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Abstract

The transmission and reflection processes of THz phonons at solid interfaces are of fundamental

interest and of importance to thermal conduction in nanocrystalline solids. The processes are chal-

lenging to investigate, however, because typical experiments and many computational approaches

do not provide transmission coefficients resolved by phonon mode. Here, we examine the modal

transmission and reflection processes of THz phonons across an amorphous Si region connected

to two crystalline Si leads, a model interface for those that occur in nanocrystalline solids, using

mode-resolved atomistic Green’s functions. We find that the interface acts as a low-pass filter,

reflecting modes of frequency greater than around 3 THz while transmitting those below this fre-

quency, in agreement with a recent experimental report [Hua, et al. Physical Review B 95, 205423

(2017)]. Further, we find that these low frequency modes travel nearly unimpeded through the

interface, maintaining their wavevectors on each side of the interface. Our work shows that even

completely disordered regions may not be effective at reflecting THz phonons, with implications

for efforts to alter thermal conductivity in nanocrystalline solids.
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I. INTRODUCTION

Solid interfaces play a key role in the thermal properties of nanostructured materials due

to their contribution to the overall thermal resistance of the solid.1,2 With sufficient interface

density, this thermal boundary resistance (TBR) can dominate the total thermal resistance,

leading to solids with exceptionally low thermal conductivity.3 TBR is average result of

transmission and reflection of phonons over the entire Brillouin zone by the interface. Cre-

ating materials with extreme thermal properties thus requires a fundamental understanding

of these processes.

This understanding is difficult to achieve, however, due to limitations in experimental

and computational approaches in accessing information on transmission processes resolved

by mode. The most common experimental approach to measure TBR, time-domain ther-

moreflectance, provides only the total TBR, obscuring these microscopic processes.4 The

most widely used simplified models for phonon transmission at an interface, the acoustic

mismatch model (AMM) in the long wavelength limit5 and the diffuse mismatch model

(DMM) in the short wavelength limit3, fail to explain many experimental observations and

cannot account for the atomic structure of the interface.5 Molecular dynamics (MD) simula-

tions allow the overall value of the TBR to be computed6–11, and recent works also provide

frequency and mode-resolved information on interfacial heat flux12–16. The phonon wave-

packet method, which is a mode-resolved technique based on MD, can predict interface

thermal conductance by tracking the transmitted and reflected energy including full anhar-

monicity of the interaction potentials, but it is computationally expensive and difficult to

apply to oblique angles.17,18 Lattice dynamics is another atomistic method to compute the

interface thermal conductance by solving for the transmitted and reflected wave functions

given the boundary conditions at the interfaces, but it can be more difficult to implement

for interfaces with complex atomic structure.19,20

Compared to wave packet and lattice dynamics methods, the atomistic Green’s function

(AGF) method is more efficient and easier to implement, and it has been used extensively to

compute the frequency dependent transmission through a device connected to reservoirs.21–26

Such quantum transport problems have been studied by the quantum transmitting boundary

method (QTBM)27 and the non-equilibrium Green’s functions (NEGF) method28, which
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provide general framework for electron transport and the modeling of physics of nanoscale

devices.29 A mismatched Si/Ge interface was studied by Li and Yang using a recursive

AGF method, who found that lattice mismatch increases the lattice disorder, which in

turn decreases interface thermal conductance.30 Tian et al examined the impact of interface

roughness on phonon transmission due to atomic mixing.31 However, the forms of AGF used

in these studies resolve phonon transmission only by frequency, not by mode.

Recently, Ong and Zhang extended the conventional AGF formalism to mode-resolved

AGF to calculate phonon modal transmission, and applied it to a graphene/boron-nitride

interface.32 We recently used this method to examine mode-resolved phonon transmission

at crystalline Si/Ge interfaces.33 A similar numerical method has also been developed using

perfectly matched layer boundaries to compute mode-resolved transmission.34 Sadasivam et

al. extended the conventional AGF technique to eigenspectrum-based AGF, and they found

that phonon transmission is enhanced in Si/Ge interfaces with atomic intermixing due to

the increased phase space available for phonon mode conversion.35 However, mode-resolved

AGF has not been applied to amorphous Si (aSi) interfaces with three-dimensional solids

that are present in actual nanocrystalline solids.

Here, we report a study of phonon transmission using the mode-resolved AGF across an

aSi interface between two crystalline Si (cSi) leads. We find that the interface acts as a low-

pass filter, reflecting modes of frequency greater than around 3 THz while transmitting those

below this frequency, in agreement with a recent experimental report.36 Further, we find that

these low frequency modes travel nearly unimpeded through the interface, maintaining their

wavevectors on each side of the interface. Our work shows that even completely disordered

regions may not be effective at reflecting THz phonons, with implications for efforts to alter

thermal conductivity in nanocrystalline solids.

II. THEORY

A. Mode-resolved AGF formalism

The mode-resolved AGF formalism has been reported in Ref.32,33 in detail. Here, we

briefly review the formalism for calculating phonon modal transmission coefficients. In the

framework of AGF21,22, the system is divided into three interacting parts: the left and right
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semi-infinite leads and the device indicated by the blue dashed lines, as depicted in Fig. 1.

The equations of motion of this system can be written by the following matrix form:

(

ω2I−H
)

Ψ = 0 (1)

where ω is the radial frequency, I is the identity matrix, Ψ are the eigenvectors of the total

system and H is the dynamical matrix representing the atomic interactions
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where HD is the dynamical matrix of the device, HLD is the coupling matrix between the

left lead and the device, and HDR is the coupling matrix between the device and the right

lead. As H is hermitian, HLD = H
†
DL and HRD = H

†
DR. The left lead is divided into two

sublayers, which is indicated by red dashed lines in Fig. 1. Correspondingly, the dynamical

matrix of the left lead HL is divided into submatrices, where H00
L represents the dynamical

matrix of the layer in the left lead in contact with the device, H11
L is the dynamical matrix

of the layer in the left lead in contact with the previous layer and H01
L is the coupling matrix

between them, as depicted in Fig. 1. The same notation is also used for the right lead. The

device retarded Green’s function Gret
D (ω) is defined as

Gret
D (ω) =

(

ω2I−HD − ΣL − ΣR

)−1
(3)

Σ are self-energies defined as ΣL = HDLg
00
L HLD, ΣR = HDRg

00
R HRD for the left, right

leads. The left and right uncoupled retarded Green’s functions g00
L = [(ω2 + ηi) I−HL]

−1
,

g00
R = [(ω2 + ηi) I−HR]

−1
are computed using the decimation technique37. The spectral

transmission is calculated as

Ξ (ω) = Tr
(

ΓRG
ret
D ΓLG

ret†
D

)

(4)

with ΓL = i
(

ΣL − Σ†
L

)

and ΓR = i
(

ΣR − Σ†
R

)

.
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The mode-resolved AGF formalism is adapted from Ong et al.32, which has been used in

electronic transport38. The mode-resolved transmission matrix t is computed as

t =
2iω√
aLaR

V
1/2
R

[

Uret
R

]−1 Gret
[

U
avd†
L

]−1

V
1/2
L (5)

where Gret = g00R HRDG
ret
D HDLg

00
L , aL (aR) is the length of the left (right) sublayer of lead.

VL (VR) is the projection of the mode group velocity in the left (right) leads along the

temperature gradient direction, and are zero for evanescent phonons. The definition and the

calculation of individual phonon mode in left and right lead are the same as in Ref.32 and33.

ΞL
ij(ω) = |tij|2 provides the modal transmission for mode i in left lead coupled with phonon

j in the right lead. ΞL
i (ω) =

∑

j Ξ
L
ij is the single-mode transmission of mode i in the left

lead, which is obtained by summing over all phonon modes in the right lead coupled with

mode i in the left lead. ΞL(ω) =
∑

i Ξ
L
i (ω) = Tr(t†t) is the spectral transmission which is

the same as that in Eq. (4).

Because of translational invariance in transverse directions, we perform a Fourier trans-

form of the equations of motion in both transverse directions, as was done Ref.21,32. The

transverse wavevector ~k‖ dependent transmission Ξ(ω,~k‖) is defined on a 2 dimensional (2D)

uniform grid. The spectral transmission is

Ξ (ω) = 1/N~k‖

∑

~k‖

Ξ(ω,~k‖) (6)

where N~k‖
is the number of transverse wavevectors. The mode-resolved transmission matrix

t is related to ~k‖ as t(~k‖). Therefore, the ~k‖ dependent modal transmission is

ΞL
ij(ω,

~k‖) = |tij(~k‖)|2 (7)

The ~k‖ dependent single-mode transmission, obtained by summing over modal transmissions

of all the phonon modes in the right lead coupled with the i mode in the left lead, is

ΞL
i (ω,

~k‖) =
∑

j

ΞL
ij(ω,

~k‖) (8)

The transverse wavevector ~k‖ dependent transmission, obtained by summing over single-

mode transmissions of all modes of a given frequency and transverse wavevector, is

ΞL(ω,~k‖) =
∑

i

ΞL
i (ω,

~k‖) = Tr(t(~k‖)
†t(~k‖)) (9)
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In this work, ky and kz are normalized by the maximum value of ~k‖, and a transverse

wavevector grid of size 20× 20 is used.

Finally, the temperature dependent thermal conductance per unit area σ (T ) for the

device region, is calculated by the Landauer formalism:

σ (T ) =
1

2πA

∫ ωmax

0

~ω
∂n

∂T
(ω, T )Ξ (ω) dω (10)

A is the transverse area and n (ω, T ) is the Bose-Einstein distribution, and T is temperature.

B. Generating amorphous interface

We generate an amorphous interface using the melt-quenching method.39–41 The melt-

quenching simulations were performed by LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator) code42 with the Tersoff potential43. The time step is 0.5 fs, and

periodic boundary conditions are applied in all directions. We begin the procedure by

preparing a crystalline Si structure in Fig. 1 (a). The length of the system is 12 unit cells

(uc) of bulk Si. Here we set the conventional cell of Si as a unit cell and the lattice constant

as 5.43 Å. The width and height are both 4 uc in the transverse directions (y and z direc-

tions), and the heat flux direction x is along the [100] direction of the conventional cell of

bulk Si. The spectral transmissions of amorphous interfaces with different cross sections (3,

4, 5 uc in transverse directions) are studied and found that they are nearly identical for all

the frequency range, demonstrating that our structure with 4 uc in the transverse directions

yields converged results. The simulation cell is divided into 3 layers. The left (right) layer is

divided into two equivalent sublayers with 1 uc length. Therefore, aL and aR both are 5.43

Å, and A is (4× 5.43)2 Å
2
. The device layer with 8 uc length is in the middle.

The atoms from 5 to 8 uc in x direction are melted at 3600 K by Nosé-Hoover thermostat

by applying NVT ensemble for 0.5 ns, then the system is quickly quenched to 1000 K at

the rate of 8.6 × 102 K/ps. The system is annealed at 1000 K for 0.5 ns, and then it is

quickly quenched to 20 K at the rate of 1.6× 102 K/ps. During the melting, quenching and

annealing procedures, all other atoms are fixed. Next, we perform an equilibration for 2.5

ns in an NVT ensemble, then obtain the average atom positions over the next 2.5 ns. In

the equilibration and calculation of atom position procedures, the atoms from 4 to 9 uc in x

direction are allowed to move but all other atoms are fixed. In this way, the strains between
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FIG. 1. (a) Crystalline Si structure with 12 uc in the x direction and 4 uc in transverse directions

(y and z directions). The blue dashed lines divide the crystalline Si into three parts: the left

semi-infinite lead, device and right semi-infinite lead. The red dashed lines divide the left (right)

lead into two sublayers to enable the calculation of the longitudinal wavevectors of phonon modes.

(b) Crystalline Si with amorphous Si interface. The geometry is the same as that in (a) except the

device region is amorphous Si. (c) Radial distribution function g(r) for atoms in the amorphous

region. r is the distance between atoms. The solid blue and red dashed lines correspond to the

g(r) of amorphous Si interface generated by melt-quenching and WWW algorithm, respectively.

the amorphous interface and the leads are released in the regions with 1 uc thickness, which

are from 4 to 5 uc and 8 to 9 uc in the x direction. We also performed calculations in

which the strain was released in a 2 uc thickness region but little difference in the spectral

transmissions was observed, confirming that our calculations were not affected by the size

of strain release region.

Figure 1 (b) shows the resulting amorphous interface. The radial distribution function

g(r) for atoms in the amorphous interfaces generated by melt-quenching method (solid blue

line) is calculated and presented in Fig. 1 (c). For comparison, we also show the g(r) of

amorphous Si generated from the modified Wooten-Winer-Weaire (WWW) algorithm (red

dashed line), provided by N. Mousseau.44 Our results agree well with the function from

Ref.40, indicating the region is indeed amorphous.
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After the amorphous interface is generated, force constants of the system are calculated

by lattice dynamics (LD) using the General Utility Lattice Program (GULP).45 We set the

neighbors searching cutoff to 4.4 Å in the constructing of harmonic matrix so that all the

interacting atoms in the Tersoff potential are included. As the AGF method solved by

decimation technique requires that only adjacent layers have interactions, we set the length

as 1 uc for the sublayers in the left and right leads, as shown in Fig. 1 (a) and (b).

III. RESULTS

A. Spectral transmission at aSi interface

We first plot the spectral transmission, Ξ (ω), for crystalline Si and amorphous Si inter-

faces in Fig. 2 (a). The figure shows that the spectral transmission is reduced compared

to that at crystalline silicon interface for phonons with frequency larger than 2 THz. To

investigate if the configurations of amorphous interfaces affect phonon transmission, we gen-

erated five different aSi interface by setting different initial conditions in the melt-quenching

procedure. The spectral transmissions for different configurations are presented in Fig. 2

(a), and are nearly identical. We therefore select one of these configurations for subsequent

analysis. The nearly identical spectral transmissions of Fig. 2 (a) suggest that our conclu-

sions generally apply to amorphous Si interfaces, but a larger number of calculations should

be performed to fully verify this assertion.

The transmittance is defined as:

τ = Ξ (ω)aSi /Ξ (ω)cSi (11)

It describes the fraction of incident phonons at frequency ω that is transmitted compared to

that of the perfect crystalline domain. Ξ (ω)aSi and Ξ (ω)cSi refer to spectral transmission for

the amorphous Si and crystalline Si domains, respectively. This calculation thus produces

a transmission coefficient averaged over all phonon modes of the same frequency. Figure 2

(b) shows the phonon transmittance for an amorphous interface. The phonon transmittance

rapidly decreases when frequency increases from 2 to 4 THz, and when the frequency is

larger than 12 THz, the transmittance is less than 0.2. Phonons with frequency less than

3 THz have transmittance larger than 0.64, while the transmittance is less than 0.4 with

frequency larger than 4 THz. The trend of transmittance is consistent with prior simulation
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FIG. 2. (a) Spectral transmission for crystalline Si (red dotted line) and amorphous Si interfaces

created in separate melt-quenching procedures (solid black and dashed pink, blue, yellow and green

lines) versus phonon frequency. The thickness of aSi interfaces is 4 uc (21.72 Å). The spectral trans-

mission is nearly identical for all the aSi interfaces. (b) Transmittance of amorphous Si interface

versus phonon frequency. (c) Normalized accumulated thermal conductance versus frequency at

300 K for cSi (blue dashed line) and aSi (black line) interfaces. (d) Thermal conductance of the

device region versus temperature for cSi (blue dashed line), aSi (black line) interfaces.

works.30,31 Interestingly, our calculation is also quite compatible with our recent experimental

measurement of transmission coefficients for an Al/Si interface36, which also exhibited a

similar trend of decreasing transmission coefficients with increasing phonon frequency.
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FIG. 3. Modal transmission coefficients, ΞL
ij(ω,

~k‖), versus frequency (a) and angle of incidence (b)

for the amorphous Si interface. Transmission coefficients are near unity for frequencies less than

3 THz and decrease to near zero as frequency increases. Little dependence on incidence angle is

observed.

Based on spectral transmission, thermal conductance of amorphous Si and crystalline Si

interfaces can be calculated using Eq. (10). Figure 2 (c) shows the normalized accumulation

of thermal conductance at 300 K. Due to the reduction of transmission for the amorphous

interface, phonons with frequency less than 6 THz contribute 52% to the total thermal

conductance of amorphous Si interface while they contribute 36% for crystalline Si. We

also calculate the thermal conductance from 100 to 800 K, shown in Fig. 2 (d). The

thermal conductance of the device region containing the amorphous interface (σaSi) is greatly

decreased compared with that of crystalline Si domain (σcSi). For example, σcSi is reduced

from 1.11 GWm−2K−1 to σaSi = 0.28 GWm−2K−1, a 75% reduction at 300 K.

B. Analysis of modal transmission

We now examine the modal dependence of the transmission coefficients for amorphous

interface. We plot modal transmission, ΞL
ij(ω,

~k‖), for all incident phonons in left lead to

transmitted phonons in right lead in Fig. 3. Figure 3 (a) shows that the maximum value of

phonon modal transmission decreases as frequency increases. The transmission coefficients
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FIG. 4. (a) Phonon single-mode transmission, ΞL
i (ω,

~k‖), plotted in the folded Brillouin zone of

the supercell (sublayer in Fig. 1) for normal incidence phonons (ky = 0, kz = 0) in the left lead for

the amorphous Si interface. The dashed black line is the phonon dispersion calculated by lattice

dynamics (LD) implemented in GULP.45. The solid dots are the phonon modes calculated in by

AGF, and the color represents the value of single-mode transmission, ΞL
i (ω,

~k‖), according to the

color bar. (b) Phonon modal transmission, ΞL
ij(ω,

~k‖), for all the normally incident phonons in the

left lead for the amorphous Si interface. (c) Spectral transmission, Ξ (ω) = 1/N~k‖

∑

~k‖
Ξ(ω,~k‖),

with ky = 0 and kz = 0, only including the normally incident phonons in the left lead for the

amorphous Si interface (black line) and crystalline Si interface (blue dashed line). Phonon modes

with frequencies up to 3 THz transmit the interface nearly unimpeded.

at frequency below around 3 THz are near unity. The near zero transmission coefficients

at these frequencies correspond to mode-conversion processes that are forbidden at normal

incidence and are unlikely at slightly off-normal incidence. For frequencies larger than

around 12 THz, the transmission coefficients are less than 0.1.

The modal AGF formalism also allows us to investigate the dependence of transmission

coefficients on angle of incidence. The results are given in Fig. 3 (b). We observe little

dependence on incidence angle, which may be expected due to the atomic-scale disorder of

the amorphous region.

We further examine the single-mode transmission ΞL
i (ω,

~k‖), or the summation of modal

transmissions for all modes in the right lead coupled with the mode in the left lead, for
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FIG. 5. Distribution of the ratio of ~k‖ dependent transmission for aSi interface to that at cSi

interface, ΞL(ω,~k‖)aSi/Ξ
L(ω,~k‖)cSi on a uniform ~k‖ grid for (a) 0.375 THz and (b) 15.375 THz.

Here, ω = 2πf . The color represents the value of ratio according to the color bars. The grey color

indicates that no phonon modes exist for the given frequency and wavevector.

the amorphous interface by plotting the dispersion of the supercell (sublayer in Fig. 1).

The single-mode transmission for all normally incident modes is shown in Fig. 4 (a). The

color represents the value of single-mode transmission according to the color bar. The

figure confirms the prior observations that acoustic modes with frequencies up to 3 THz

transmit the interface nearly unimpeded. Most other modes with higher frequencies are

highly reflected, with the exception of certain zone-center modes around 11 THz that have

single-mode transmission around 0.4.

The modal transmissions for normally incident phonons are also shown in Fig. 4 (b).

For crystalline Si interface, mode conversion of normally incident longitudinal phonons is

not allowed under the harmonic approximation in the mode-resolved AGF method. For the

amorphous interface, at the low frequency of 0.375 THz the longitudinal mode primarily

transmits to the same mode (ΞL
ii(ω,

~k‖) = 0.9212) but mode-conversion to the transverse

modes is possible although unlikely (ΞL
ij(ω,

~k‖) = 4.0×10−4 and 0.0268). The single-mode

transmission for the longitudinal mode, ΞL
i (ω,

~k‖), is therefore 0.9484. Figure 4 (c) compares

the spectral transmission for amorphous interfaces and crystalline Si interface only includ-

ing the normal incident modes. Generally, the transmission is reduced for the amorphous

interface except below around 3 THz.
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FIG. 6. (a) Spectral transmission for 4 (red dotted line), 5 (blue dashed line) and 6 (black line)

uc thickness aSi interfaces versus frequency. The inset shows the structures of aSi interface with

different thickness. (b) Thermal conductance of aSi interfaces of different thickness, 4 (red dotted

line), 5 (blue dashed line) and 6 (black line) uc, versus temperature. Phonon transmission is

reduced as thickness of amorphous Si increases, but low frequency phonon transmission remains

nearly unchanged.

We next examine the wavevector dependent transmission ΞL(ω,~k‖), which is the sum-

mation of single-mode transmissions of all the phonon modes at a given frequency and

transverse wavevector, for the amorphous interface. For a specific frequency, the ~k‖ depen-

dent transmission has a distribution on 2D uniform ~k‖ grid. To investigate the change of

ΞL(ω,~k‖) at each ~k‖, we calculated the ratio of ~k‖ dependent transmission for aSi interface

to that for cSi interface, ΞL(ω,~k‖)aSi/Ξ
L(ω,~k‖)cSi, which is shown in Fig. 5.

In Fig. 5 (a), the frequency is 0.375 THz; we find that ratio of ~k‖ dependent transmission

is maximum at normal incidence and gradually decreases when kx and ky increase. For

sufficiently large transverse wavevectors, no mode exists with the specified frequency. In

Fig. 5 (b), the frequency is 15.375 THz, the maximum and minimum transmission ratios

are 0.039 and 0.030, respectively, which indicates that ~k‖ dependent transmission is nearly

independent of wavevector and much less than unity.

13



C. Role of thickness of aSi interface

Thus far, our calculations have shown that phonons with frequency less than around

3 THz and close to normal incidence transmit through the amorphous interface largely

unimpeded. It is interesting to consider whether this effect is altered by the thickness of

the amorphous region. We generate interfaces with 4, 5, and 6 uc thickness using the same

melt-quenching procedure. The spectral transmission curves of these three interfaces are

shown in Fig. 6 (a). Overall, phonon transmission is reduced as thickness of amorphous Si

increases, but low frequency phonon transmission remains nearly identical, suggesting that

the amorphous region supports propagating waves of frequencies less than 3 THz.

We also computed the thermal conductance versus temperature for each device region

in Fig. 6 (b). The thermal conductance is also reduced when thickness increases, but at

low temperature the reduction is relatively small. This observation is because low frequency

phonons make the dominant contribution to thermal conductance at low temperature, which

have little reduction of transmission as shown in Fig. 6 (a).

D. Specularity of aSi interface

Finally, we investigate the specularity of the transmission process. As the phonons trans-

mit through the interface, they may preserve their wavevector in a specular transmission

process or they may be transmitted in a random direction due to atomic disorder. In the

former process, the mode transmits the interface almost as if the interface were not present.

In conventional AGF, the specularity of interfaces cannot be calculated because the

method provides the overall transmission for all phonons at a specific frequency. Taking

the advantage of mode-resolved AGF, specularity can be obtained by analyzing phonon

modal transmission. Recalling that the transverse wavevectors are fixed, we define a process

to be specular if the difference of kx and vgx between the transmitted phonon and incident

phonon are both less than 10−5. Using this criterion, we calculated the specularity for the

crystalline Si domain and confirmed it to be unity for all modes.

We next computed the specularity for the amorphous interface. The spectral transmission

for only specular processes is shown in Fig. 7 (a). For comparison, the spectral transmission

for amorphous interface in Fig. 2 (a), which includes all transmission processes, is also given

14
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FIG. 7. (a) Spectral transmission including all transmission process (black line) and only including

specular transmission process (blue dashed line) versus frequency. (b) Specularity of aSi interface

versus frequency. Specular phonon transmission processes dominate the total transmission below

about 3 THz

in Fig. 7 (a). The figure shows that specular phonon transmission processes dominate the

total transmission below about 3 THz.

For these calculations, we define specularity as the ratio of spectral transmission only

including specular transmission processes to that including all transmission processes. The

result is shown in Fig. 7 (b). At low frequency (less than 2 THz), the specularity is larger

than 0.9 and rapidly decreases as frequency increases from 2 to 4 THz. When frequency

is less than 3 THz, the specularity is larger than 0.6, while the specularity is smaller than

0.2 with frequency larger than 4 THz. These results further confirm that phonons of fre-

quency less than around 3 THz transmit the amorphous region essentially unimpeded, even

maintaining their wavevector as they transmit. This conclusion is in agreement with a

prior experiment measurement of transmission coefficients at an Al/Si interface36. Our re-

sults have implications for manipulating the thermal conductivity of nanocrystalline solids

as grain boundaries with structures like those studied here are unlikely to be effective in

reflecting low frequency modes.
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IV. CONCLUSION

We investigated phonon modal transmission using the mode-resolved AGF for an aSi

interface between two crystalline Si leads. We find that the interface acts as a low-pass filter,

reflecting modes of frequency greater than around 3 THz while transmitting those below this

frequency. Further, we find that these low frequency modes travel nearly unimpeded through

the interface, even maintaining their wavevectors as they transmit. In addition, thickness

of amorphous interface has little effect on transmission of low frequency phonons. Our

work shows that even completely disordered regions may not be effective at reflecting THz

phonons, with implications for efforts to alter thermal conductivity in nanocrystalline solids.
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