed by the
typically small factor 1/(k∆W ). However, in particu-
lar in systems with sizable electron-hole asymmetry as,

FIG. 4. Comparison of energy dispersions for subbands with
n = ±1,±2 and τ = + derived from effective Hamiltonians
Eq. (21) for individual subbands (dashed blue curves) and
the exact spectrum obtained by diagonalizing the full Hamil-
tonian matrix Eq. (16a) (solid red curves). Results shown
were calculated for a ring structure satisfying k∆W = 26.6
and W/R = 0.1, using band-structure parameters for a 7-nm
HgTe quantum well given in Ref. 62.

e.g., HgTe quantum wells, these contributions can be-
come important enough to necessitate their inclusion. In
contrast, the coupling between subspaces with different
|n| turns out to only marginally affect the low-lying sub-
band dispersions for realistic sets of materials parame-
ters. Figure 4 illustrates the high level of accuracy typ-
ically obtained by using only the effective Hamiltonian
of Eq. (21) to describe the azimuthal motion of Dirac
electrons in the ring structure. Exact and approximate
dispersions pertaining to the lowest pair of subbands are
seen to be virtually indistinguishable, while deviations
become visible for the higher ring subbands.

IV. CONDUCTANCE AND GEOMETRIC

PHASE FOR DIRAC-ELECTRON RINGS

To describe electric transport through a quantum ring
conductor realized using a 2D-Dirac material, we con-
sider a situation depicted schematically in Fig. 5. Elec-
trons are transmitted from a source lead 1 into a drain
lead 2 via the Dirac-ring eigenstates. The coupling of
lead modes ν to the eigenmodes of electrons in the ring
occurs at the T junctions. To keep the discussion simple,
we assume in the following that only the ring subband
with label n contributes to transport.67 The linear elec-
tric conductance G is determined by the transmission
functions Tν2←ν1(E) between source-lead and drain-lead
modes via68

G = G0

∑

ν1,ν2

Tν2←ν1(EL) . (26)

Here G0 ≡ g e2/(2π~) is the universal quantum of con-
ductance multiplied by a positive integer g counting the
degeneracy associated with degrees of freedom that do
not affect charge-carrier dynamics and are therefore not
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a’2ν

b1τ

b’1τ

c’1τ

c1τ

a’1ν

a1ν ϕ
1

2

FIG. 5. Electronic transport through a quantum-ring conduc-
tor. Leads are connected to the ring at two T junctions from
which charge carriers are incoming (outgoing) with amplitude
ajν (a′jν) in lead mode ν. Propagation in the ring occurs via
confined-Dirac-electron modes having fixed subband index n
and flavor τ = ±. We assume a clean ring, i.e., no scattering
to occur between modes except at the junctions.

included in the model Hamiltonian Eq. (1a),69 and EL is
the chemical potential in the leads.

The transmission function depends sensitively on de-
tails of the device structure, especially on how the leads
are coupled to the ring. Two basic physical scenarios
can be distinguished according to whether the ring is
(i) attached to leads that are made of the same mate-
rial as the ring, or (ii) attached to a different material
(generally via tunneling). Case (i) is more typical nowa-
days, as it is common to fabricate an entire mesoscopic-
conductor system out of a host material using one of
many available lithography techniques.70 In that case,
the same two-flavor 2D-Dirac dynamics governs charge-
carrier motion in the leads as well as the ring. On the
other hand, contact can also be made to a mesoscopic
ring structure using scanning-probe tips or other nano-
electronic connections, in which case the charge-carrier
dynamics in the leads can be very different from that in
the ring. Such case-(ii) scenarios can also be described
straightforwardly using the scattering approach to quan-
tum transport. However, as case (ii) is rather uncommon
for quantum-ring samples, we consider here only case (i).
In particular, given that the general goal in experiments
is to make good contacts between the ring and the leads,
we assume junctions between the ring and the attached
leads to be sufficiently adiabatic so that the flavor (τ)
degree of freedom is conserved. This general situation
also lends itself to exploring opportunities for flavortron-
ics , i.e., quantum-transport effects that capitalize on τ -
dependent charge-carrier dynamics. In the context of 2D
atomic crystals where τ corresponds to the valley degree
of freedom, this concept is generally refered to as val-

leytronics .71

In our formalism, we allow for the possibility of asym-
metric ring structures where the two T junctions with
external leads are not identical and/or are not placed di-
ametrically opposite from each other. The ring segments

connecting them are assumed to be sufficiently clean so
that scattering of charge carriers only occurs at the T
junctions. This is a physically realistic assumption as re-
cently fabricated mesoscopic structures of 2D-Dirac ma-
terials are ballistic.40,45

We proceed by presenting the derivation of the trans-
mission functions in Sec. IVA. Our results can be ap-
plied to identify features in the conductance that provide
direct measures for the peculiar electronic properties of
Dirac-electron rings. This is illustrated in greater detail
in Sec. IVB, together with implications for using quan-
tum ring conductors as flavor-filtering devices.

A. General transmission function for τ -conserving

ballistic ring structures

The procedure for determining the transmission func-
tions Tν2←ν1(E) through a ring conductor is based on two
fundamental ingredients.5,6 Firstly, the coupling between
lead states and ring states at fixed energy E is embod-
ied by the S matrix68 of each T junction.72,73 Secondly,
because we assume no scattering to occur in the ring seg-
ments connecting the leads, the quantum amplitudes of
ring states at different junctions are related simply by
the dynamical phases corresponding to propagation of
the ring eigenstates between them. These relationships
enable the algebraic elimination of ring-state amplitudes,
yielding an expression for the outgoing lead-2 amplitudes
a′2ν2 in terms of incoming lead-1 amplitudes a1ν1 and thus

the transmission functions Tν2←ν1(E) ≡ |a′2ν2/a1ν1 |2.
In our situation of interest, charge carriers having dif-

ferent flavor τ are transmitted through the combined
leads-and-ring structure completely in parallel. Scatter-
ing at the T junctions then occurs only between modes
with the same τ ,







a′jτ
b′jτ
c′jτ






= Sjτ







ajτ

bjτ

cjτ






, (27)

and we adopt the most general form for the S matrices,

Sjτ =









−
√

1− 2εjτ e
iψjτ

√
εjτ

√
εjτ

√
εjτ κjτ e

−iψjτ λjτ e
−iψjτ

√
εjτ λjτ e

−iψjτ κjτ e
−iψjτ









.

(28)
Here the parameters εjτ with 0 ≤ εjτ ≤ 1/2 are a mea-
sure for how strongly lead j is coupled to the ring via
mode τ , with εjτ = 1/2 (εjτ = 0) describing the extremal
situation of a fully transparent junction (a completely
isolated ring). Scattering of τ -flavor electrons between
the ring segments at junction j is described by reflection
amplitudes

κjτ = |κjτ | ei(φjτ+̺jτ ) (29a)
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and transmission amplitudes

λjτ = |λjτ | ei(φjτ−̺jτ ) . (29b)

The real but otherwise arbitrary phases ψjτ are associ-
ated with back-reflection into the leads. The canonical
expression for Sjτ given in Eq. (28) covers previously

considered special cases of purely real6,72 or symmetric-
beam-splitter74 T-junction S matrices, as well as the gen-
eral form given in Ref. 75. Unitarity of Sjτ imposes the
relations

1 = |κjτ |2 + |λjτ |2 + εjτ , (30a)

̺jτ =
sjτ
2

arccos

( −εjτ
2|κjτ | |λjτ |

)

, (30b)

φjτ = arctan

[∣

∣

∣

∣

|λjτ | − |κjτ |
|λjτ |+ |κjτ |

∣

∣

∣

∣

tan ̺jτ

]

, (30c)

with

sjτ =

{

sgn(|λjτ | − |κjτ |) if |κjτ | 6= |λjτ | ,
±1 otherwise .

(30d)

The relation between quantum amplitudes of ring
states at different junctions can be found from the
general form of a ring state |jτ ;ϕ〉 in mode τ em-
anating from junction j, which is a superposition of
counterclockwise-moving and clockwise-moving Dirac-
ring eigenstates |jτ ;ϕ〉±,

|jτ ;ϕ〉 = |jτ ;ϕ〉+ + |jτ ;ϕ〉− , (31a)

|jτ ;ϕ〉+ = c′jτ eil
(τ)
+ (ϕ−ϕj)

Uτ (ϕ− ϕj)√
2πr

|Φ(τ,n)

l
(τ)
+

〉 , (31b)

|jτ ;ϕ〉− = −b′jτ eil
(τ)
−

(ϕ−ϕj−2π) Uτ (ϕ− ϕj)√
2πr

|Φ(τ,n)

l
(τ)
−

〉 .

(31c)

Here ϕj denotes the location of lead j, with the conven-
tions −π ≤ ϕj < π and ϕ > ϕj . As shown in Fig. 5, the
counterclockwise (clockwise) outgoing mode at junction
j propagating in channel τ has amplitude c′jτ (b′jτ ). Due
to the ring geometry, the azimuthal angle ϕ for clockwise-
moving partial waves acquires a phase shift 2π with re-
spect to that for counterclockwise-moving partial waves.
We used the relation Uτ (ϕ − ϕj − 2π) = −Uτ (ϕ − ϕj)
in Eq. (31c). Given E, the azimuthal quantum numbers

l
(τ)
+ and l

(τ)
− are determined from the relation E = E

(τ,n)

l
(τ)
±

and, by definition, dE
(τ,n)
l /dl

∣

∣

l=l
(τ)
±

≷ 0. For the 2D-

Dirac-material ring conductors considered here, we have

l
(τ)
+ 6= −l(τ)− in general, but time-reversal symmetry man-
dates32

l
(τ)
± = −l(−τ)∓ . (32)

Assuming no scattering to occur within the ring segments
between the junctions and considering the situation with
ϕ2 > ϕ1, the form of |1τ ;ϕ2〉 (|2τ ;ϕ1 + 2π〉) determines
how the incoming amplitudes at junction 2 (1) depend
on the outgoing amplitudes of junction 1 (2) on the same
segment. Using a compact transfer-matrix notation, we
can write
(

c2τ
c′2τ

)

= ei(θτ−θ̄τ−π)
(

e−i(χ−χ̄) 0
0 ei(χ−χ̄)

)(

b′1τ
b1τ

)

,

(33a)

(

c1τ
c′1τ

)

= e−i(θτ+θ̄τ )
(

ei(χ+χ̄) 0
0 e−i(χ+χ̄)

)(

b′2τ
b2τ

)

,

(33b)

in terms of phases

θτ =
1

2

[

l
(τ)
+ + l

(τ)
−

]

(ϕ2 − ϕ1 − π) , (34a)

χ =
1

2

[

l
(τ)
+ − l

(τ)
−

]

(ϕ2 − ϕ1 − π) (34b)

that depend on the T-junction locations, and the purely
electronic-structure-determined phases

θ̄τ =
π

2

[

l
(τ)
+ + l

(τ)
−

]

, (35a)

χ̄ =
π

2

[

l
(τ)
+ − l

(τ)
−

]

(35b)

that are intrinsic measures of interference in the Dirac
ring. By construction, θτ and χ vanish for a symmetric
ring structure where ϕ2 − ϕ1 ≡ π, and Eq. (32) implies
that χ and χ̄ do not depend on τ whereas θ̄τ ≡ τ θ̄+.
The transmission function for the situation where scat-

tering at the junctions conserves τ can be written as
Tν2←ν1 ≡ Tτ δν1τδν2τ , with Tτ = |a′2τ/a1τ |2. A straight-
forward calculation yields the fully general result

Tτ
(

χ, χ̃τ , θ
(τ)
AA

)

=
4ε1τε2τ

[

cos2 χ sin2 χ̃τ cos2
(

θ
(τ)
AA/2

)

+ sin2 χ cos2 χ̃τ sin2
(

θ
(τ)
AA/2

)

]

∣

∣

∣|κ1τ ||κ2τ |ei(̺1τ+̺2τ ) cos(2χ) + |λ1τ ||λ2τ |e−i(̺1τ+̺2τ ) cos θ(τ)AA − Fτ (ω1τ + ω2τ , φ1τ + φ2τ , 2χ̃τ )
∣

∣

∣

2 ,

(36)
where

Fτ (ω, φ, 2χ̃) =
1

2

[

eiω +
√

(1− 2ε1τ )(1− 2ε2τ ) e
−iφ
]

cos(2χ̃)− i

2

[

eiω −
√

(1− 2ε1τ )(1− 2ε2τ ) e
−iφ
]

sin(2χ̃) , (37a)
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and

θ
(τ)
AA ≡ 2θ̄τ + π (37b)

is the generalized Berry,2 or Aharonov-Anandan,3 phase
for an individual τ -conserving transport channel in the
Dirac ring. We also used the abbreviations

χ̃τ = χ̄− 1

2
(ψ1τ + ψ2τ − φ1τ − φ2τ − ω1τ − ω2τ ) ,

(37c)

ωjτ = arg(λjτ − κjτ )− φjτ , (37d)

≡ arctan

[∣

∣

∣

∣

|λjτ |+ |κjτ |
|λjτ | − |κjτ |

∣

∣

∣

∣

tan ̺jτ

]

. (37e)

Among the interesting insights that can be gleaned
from Eq. (36) are, firstly, that the phase θτ does not
appear at all in the expression for Tτ and, secondly, that
nonuniversal scattering phases due to the coupling to
leads only enter via χ̃τ . In the limit χ = 0 and ̺jτ = π/2,
our result Eq. (36) has the form found previously in Ref. 6
for the transmission through a symmetric quantum-ring
geometry with real S matrices used to describe the T
junctions, and the dependence on χ is consistent with
previously considered cases76,77 of quantum rings with
arbitrary location of lead-attachment points.

B. Dirac-ring conductance and τ filtering

For our case of interest where the τ degree of freedom is
conserved, we can construct two transport-related quan-
tities of interest. One is the total electric conductance,

G = G0

∑

τ=±
Tτ , (38)

and the other is the τ -polarization of the conductance,

Pτ =
Tτ − T−τ
Tτ + T−τ

. (39)

In principle, the fully general Eq. (36) for the transmis-
sion function Tτ contains all possible τ -dependent effects
arising from the coupling to the leads via T junctions,
as well as those due to the special features of the Dirac-
ring subband structure. In the following, we will focus
on discussing the latter and therefore assume that the
T-junction parameters are the same for both τ = ±.
To further simplify the discussion, we will consider the
case of leads being attached exactly opposite each other
(ϕ2 − ϕ1 = π), i.e., χ ≡ 0. Thus the only remaining
τ -dependent quantity is the phase θ̄τ , and we set χ̃τ ≡ χ̃
from now on. It is then instructive to apply the approx-
imate expression Eq. (25) for the nth ring-subband dis-

persion to determine l
(τ)
± and, via Eqs. (35a) and (35b),

the phases θ̄τ and χ̄. Considering the case of a narrow

ring (W/R ≪ 1) and EL − E
(τ,n)
0 ≪ E

(τ,n)
0 , we find

θ̄τ = τ
π

2

E
(τ,n)
0

EW

K
(n)
0

(

K
(n)
1

)2 , (40a)

χ̄ =
π

K
(n)
1

√

2E
(τ,n)
0

EW

√

EL − E
(τ,n)
0

EW (W/R)2
. (40b)

Interestingly, θ̄τ ≡ τ θ̄+ turns out to be determined
solely by the Dirac-ring subband structure. As an illus-
tration, Fig. 6 shows a plot of 2θ̄+ that has been cal-
culated from Eq. (40a) for the three lowest subbands
in the ordinary 2D-Dirac limit where ∆(k) = ∆0 and
ǫ(k) = 0. The properties of the curves representing indi-
vidual subbands can be traced back directly to the behav-

ior of the quantities E
(τ,n)
0 and K

(n)
0 for these subbands

that are shown in Figs. 2 and 3, respectively. For ex-
ample, the confinement-induced geometric phase θ̄τ van-
ishes for all subbands with n > 1 when ∆0/2 = −EW
whereas the contribution of the lowest (n = 1) remains
finite. Furthermore, while the higher subbands recover
the ordinary-Schrödinger-electron limit |2θ+| ≈ π when
|∆0| ≫ EW both in the normal and topological (i.e.,
inverted-band) regimes, the geometric phase of the lowest
subband approaches the massless-2D-Dirac limit 2θ+ = 0
deep in the topological regime.
In contrast to θ̄τ , χ̄ (and thus also χ̃τ ≡ χ̃ here) has

a strong dependence on the chemical potential EL in
the leads. Given that χ̃ is renormalized by nonuniversal
phase shifts associated with scattering at the T junctions
[see Eq. (37c)], features exhibited in the energy depen-
dence of the transmission function will generally be quite
sample-specific — even if the T-junction S -matrix pa-

n=1

n=3

n=2

FIG. 6. Electronic-structure-related contribution 2θ̄+ to a
Dirac ring’s intrinsic Aharonov-Anandan phase that is asso-
ciated with the τ = + transport channel. The figure shows
this phase for the subband with n = 1 (2, 3) as the red (blue,
black) curve for a narrow-ring structure in the ordinary-Dirac
limit where ∆(k) = ∆0 and ǫ(k) = 0 (corresponding, e.g., to
single-layer graphene). Note the qualitatively different be-
havior of the n = 1 subband for which 2θ̄+ ≈ 0 deep in the
inverted regime, whereas |2θ̄+| ≈ π when |∆0| ≫ EW for the
higher subbands.
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rameters vary only weakly in the experimentally relevant
range of energy.
In addition to adjusting the chemical potential in the

leads, application of a perpendicular magnetic field B

can also be used as an experimentally accessible knob
to manipulate transport through a ring conductor via
Aharonov-Bohm interference.4–6,32 Formally, the effect
of finite B ≡ ∇ × A in a sufficiently narrow ring can
be modeled by introducing an infinitesimally thin tube
of magnetic flux ψ piercing the ring plane at its origin
via the vector potential A = [ψ/(2πr)] ϕ̂. Making the
required substitutions H(±)(k) → H(±)(k + 2πA/ψ0)
in Eq. (1a), with ψ0 denoting the magnetic flux quan-
tum, translates into the changes kϕ → kϕ+ψ/(ψ0r) and

V(τ)
l (r) → V(τ)

l+ψ/ψ0
(r). Thus the effect of the magnetic

flux is to rigidly shift the quantum-ring dispersions in l
by the amount ψ/ψ0, with the only ramification for the
transmission function Eq. (36) being that the Aharonov-
Anandan phase becomes flux-dependent,

θ
(τ)
AA ≡ θ

(τ)
AA(ψ) = 2θ̄τ + 2π

(

1

2
− ψ

ψ0

)

, (41)

resulting in a ψ0-periodic modulation of the conductance
as a function of flux ψ.5,6 As θ̄τ is robust with respect
to changes in the leads’ chemical potential and details of
the ring-lead junction morphology, it will be possible to
measure its magnitude via the magnetic-field dependence
of the conductance. In particular, it will be interesting to
map the transition from the nonrelativistic, Schrödinger-
like regime ∆0 ≫ EW (where 2θ̄+ ≈ π) to the ultrarela-
tivistic, Dirac-like regime −∆0 ≫ EW (where 2θ̄+ ≈ 0)
exhibited by the n = 1 subband (cf. Fig. 6). In con-
trast, the higher subbands show nonrelativistic behavior
whenever |∆0| ≫ EW , regardless of the existence of band
inversion.
To illustrate more directly how these distinctive ring-

subband properties are manifested in the two-terminal
conductance, we consider the situation with fully trans-
parent T junctions, which is realized for εjτ ≡ 1/2. As
concomitantly ̺jτ = ±π/2, φjτ = 0, ωjτ = ±π/2, and
keeping with the current assumption of a symmetric ring
structure where χ = 0 and also χ̃jτ ≡ χ̃, Eq. (36) spe-
cializes to

T (tr)
τ

(

χ̃, θ
(τ)
AA

)

=

2 sin2 χ̃
(

1 + cos θ
(τ)
AA

)

(

1
2

[

1 + cos θ
(τ)
AA

]

− cos(2χ̃)
)2

+ sin2(2χ̃)

. (42)

For the purpose of the present discussion, we fix sin2 χ̃ =
1 for simplicity. Figure 7 shows a density plot of the two-
terminal conductance through an ordinary-2D-Dirac ring
that could be realized, e.g., in graphene, as a function
of applied magnetic flux and the quantity ∆0/(2EW ).
Results are shown for two cases corresponding to situ-
ations where transport occurs via states in the lowest
(n = 1) and first excited (n = 2) ring subband, respec-
tively. The characteristic dependence of the geometric

phase on ring-structure parameters is clearly exhibited
in the interference-fringe pattern of the conductance. In
particular, massless-Dirac (ordinary-Schrödinger) behav-
ior is manifested here by conductance minima occurring
for integer (half-integer) values of ψ/ψ0. The pattern
seen for the n = 1 subband shows very clearly a tran-
sition between these two limiting regimes. In contrast,
the n = 2 subband (like all other higher-|n| subbands)
exhibits an interference pattern indicative of massless-
Dirac behavior only in a narrow region around the point
where ∆0/2 = −EW , which is a direct consequence of the

vanishing K
(n)
0 for n > 1 at this special point where the

transition between normal and topological ring-subband

FIG. 7. Two-terminal conductance G through a ring real-
ized in a material where charge-carrier dynamics mimics that
of ordinary 2D-Dirac electrons [∆(k) = ∆0, ǫ(k) = 0] con-
tacted to leads via fully transparent T junctions. The density
plots show G in units of G0 ≡ g e2/(2π~) as a function of
magnetic flux ψ in units of the flux quantum ψ0 ≡ 2π~/e and
the parameter combination ∆0/(2EW ) characterizing the ring
confinement. Results in panel (a) [(b)] were calculated using
Eq. (42) for the situation where transport occurs through the
n = 1 [n = 2] subband and assuming sin2 χ̃ = 1.
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P +
G

/(
2G

  ) 0

P+
εj± = 0.5,
2θ  = 0.4π+
−

G

P +
G

/(
2G

  ) 0

P+
εj± = 0.2,
2θ  = 0.4π+
−

G

P +
G

/(
2G

  ) 0

P+
εj± = 0.5,
2θ  = 0.7π+
−

G

P +
G

/(
2G

  ) 0
P+

εj± = 0.2,
2θ  = 0.7π+
−

G

FIG. 8. Dependence of the conductance G/(2G0)(black solid
curves) and τ polarization P+ (red dashed curves) on mag-
netic flux ψ for a symmetric ring structure where T-junction
S matrices are assumed to be real as, e.g., in Ref. 6. Here
ψ0 denotes the quantum of magnetic flux. Other parameters
used in the calculation are sin2 χ̃± = 1, sj± = 1 (j = 1, 2),
and εj± = 0.5 [0.2, 0.5, 0.2], 2θ̄+ = 0.4 π [0.4 π, 0.7 π, 0.7 π]
for panel (a) [(b), (c), (d)].

structures occurs (cf. Fig. 3). For the subband n = 1
and ∆0 = 0, the oscillations of the ring conductance cal-
culated here as a function of magnetic flux agree with
numerical results presented in Ref. 34 for graphene rings
in the one-mode regime.
Before concluding, we explore the dependence of Dirac-

ring interference and flavor filtering on the transparency
of the T junctions connecting the ring to external leads.
Two special cases are considered according to whether T
junctions are described by real S matrices as in Ref. 6 or
beam-splitter-type S matrices as in Ref. 74.
Real S matrices describing the ring-lead coupling are

obtained from the general expression Eq. (28) by set-
ting ̺jτ = π/2 and ψjτ = 0 or π. With the additional
assumptions χ = 0 and εjτ ≡ ε for a symmetric ring

structure, as well as sin2 χ̃τ = 1 for simplicity, the trans-
mission function from Eq. (36) specializes to

T (re)
τ

(

θ
(τ)
AA

)

=
2ε2
(

1 + cos θ
(τ)
AA

)

[

(
√
1−2ε+1)2

4

(

1 + cos θ
(τ)
AA

)

+ (
√
1−2ε−1)2

2

]2 .

(43)
The magnetic-flux dependence of the total Dirac-ring
conductance G as well as the flavor (τ) polarization
P+ ≡ −P− for this situation is illustrated in Fig. 8 for
particular parameter values, including examples for fully
transparent T junctions (ε = 0.5) and more weakly cou-
pled leads (ε = 0.2). In this case, interference-related
minima inG generally coincide with maxima of |P+|. The
flux values at which these features occur can be shifted
by tuning the confinement-related Aharonov-Anandan
angle θ̄+. Reduced transparency of the contacts with
leads results in a precipitous narrowing of their flux-
dependence line shape into resonances that are indicative
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2θ  = 0.4π+
−

G
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G

FIG. 9. Dependence of the conductance G/(2G0)(black solid
curves) and τ polarization P+ (red dashed curves) on mag-
netic flux ψ (measured in units of the magnetic flux quantum
ψ0) for a symmetric ring structure with beam-splitter-type
T-junction S matrices as given, e.g., in Ref. 74. Other pa-
rameters used in the calculation are sin2 χ̃± = 1, sj± = 1
(j = 1, 2), and εj± = 0.5 [0.2, 0.5, 0.2], 2θ̄+ = 0.4 π [0.4 π,
0.7 π, 0.7 π] for panel (a) [(b), (c), (d)].

of the isolated-ring bound-state energies.6

A T junction acting as a beam splitter is described by
an S matrix of the form given in Eq. (28) where |κjτ | =
|λjτ | ≡

√

(1− εjτ )/2. Assuming again χ = 0, εjτ ≡ ε,

and sin2 χ̃τ = 1, Eq. (36) yields

T (bs)
τ

(

θ
(τ)
AA

)

=

2ε2
(

1 + cos θ
(τ)
AA

)

ε2
{

1
2

[

1 + cos θ
(τ)
AA

]

+ 1
}2

+ 1−2ε
4

[

1− cos θ
(τ)
AA

]2
.

(44)

Figure 9 shows the magnetic-flux dependence of G and
P+ for this case, using the same values for other param-
eters as we did for the case of real T-junction S matrices
in Fig. 8. Note that, for fully transparent T junctions
(ǫjτ = 1/2), the cases of real and beam-splitter-type S
matrices yield identical results, as is visible from the di-
rect comparison of Figs. 8(a,c) with Figs. 9(a,c). In con-
trast, for a ring that is weakly connected to leads, the dif-
ferent T-junction types are associated with very different
behavior. Unlike the situation with real S matrices, the
magnitude of the flavor (τ) polarization of the current is
close to unity over a significant range of values for the
magnetic flux ψ in the configuration with beam-splitter
T junctions. Also in contrast to the real-S -matrix case,
the range of flux values for maximum valley polariza-
tions coincides with sizable values of total conductance
G. The general location of valley-polarization maxima
remains tunable overall by adjusting θ̄+, but their flux
dependence does not exhibit a narrow resonance-like line
shape. Quantum-ring structures where T junctions are
of beam-splitter type thus lend themselves for use as very
effective Dirac-electron-flavor filters.
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V. CONCLUSIONS

We have developed a general framework for describ-
ing theoretically both the radial quantum confinement
and the azimuthal motion of 2D-Dirac-like charge carri-
ers in ring conductors. The formalism applies to a wide
range of 2D materials, including narrow-gap semiconduc-
tor quantum wells as well as few-atom-thick crystals, and
also covers situations with band inversion. We present
a generally valid effective model for the azimuthal mo-
tion that illuminates a number of interesting features
of the Dirac-quantum-ring subband structure and also
yields quantitative expressions for corresponding magni-
tudes. One such interesting feature is the dependence
of subband dispersions on the flavor degree of freedom
carried by 2D-Dirac-like charge carriers. Another is the
competition between size quantization and band inver-
sion that shifts the topological regime for the quantum-
ring system to values of the 2D-Dirac gap ∆0 that need
to satisfy ∆0/2 < −γ/W in terms of the ring width W
and 2D-Dirac-electron Fermi velocity γ/~. A massless-
Dirac-like dispersion can occur for ring-confined charge
carriers from the lowest pair of conduction and valence
subbands in the limit of large negative 2D-Dirac gap,
i.e., when ∆0 < 0 and |∆0| ≫ 2γ/W . More generically,
size-quantization effects ensure that the subband disper-
sions are gapped, even for the lowest subband, and even
when the 2D-Dirac gap vanishes as is the case, e.g., in
graphene.
We have used the insight gained from calculated Dirac-

ring subband dispersions and eigenstates to investigate
quantum-interference effects in the two-terminal conduc-
tance. Our analysis is based on the scattering-matrix
approach and carefully incorporates effects arising from
the coupling to external leads. We obtain a fully gen-
eral expression for the transmission function [Eq. (36)]
for the case where T junctions with the leads conserve
the charge carriers’ flavor degree of freedom and motion
in the ring segments between the leads is ballistic. Our
consideration of this situation is motivated by the recent
realization of ballistic ring structures in 2D-Dirac mate-
rials.40,45 Properties of the Dirac-ring subband structure
turn out to uniquely influence the flavor-dependent geo-

metric (Berry, Aharonov-Anandan) phase θ
(τ)
AA, which is

also dependent on magnetic flux ψ [as per Eq. (41)] but
otherwise entirely robust against nonuniversal, hard-to-
determine experimentally, details such as shifts in quan-
tum phases associated with the T junctions and the Fermi
energy in the leads. Distinctive interference patterns
emerge in the two-terminal conductance that manifest
unique properties of quantum-ring subbands, including
the transition between massless-Dirac and Schrödinger-
like behavior for the lowest one. In addition, the de-
pendence of interference effects on the charge carriers’
flavor degree of freedom enables use of quantum rings
as tunable flavor-filter devices. As one of the most rel-
evant possible sources of nonuniversal effects in experi-
ments, we considered variations in the design of T junc-

tions between the ring and external leads, including their
reduced transparency. Such insight is particularly useful
to inform proper analysis of features associated with the
crossover between Dirac-like and Schrödinger-like behav-
ior expected for the lowest (n = ±1) ring subbands.
Results presented here could be further applied, or

suitably generalized, to study transport through Dirac-
ring conductors that are tunnel-coupled to leads and
therefore do not conserve the charge carriers’ flavor de-
gree of freedom. The effect of disorder scattering in ring
segments connecting the leads could similarly be inves-
tigated. As the recently noted78 remarkable robustness
of persistent currents in Dirac rings against disorder was
attributed to special properties of the lowest ring sub-
band, we expect our two-terminal transport results to be
similarly robust.
The formalism employed in our work provides a new

tool for investigating more broadly the effect of quan-
tum confinement on particles whose dynamics is gov-
erned by a Dirac equation. It could be usefully applied
to related effective-model descriptions of charge carri-
ers in semi-metallic systems such as Weyl79 and nodal-
line80 semimetals, opening up new possibilities to explore
quantum-transport effects in these, and similar, topologi-
cal materials. Another interesting avenue for future stud-
ies expanding on our approach is Dirac-electron physics
in hybrid structures. Situations of this type have been
considered before in tight-binding transport calculations
for graphene rings with superconducting leads81 or sub-
ject to electrostatic potentials.82
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Appendix A: Determination of hard-wall-confined

quantum-ring bound states with l = 0

To simplify the notation, we introduce the dimension-
less quantities k̃ = k/k∆, Ẽ ≡ E/(γk∆), and ∆̃0 =
∆0/(γk∆). The energy eigenvalues and corresponding

(non-normalized) eigenstates of the Hamiltonian H(τ)
1D

can then be expressed as

Ẽk± = ξ k̃2 ±

√

k̃4 +
(

∆̃0 + 1
)

k̃2 +
∆̃2

0

4
, (A1a)

Φ
(τ)
k±(r) =

(

1
±τ sgn(k) γk±

)

eikr , (A1b)
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with the abbreviation

γk± =

√

Ẽk± − (∆̃0/2)− (1 + ξ)k̃2

Ẽk± + (∆̃0/2) + (1 − ξ)k̃2
. (A1c)

Solutions of the confinement problem (13) with a hard-
wall potential (20) are found by forming a general super-

position of the possible eigenstates of H(τ)
1D with given

energy Ẽ and imposing hard-wall boundary conditions.
Focusing initially on |Ẽ| ≥ |∆̃0|/2, four wave numbers are

obtained as roots of the equation Ẽk± = Ẽ. Two of them

are real and given by ±k̃, the other two are imaginary
and given by ±iq̃. We find the explicit expressions83

k̃ =





√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1 − ξ2)(4Ẽ2 − ∆̃2
0)− (1 + ∆̃0 + 2ξ Ẽ)

2(1− ξ2)





1
2

, (A2a)

q̃ =





√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1 − ξ2)(4Ẽ2 − ∆̃2
0) + 1 + ∆̃0 + 2ξ Ẽ

2(1− ξ2)





1
2

. (A2b)

The full Ansatz for the bound-state wave function is

Φ
(τ,n)
0 (r) = c

(τ,n)
1k

(

1
τ γk

)

eikr + c
(τ,n)
2k

(

1
−τ γk

)

e−ikr + c
(τ,n)
1q

(

γ̄q
−iτ

)

e−qr + c
(τ,n)
2q

(

γ̄q
iτ

)

eqr , (A3)

with the parameters

γk = sgn(Ẽ)

√

1 + ξ

1− ξ





2Ẽ + ξ ∆̃0 −
√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0) + 1

2Ẽ + ξ ∆̃0 +
√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0)− 1





1
2

, (A4a)

γ̄q =

√

1− ξ

1 + ξ





√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0) + 1− 2Ẽ − ξ ∆̃0

√

(1 + ∆̃0 + 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0) + 1 + 2Ẽ + ξ ∆̃0





1
2

. (A4b)

The secular equation obtained from imposing hard-wall

boundary conditions Φ
(τ,n)
0 (R ±W/2) = 0 at the inner

and outer ring radii is similar to those found in related
bound-state problems.21,38 It can be written in the con-
cise form

γk γ̄q =

{

tanh(qW/2) cot(kW/2) case a ,

− coth(qW/2) tan(kW/2) case b ,
(A5)

where case ν = a (ν = b) yields solutions with even

(odd) parity associated with eigenvalues E
(τ,nν)
0 . The

corresponding eigenstates can be written as

Φ
(τ,nν)
0 (r) = Φ

(τ,nν)
D (r) + Φ

(τ,nν)
B (r) , (A6)

where the contribution labeled D has the form of a
standing-wave state for a Dirac particle,57 and the part
labeled B is an evanescent correction that incorporates
the remote-band contributions.21 More explicitly, we find

Φ
(τ,na)
D (r) = Nna

(

cos [kna(r −R)]

τ γkna
i sin [kna(r −R)]

)

, (A7a)

Φ
(τ,na)
B (r) = −Nna γkna

sin(knaW/2)

sinh(qnaW/2)

×
(

γ̄qna
cosh [qna(r −R)]

τ i sinh [qna(r −R)]

)

, (A7b)

Φ
(τ,nb)
D (r) = Nnb

(

sin [knb
(r −R)]

−τ γknb
i cos [knb

(r −R)]

)

,(A7c)

Φ
(τ,nb)
B (r) = Nnb

γknb

cos(knb
W/2)

cosh(qnb
W/2)

×
(

γ̄qnb
cosh [qnb

(r −R)]

τ i sinh [qnb
(r −R)]

)

, (A7d)

where the Nnν
denote normalization factors.

Previous results21,54–57 for Dirac particles with hard-
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LHS Eq. (A.12), (A.15)
RHS Eq. (A.12), (A.15), case a
RHS Eq. (A.12), (A.15), case b

Wc+< W Wc+W =

c−W Wc+< W < Wc−W <

FIG. 10. Ring-confined Dirac-particle states with l = 0 re-
lated to quantum-spin-Hall edge states. (a) Two bound states
with energy inside the gap exist for sufficiently large widths
Wc+ < W . (b) WhenW =Wc+, one of these states is pushed
through the top of the gap. (c) For Wc− < W < Wc+, only
one bound-state energy is still within the gap. (d) No bound
states exist within the gap for W < Wc−. In all panels (a) to
(d), the LHS expression of the secular equation (A12) [(A5)]

is represented by the green curve in the region |Ẽ| < ∆̃0/2

[|Ẽ| > ∆̃0/2], while the RHS for case a (case b) is plotted as

the orange (blue) curve. Parameters used are ∆̃0 = −0.412,
ξ = 0.746 (corresponding to a 7-nm HgTe quantum well62),
and k∆W = 20, 13.4, 8, 2.3.

wall mass confinement are reproduced in the limit

∆(k) → ∆0 and ǫ(k) → 0, which is achieved by tak-
ing k∆ → ∞ and ξ → 0 in all relevant expressions84.
In the process, we have q → ∞, k →

√

4E2 −∆2
0/(2γ),

γk → sgn(E)
√

(2E −∆0)/(2E +∆0), and γ̄q → 1. As a
result, the secular equation (A5) simplifies to21

γk =

{

cot(kW/2) case a ,

− tan(kW/2) case b ,
(A8)

eigenstates are purely of the Dirac-standing-wave form

Φ
(τ,nν)
0 (r) → Φ

(τ,nν)
D (r), and the normalization factors

are given by

Nnν
=

1√
W







E
(τ,nν)
0

(

2E
(τ,nν)
0 +∆0

)

2
(

E
(τ,nν)
0

)2

+ EW ∆0







1
2

, (A9)

where EW ≡ γ/W is the energy scale associated with
size quantization for the confined Dirac particles.

So far, we have considered bound states of ring-
confined Dirac particles that are typical standing waves,
i.e., are extended in radial direction across the ring. How-
ever, it is well-known that the presence of a band inver-
sion (signified within our model by ∆0 < 0) gives rise
to topologically protected states localized at the system
boundaries,22,63,85,86 which should also appear in our sit-
uation of interest.38 In fact, our Ansatz (A3) applies to

energies |Ẽ| < |∆̃0|/2 if the replacements

k ≡ ik̄ and γk ≡ i γ̄k̄ , (A10)

are made, with the real quantities87

˜̄k =





1 + ∆̃0 − 2ξ Ẽ −
√

(1 + ∆̃0 − 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0)

2(1− ξ2)





1
2

, (A11a)

γ̄k̄ = sgn(∆̃0)

√

1− ξ

1 + ξ





√

(1 + ∆̃0 − 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0)− 1− 2Ẽ + ξ ∆̃0

√

(1 + ∆̃0 − 2ξ Ẽ)2 + (1− ξ2)(4Ẽ2 − ∆̃2
0)− 1 + 2Ẽ − ξ ∆̃0





1
2

. (A11b)

The secular equation for |Ẽ| < |∆̃0|/2 then reads63

− γ̄k̄ γ̄q =

{

tanh(qW/2) coth(k̄W/2) case a ,

coth(qW/2) tanh(k̄W/2) case b .
(A12)

Corresponding eigenstates for the in-gap bound states are
obtained by using the expressions from Eq. (A10) in the
wave functions shown in Eqs. (A7a-d). Because of the
positivity of its RHS, solutions of Eq. (A12) exist only
for ∆0 < 0, and there can be at most one solution for

each case a and b. Figure 10 illustrates the regimes for
which two, one, or no bound states have energies within
the gap, assuming materials parameters for a 7-nm HgTe
quantum well. The boundaries between these regimes
in parameter space can be associated with critical ring
widthsWc±. We find analytical expressions in the typical
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situation where qW ≫ 1;

Wc± = lim
E→∓∆0

2

{

2

k̄
arcoth

(

[γ̄k̄ γ̄q]
±1
)

}

, (A13a)

≡ 2

|∆̃0|

[

1∓ ξ

(1± ξ)[1 + (1 ± ξ)∆̃0]

]
1
2

k−1∆ . (A13b)

The critical ring widths arise due to the fact that the
size-quantization energy reduces the magnitude of the
negative (topological) gap parameter, thereby driving a
transition from the topological into the normal regime for
the ring band structure that is analogous to similar tran-
sitions in higher-dimensional systems.23,64,65 Note also
that, in the limit W → ∞, the secular equations (A12)

read γ̄k̄ γ̄q = −1, which has the solution63,88 Ẽ = ξ ∆̃0/2.

Appendix B: Derivation of the effective Dirac-ring

Hamiltonian in the l = 0-bound-state basis

The azimuthal motion of ring-confined Dirac particles
is described by Eq. (16a). Here we analyze the structure
of its 2× 2 sub-block matrices (16b).
The diagonal blocks having n = n′ are Hermitian ma-

trices and can therefore be written as a superposition of
Pauli matrices ηj that are acting in the 2 × 2 subspace

spanned by l = 0 eigenstates |Φ(τ,±n)
0 〉,

(

H
(τ)
l

)

n,n
=

3
∑

j=0

Γ
(τ,n)
j (l) ηj . (B1)

The most general expression for the coefficients Γ
(τ,n)
lj are

Γ
(τ,n)
0 (l) =

1

2

(

E
(τ,n)
0 + E

(τ,−n)
0

+
〈

V(τ)
l (r)

〉(τ)

n,n
+
〈

V(τ)
l (r)

〉(τ)

−n,−n

)

,(B2a)

Γ
(τ,n)
1 (l) = ℜe

{

〈

V(τ)
l (r)

〉(τ)

n,−n

}

, (B2b)

Γ
(τ,n)
2 (l) = −ℑm

{

〈

V(τ)
l (r)

〉(τ)

n,−n

}

, (B2c)

Γ
(τ,n)
3 (l) =

1

2

(

E
(τ,n)
0 − E

(τ,−n)
0

+
〈

V(τ)
l (r)

〉(τ)

n,n
−
〈

V(τ)
l (r)

〉(τ)

−n,−n

)

.(B2d)

These expressions simplify considerably in the electron-
hole-symmetric situation ξ = 0;

Γ
(τ,n)
0,ξ=0(l) = γ l

[

〈

σ2/r
〉(τ)

n,n
− τ

〈

σ0/(k∆r
2)
〉(τ)

n,n

]

,(B3a)

Γ
(τ,n)
1,ξ=0(l) = γ l

[

〈

σ0/r
〉(τ)

n,n
− τ

〈

σ2/(k∆r
2)
〉(τ)

n,n

]

,(B3b)

Γ
(τ,n)
2,ξ=0(l) = γ l2

〈

σ1/(k∆r
2)
〉(τ)

n,n
, (B3c)

Γ
(τ,n)
3,ξ=0(l) = E

(τ,n)
0,ξ=0 + γ l2

〈

σ3/(k∆r
2)
〉(τ)

n,n

}

. (B3d)

Treating the electron-hole-asymmetry contribution ∝
ξ in V(τ)

l (r) perturbatively, one can approximate

Γ
(τ,n)
j (l) ≈ Γ

(τ,n)
j,ξ=0(l) + δΓ

(τ,n)
j (l), with corrections given

to first order in small ξ by

δΓ
(τ,n)
0 (l) = ξ

(

∂E
(τ,n)
0 /∂ξ

)

ξ=0
+ ξ γ l2

〈

σ0/(k∆r
2)
〉(τ)

n,n
,

(B4a)

δΓ
(τ,n)
1 (l) = ξ γ l2

〈

σ2/(k∆r
2)
〉(τ)

n,n
, (B4b)

δΓ
(τ,n)
2 (l) = ξ γ (−τ) l

〈

σ1/(k∆r
2)
〉(τ)

n,n
, (B4c)

δΓ
(τ,n)
3 (l) = ξ γ (−τ) l

〈

σ3/(k∆r
2)
〉(τ)

n,n
. (B4d)

Further analysis is facilitated by substituting the eigen-
states for a hard-wall mass confinement from Eqs. (A7) as
the states between which matrix elements in Eqs. (B3a-
d) and (B4a-d) are calculated. It is then useful to define
the quantities

Ξ
(τ,n)
jm (W/R) =

〈

σj (W/r)
m
〉(τ)

n,n
, (B5)

as these are functions of the ring aspect ratio W/R.

The natural energy scale of the Γ
(τ,n)
j (l) is then EW ,

and terms quadratic in l are suppressed by a factor
1/(k∆W ) ≪ 1 typically. From the particular form
and r dependence of the spinors in Eqs. (A7), it can
be deduced that the leading-order behavior in W/R is

Ξ
(τ,n)
jm (W/R) ∼ (W/R)m for j = 0 and j = 3 (i.e., the ma-

trix elements involving diagonal Pauli matrices) whereas

Ξ
(τ,n)
jm (W/R) ∼ (W/R)m+1 for j = 1 and j = 2. Also, the

functions Ξ
(τ,n)
jm with j = 0 and 3 (j = 1 and 2) are inde-

pendent of (proportional to) τ . Finally, Ξ
(τ,n)
1m (W/R) ≡ 0

identically because the upper (lower) entry in the eigen-
spinors given by Eqs. (A7) is always real (imaginary).
Based on these insights, we parameterize the effective
Hamiltonian for azimuthal motion within subbands with
labels ±n in the form given in Eqs. (21), (22a) and (22b).

Taking the limit W/2 → R in our model yields results
that are directly applicable to mass-confined 2D-Dirac
electrons in circular quantum dots.89 However, as W/R
is not small in that situation, no hierarchy of magnitudes

between matrix elements
(

H
(τ)
l

)

n,n′ in Eq. (16a) can be

established. Hence, unlike in the case of quantum rings,
we cannot obtain a simple effective Hamiltonian that ac-
curately describes the azimuthal motion of 2D-Dirac elec-
trons in a quantum dot.
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