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Magnesium acceptor in gallium nitride: II. Koopmans tuned HSE hybrid functional calculations of dual 
nature and optical properties 

 
D. O. Demchenko, I. C. Diallo, M. A. Reshchikov 

Department of Physics, Virginia Commonwealth University, Richmond VA 2328 
 
The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal 
shallow defect state, while most theoretical predictions favor localized polaronic defect state. To resolve this contradiction, we 
calculate properties of magnesium acceptor using HSE hybrid functional, tuned to fulfill generalized Koopmans condition. We 
test Koopmans tuning of HSE for defect calculation in GaN using two contrasting test cases: a deep state of gallium vacancy 
and a shallow sate of magnesium acceptor. Thus, obtained parametrization of HSE allows calculations of optical properties of 
acceptors using neutral defect state eigenvalues, without relying on corrections due to charged defects in periodic supercells. 
Optical transitions and vibrational properties of MgGa defect are analyzed, to bring the dual (shallow and deep) nature of this 
defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.  
 

I. INTRODUCTION 
 
Magnesium substituting for gallium atom (MgGa) in 
GaN is an acceptor impurity of the highest 
technological importance, since it is the only 
successful p-type dopant in GaN.1 In the past decade 
there were several key theoretical developments in 
physics of MgGa acceptor. Lany and Zunger proposed 
the concept of dual nature of acceptors in GaN and 
ZnO. 2  In particular, they predicted that the MgGa 
acceptor in GaN exhibits two distinct states: a deep 
ground state with a localized hole, and a metastable 
shallow effective-mass-like state. While calculated 0/− 
thermodynamic transition levels for the localized and 
delocalized states were similar, 0.18 and 0.15 eV, the 
optical transitions via these states were substantially 
different, 2.93 and 3.35 eV, respectively. Other groups, 
employing hybrid density functional calculations, have 
found that the hole bound to the MgGa acceptor in the 
ground state is highly localized, with 0/− transition 
levels of 0.23 (optical transition at 2.7 eV)3 and 0.38 
eV, 4  however did not confirm the existence of the 
delocalized state. Recently Sun et al. 5  have 
demonstrated that neutral MgGa

0  acceptor exhibits three 
different defect states. Two of these are localized 
defect-bound small polarons, characterized by a hole 
trapped by its self-induced lattice distortion, while the 
third is the anisotropically delocalized state, which is 
effective-mass-like in the [ 1120 ] direction and 
localized in all other directions. The 0/− transition 
levels for all three states were found to be very similar, 
0.21-0.23 eV, with one of the localized states being the 
hole ground state.  

On the other hand, there is a consensus among 
experimentalists that low concentrations of Mg in GaN 
cause a very strong ultraviolet luminescence (UVL) 

band with a sharp peak at ~3.27 eV followed by 
several LO phonon replicas with decreasing 
intensities. 6 - 9  Fig. 1 shows photo-luminescence (PL) 
spectra at selected temperatures from freestanding GaN 
lightly doped with Mg (1.3×1017 cm-3) and grown by 
hydride vapor phase epitaxy (HVPE) at Kyma 
Technologies, Inc. 
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FIG. 1 (color online). PL spectra from freestanding GaN:Mg grown 
by HVPE method. The UVL band at T = 18 K includes the ZPL at 
3.257 eV (attributed to DAP-type transitions involving a shallow 
donor and the shallow MgGa acceptor) and a set of LO phonon 
replicas at distances multiple of 91 meV from the main peak. At 50 
K, a series of (e-A)-type transitions appears, which corresponds to 
electron transitions from the conduction band to the same shallow 
acceptor. The inset shows the temperature dependence of the PL 
quantum efficiency η for the UVL band. 

 
At low temperature (18 K), a very strong UVL band is 
observed, for which a zero phonon line (ZPL) at 3.257 
eV is attributed to donor-acceptor pair (DAP)-type 
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transitions from a shallow donor to the shallow MgGa 
acceptor. With increasing temperature (50 K in Fig. 1), 
the DAP band intensity slightly decreases, and a very 
similar band emerges, with the ZPL at 3.280 eV, 
attributed to transitions from the conduction band to 
the same acceptor (e-A transitions). The total intensity 
(DAP plus eA) of the UVL band begins to decrease 
with temperature at T > 120 K, revealing the activation 
energy of 186 meV in the Arrhenius plot (the inset into 
Fig. 1). No defect-related bands, other than the UVL 
band, could be found at photon energies between 2.7 
and 3.3 eV before or after the quenching of the UVL 
band.  
 These experimental results are difficult to 
reconcile with theoretical predictions of a localized 
hole ground state. It is very likely that the UVL band in 
undoped GaN (with quantum efficiency η ~ 1%)10 is 
caused by MgGa acceptor. This is supported by our 
measurements, where only the UVL band exhibits a 
surge in quantum efficiency, up to 20-30%, as a result 
of light doping with Mg. Other recent PL 
measurements also suggested that for Mg doping at 
concentrations below 1019 cm-3 the UVL band should 
be assigned to the MgGa acceptor.8 At the same time, 
the blue PL band at 2.7-2.9 eV, which seemingly 
confirms theoretical predictions, is never observed in 
lightly Mg-doped GaN. It is observed only in some 
heavily Mg-doped samples, where it likely involves 
other physical processes.8,11-15 The shape of the UVL 
band is typical for a weak electron-phonon coupling 
(the Huang-Rhys factor is about 0.5), which indicates 
that the hole bound to the MgGa acceptor is weakly 
localized. The weak localization of the hole at the 
MgGa acceptor responsible for the UVL band has also 
been supported by optically-detected magnetic 
resonance (ODMR) studies of high-purity GaN:Mg.16 

 
 

II. GENERALIZED KOOPMANS CONDITION 
 

To resolve the above discussed discrepancy 
between the experiment and theory, we calculate 
optical properties of defects using Heyd-Scuseria-
Ernzerhof (HSE)17 hybrid functional, tuned to fulfill 
the generalized Koopmans condition.18 The generalized 
Koopmans condition for defect calculations was 
proposed by Lany and Zunger,19-21 as a remedy for the 
non-linearity of the total energy E(N) with electron 
occupation in semi/local approximations to the density 
functional theory. The main idea was to introduce a 
potential operator, acting on empty hole states of the 

host material, which would lead to the cancellation of 
the self-interaction energy by the wavefunction 
relaxation upon the addition (removal) of an electron. 
Thus, correct eigenvalues of defect states in different 
charge states can be expected, leading to correct 
transition levels.  

In contrast, hybrid functional calculations of 
defects in semiconductors usually resort to tuning the 
fraction of exact exchange in HSE in order to match 
the calculated bandgap to the experimental value.22 In 
most cases this practice works reasonably well. 23 , 24 
However, as we show below, in such tuned HSE the 
correct bandgap comes at a price of an excess of Fock 
exchange energy. As a consequence, the defect levels 
with respect to the valence band maximum (VBM) are 
overestimated. This could be due to the valence band 
being pushed too far downward, potentially 
overestimating bulk ionization potential (IP). This is 
schematically shown in Fig. 2(a). For bandgap tuned 
HSE, defect state eigenvalues are not equal to defect 
transition levels. The defect state eigenvalue ei shifts 
downward with occupation due to the non-linear 
(concave) shape of the total energy E(N). The 
ε(N/N+1) defect transition level can be found from the 
integration of the Janak’s theorem,25 i.e. the trapezoid 
rule places the ε(N/N+1) defect transition level at an 
average between the unoccupied ei(N) and occupied 
ei(N+1) defect eigenvalues (Fig. 2(a)). 26  This is 
equivalent to calculating a defect transition level as a 
formation energy difference of two charge states of 
defect. However, since in this case ei(N) is higher than 
ei(N+1), the self-interaction energy is overcompensated 
by the orbital relaxation (similarly, but to a lesser 
extent, to the Hartree-Fock method),19 leading to an 
overestimated transition level.  

In addition, in a calculation with periodic 
boundary conditions, a charged defect eigenvalue is 
also pushed downward due to the artificial electrostatic 
interactions in charged supercells. As a result, in 
practice for a relatively shallow MgGa acceptor, the 
ei(N+1) in the 1– charge state is pushed below the 
VBM, and the 0/− transition level is effectively found 
between unoccupied defect eigenvalue ei(N) of neutral 
MgGa and the VBM, which is an additional source of 
error.  
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FIG. 2 (color online). Two different approaches to tuning exchange 
interactions in a hybrid functional: (a) fitting the bandgap (solid 
green arrow) leads to a shift of the defect state eigenvalue ei with 
addition of an electron, and deeper transition levels; (b) fitting 
Koopmans condition leads to the correct defect state eigenvalues 
and ε(N/N+1) transition level at the price of a slightly 
underestimated bandgap (dashed arrow). 
 
The computational approach can be improved if, 
instead of tuning HSE functional to reproduce the 
correct bandgap, the generalized Koopmans condition 
is enforced, i.e. the HSE functional is tuned to 
reproduce the linear behavior of total energy with 
respect to occupation (Fig. 2 (b)). Since the total 
energy derivative with respect to occupation is equal to 
the eigenvalue, the transition level ε(N/N+1) is equal to 
the defect state eigenvalue ei(N), and ei(N+1) after 
correcting for the artificial electrostatic shift (Fig. 2 
(b)). This tuning of HSE to correct behavior of defect 
eigenvalues and transition levels, results in an 
underestimated bandgap of the host. In our case this 
HSE tuning leads to the computed gap of GaN of 0.27 
eV below the experimental value. This could become 
an issue for defect levels close to the conduction band. 
However, since our focus is on an acceptor defect, only 
the energies of defect levels with respect to VBM are 
essential. When applying this tuning procedure to 
defect calculations, it is crucial to eliminate the 
artificial interactions between defects in supercells. 
This is described in detail in Sec. IV.  
 
 

III. METHODS OF CALCULATIONS 
  

In order to tune the HSE functional to the 
generalized Koopmans condition for defect 
calculations in GaN, we have performed a series of 

HSE calculations of defects in GaN in supercells 
ranging from 72 to 300 atoms. We seek a 
parametrization of HSE, such that ei(N)=ε(N/N+1) in 
the limit of an infinitely large supercell. All 
calculations were performed using VASP code.27 Both 
bandgap and IP of a semiconductor change linearly in 
HSE with varying either fraction of exact exchange α 
or the exact exchange range-separation parameter μ. 
The defect state eigenvalues and transition levels 
behave similarly, therefore HSE could be tuned by 
varying either parameter. In literature most authors 
choose to vary α, while leaving μ at a typical 0.2 Å-1. 
However, it has been argued that in a hybrid functional 
with a fraction of exact exchange equal 1/n, the 
optimal integer is n=4,28 therefore here we chose to 
keep α fixed at the standard 0.25 value, and vary the 
range-separation parameter μ instead. Bulk lattice 
constants were relaxed for each value of μ, reducing 
forces to less than 0.01 eV/Å. We analyzed the 
supercell size scaling of unoccupied defect eigenvalues 
ei(N) and defect transition levels ε(N/N+1). The latter 
is defined as ε(N / N +1) = [E(N +1) − E(N ) + Δ] , 
where E(N+1) and E(N) are the total energies in two 
different charge states and Δ is the correction for the 
artificial electrostatic interactions in charged supercells. 
The corrections were applied to the defect energies 
following the Lany-Zunger (LZ) procedure 29 , 30 
throughout this paper. We also tested Freysoldt, 
Neugebauer, and Van de Walle correction 
approach,31,32 and found both methods to yield similar 
results. Throughout this paper, transition energies and 
eigenvalues are calculated with respect to the VBM of 
the bulk GaN. Note that in a supercell with a neutral 
defect the VBM is placed at eVBM+ΔV0/b, where eVBM is 
the bulk VBM and ΔV0/b is the alignment of the 
averaged electrostatic potential of the neutral defect 
with respect to the bulk. This potential alignment is 
required for application of the LZ correction scheme, 
and was also applied to the neutral defect eigenvalues 
in the supercells of different sizes.  

After performing calculations for a range of 
values of parameter μ, we conclude that HSE with 
exact exchange fraction  α = 0.25 and range separation 
parameter μ = 0.161 Å-1 fulfills the generalized 
Koopmans condition for defects in GaN, which is 
demonstrated in Sec. IV. 

Once the Koopmans compliant parametrization 
of HSE is obtained, unoccupied defect state eigenvalue 
of a neutral acceptor can be used to calculate vertical 
optical transition energies (PL maxima) without 

(a) Fitting bandgap 
(b) Fitting Koopmans 
condition 
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relying on a charged defect supercell corrections. Here 
optical properties of MgGa acceptor in GaN were 
calculated with HSE (α = 0.25, μ = 0.161 Å-1) using 
neutral defect eigenvalues with respect to the VBM. 
We used the experimental value of the GaN bandgap 
(3.50 eV) to calculate vertical optical transitions (PL 
maxima) between the conduction band and the defect 
level. Adiabatic transition levels, i.e. ZPLs, are 
computed by adding the 1− charge state relaxation 
energies to the PL maxima, as in Refs. [33-35]. This 
relaxation energy is the Franck-Condon shift, i.e., the 
relaxation of the lattice, which defect undergoes 
following the radiative transition with the energy of PL 
maximum. Thus, in the relaxation energy calculation 
the errors due to artificial electrostatic interactions 
cancel out.  

In order to construct the configuration 
coordinate (CC) diagram, we use harmonic 
approximation, fitting parabolas into the calculated 
optical transitions and ZPLs. This is essentially 
mapping the multidimensional potential energy surface 
of the defect onto a one-dimensional single effective 
vibrational mode, which is done along the line that 
linearly interpolates between the equilibrium 
geometries of the ground and excited state lattices. 
This effective vibrational mode corresponds to the 
displacement of all atoms in the unit cell between the 
two energy minima. We tested the validity of the 
harmonic approximation by direct HSE calculations, 
using the nudged elastic band method (NEB). The two 
relaxed lattices of two localized polarons are set up as 
the first and last fixed images in the NEB calculation. 
Three equidistant lattice geometries were created by 
linearly interpolating atomic coordinates between the 
two equilibrium lattices. Then, as typical in a NEB 
calculation, the structures were allowed to relax in the 
directions perpendicular to the normal between the 
images, keeping the distance between images constant. 
Upon relaxation, we obtain the curvatures of parabolas 
of the localized polaronic states, as well as the barriers 
between them. All calculations were performed in 300-
atom hexagonal supercells at the  Γ-point, with plane-
wave energy cutoffs of 500 eV. All atoms were relaxed 
with HSE to minimize forces to 0.05 eV/Å or less 
(total energies of relaxed structures are converged to 
~2 meV). 

Once the complete CC diagram is obtained, we 
numerically solve one-dimensional vibrational problem 
in the CC potential to obtain vibrational energies and 
wavefunctions. This is done in two steps. First, a 
textbook vibrational problem for the ground state 

potential, i.e. 1− charge state parabola, helps us obtain 
a mass-to-spring constant ratio for this effective 
vibrational mode. In this case, vibrational energies are 
known from the measured phonon replicas (Fig. 1). 
Second, we use this mass-to-spring constant ratio to 
numerically solve the vibrational problem in the 
excited state, i.e. the triple-well CC potential of the 
neutral acceptor (two small polarons and 
anisotropically delocalized state, Sec. V). The resulting 
vibrational energies and vibrational wavefunctions are 
used to analyze the optical properties of MgGa. 

The validity of one-dimensional CC diagram 
model for vibrational problem in applications to the 
defect luminescence in semiconductors has been 
extensively described in Refs. [36,37]. An excellent 
brief analysis of its applicability and limitations is 
given in the appendix to Ref. [38], where it is shown 
that such CC diagram provides an excellent 
approximation for the defects that exhibit strong 
electron-phonon coupling (Huang-Rhys factor S>>1), 
which is the case for strongly localized polaronic states 
of MgGa. Also, for the defects with weak electron-
phonon coupling (Huang-Rhys factor S<1), the model 
reproduces overall PL line shape correctly, although it 
cannot exactly reproduce the fine structure of the PL 
bands, e.g., for S=0.3, the phonon replicas of the PL 
could be shifted by 0.02-0.04 eV. Therefore, for a 
weakly localized defect state of Mg acceptor, with 
Huang-Rhys factor S ~ 1, it is expected that one-
dimensional CC diagram model is accurate to within 
roughly 0.02-0.04 eV. 

It is also useful to know if this tuning of HSE 
reproduces the experimental IP. However, this is 
difficult to assess because there is a significant scatter 
in experimental IP values. For example, typical 
photoemission measurements of IP or electron affinity 
yield the values of IP for GaN between 6.2 and 7.2 
eV,39 - 46  evidently due to varying surface conditions. 
Therefore, we also calculated the bulk IP of GaN for a 
range of HSE parameters, following the approach 
presented by Hinuma et al.,47 using 36-atom GaN slabs 
and 20 Å layers of vacuum, with surfaces along the 
non-polar [1120 ] direction. Tests on 68-atom slabs 
with 28 Å layers of vacuum confirm the convergence 
of the approach. 

 
 

IV. TUNING HSE HYBRID FUNCTIONAL FOR 
DEFECT CALCULATIONS IN GaN 

 
A. Relaxed MgGa acceptor 
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First, we analyze supercell size scaling of 
eigenvalues and transition energies of relaxed lattice of 
MgGa acceptor in GaN. In case of MgGa, N-electron 
state corresponds to the neutral acceptor, and (N+1) 
state to the 1– charge state. The shift of ei(N+1) below 
the VBM prevents a straightforward application of the 
tuning procedure, i.e. adjusting exact exchange range 
separation in HSE so that ei(N) = ei(N+1).20 In addition, 
neutral MgGa exhibits significant delocalization errors. 
This is illustrated in Fig. 3, where HSE-computed (α = 
0.25 and μ = 0.161 Å-1) unoccupied neutral MgGa 
eigenvalue ei(N) is shown along with uncorrected and 
corrected (using the LZ scheme) ε(0/–) transition 
energy as functions of the inverse supercell size. 
Eigenvalues and transition energies are plotted with 
respect to the VBM of the bulk GaN.  

 
FIG. 3 (color online). Unoccupied neutral defect eigenvalue ei(N) 
(black circles), uncorrected (red squares), and corrected (green 
triangles) ε(0/–) transition energies as functions of the inverse 
supercell size for a relaxed lattice geometry of MgGa acceptor. 
Energies are plotted with respect to the bulk GaN VBM. The 
isosurfaces of the defect state spin density of neutral MgGa are 
plotted at 5% of their maximum values for three supercell sizes. 
Large orange atom is Mg, large green atoms are Ga, and small grey 
atoms are N.  
 

The non-monotonic behavior of both 
unoccupied defect eigenvalue ei(N) and transition 
energy ε(0/–) illustrates two competing error sources in 
this case. One is the spurious electrostatic energy due 
to periodic supercells, which leads to an upward trend 
in eigenvalue and transition energy with increasing 
supercell size. Another is the delocalization energy due 
to the overlap of the defect induced wavefunctions, 
which leads to the downward energy trend with the 
supercell size. Fig. 3 also shows the defect state spin 
density (defect state eigenvalue of neutral acceptor is 

occupied in one spin only) computed in 72-, 128-, and 
300-atom supercells. In all cases ionic relaxations were 
started from the same initial defect geometries, where 
the Mg-N bond length along wurtzite c-axis was 
increased by 0.2 Å from the ideal bulk GaN value, in 
order to induce the lattice relaxation self-trapping of a 
hole, i.e. small polaron. However, in cases of 72- and 
128-atom supercells the small polaron is not fully 
reproduced due to significant overlap between defect 
state wavefunctions. In these supercells the 
wavefunctions overlap dominates the energy error, 
leading to the downward trend of transition energy and 
defect eigenvalue. In contrast, in a 300-atom supercell 
a well localized polaronic defect state is obtained, and 
the energy error is mostly electrostatic. Therefore it is 
difficult to reliably establish size scaling of the 
localized polaronic states of MgGa, and to check the 
Koopmans compliance of HSE for polaronic states. It 
is necessary to separate the delocalization and the 
electrostatic errors, in order to obtain converged values 
of ei(N) and ε(0/–) in the limit of an infinitely large 
supercell.  
 

B. Unrelaxed MgGa acceptor 
To eliminate polaronic effects during HSE 

tuning, we fix the atomic positions at those of the bulk 
GaN and perform calculations for unrelaxed MgGa 
defect geometries. The resulting scaling of ei(N) and 
ε(0/–) is shown in Fig. 4.  

 

 
FIG. 4 (color online). (a) Unoccupied neutral defect eigenvalue 
ei(N) (black circles), uncorrected (red squares), and corrected 
(green triangles) ε(0/–) transition energies as functions of the 
inverse supercell size for an unrelaxed lattice geometry of MgGa 
acceptor. Energies are plotted with respect to the bulk GaN VBM. 
Dashed lines are extrapolations of electrostatic interactions to the 
limit of infinite supercells. (b) Average electrostatic potential for 
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neutral and 1– charge states of MgGa and gallium vacancy VGa 
along a1 vector of the 300-atom supercell. The potential is averaged 
over transversal planes and along a1 with a periodicity of GaN 
lattice constant. The defect is at the origin with its periodic image at 
16.06 Å.  
 
 The downward trend of the defect eigenvalue 
and transition energy (Fig. 4 (a)) with supercell size is 
indicative of dominating contribution from the 
delocalization energy (i.e. defect wavefunction 
overlap). The dashed lines in Fig. 4 (a) are fits of 
aL−1 + bL−3 + c  to HSE computed transition energies, 
showing the expected energy scaling if the errors were 
dominated by the electrostatic interactions. The 
extrapolations of corrected and uncorrected transition 
energies are widely different, suggesting that standard 
electrostatic error corrections are not appropriate in this 
case. The reason for this is revealed in average 
electrostatic potentials computed in 300-atom supercell 
for neutral and 1– charge states of MgGa, shown in Fig. 
4 (b). The neutral MgGa defect electrostatic potential is 
not approaching a constant value between defects, 
indicating electrostatic interaction between neutral Mg 
acceptors. In addition, the LZ electrostatic error 
correction scheme includes an alignment of the neutral 
defect potential to that of the bulk. However, the 
neutral defect potential is unconverged with respect to 
supercell size. This, along with interacting neutral 
defects, leads to the inconsistent scaling of the 
corrected and uncorrected 0/– transition energies.  

Although the spurious electrostatic interactions 
of neutral defects are not as significant as those of 
negatively charged MgGa, they are sizable and therefore 
partially cancel out in the calculation of 0/– transition 
energy. Furthermore, for negatively charged acceptors 
electron delocalization leads to partial screening of 
interactions of charged MgGa defects. This is shown in 
Fig. 4 (b) by comparing averaged electrostatic potential 
of MgGa with that of a “well behaved” deep-level 
defect, such as gallium vacancy VGa. First, the 
averaged potential between neutral vacancies is 
constant, indicating no electrostatic interactions. 
Second, comparison of averaged potentials of negative 
MgGa and VGa defects shows that negatively charged 
Mg acceptors interact weakly in comparison with 
vacancies. Since transition energies of VGa defects 
scale predictably, and are well corrected by the LZ 
error correction scheme (as shown in Sec. IV.C.), the 
weak interaction of negative MgGa defects suggests that 
this procedure will result in overcorrection in the latter 
case. Thus, there are three problems with fitting an 

HSE functional to generalized Koopmans condition for 
Mg acceptor: significant delocalization of defect states, 
electrostatic interactions between neutral defects, and 
weaker than expected electrostatic interaction between 
charged defects. The latter two partially cancel each 
other, leading to the delocalization error being 
dominant in the scaling of transition energy and defect 
eigenvalue with supercell size. All this suggests that a 
better choice for fitting the HSE hybrid functional for 
defect calculations would be a defect that does not 
exhibit these complications, such as gallium vacancy 
(Fig. 4 (b)).  
 

C. Unrelaxed gallium vacancy VGa: a deep defect 
state 

Fig. 5 shows supercell size scaling of defect 
state eigenvalue and corresponding transition level of 
unrelaxed gallium vacancy VGa obtained using two 
parametrizations of HSE hybrid functional, α = 0.25, μ 
= 0.161 Å-1 (Fig. 5 (a)), which fulfills the generalized 
Koopmans condition; and commonly used α = 0.31, μ 
= 0.2 Å-1 (Fig. 5 (b)), which reproduces the 
experimental value of the bandgap. The unoccupied 
defect state eigenvalues of neutral defects with respect 
to the bulk VBM (Sec. III) are nearly constant for all 
supercell sizes. Since gallium vacancy neutral 
electrostatic potential is well converged far from defect 
(Fig. 4 (b)), both uncorrected and corrected ε(0/–) 
transition energies, shown in Fig. 5, exhibit expected 
scaling due to artificial electrostatic interactions of 
charged defects, both extrapolating to the same value at 
the infinitely large supercell limit. The LZ correction 
scheme effectively eliminates the artificial electrostatic 
energy in supercells of 128 atoms and larger. The HSE 
hybrid functional parametrization obtained in this work, 
α = 0.25, μ = 0.161 Å-1, enforces generalized 
Koopmans condition (Fig. 5 (a)). The neutral 
(unoccupied) defect state eigenvalue ei(N) and 
transition energy ε(0/–) are practically equal to each 
other in 300-atom supercell. The extrapolation of 
corrected transition energy shows nearly constant value 
up to infinitely large supercell. On the other hand, a 
commonly used parametrization of HSE α = 0.31, μ = 
0.2 (Fig. 5 (b)), which reproduces correct bandgap, 
does not fulfill the Koopmans condition. Although the 
difference between defect state eigenvalue ei(N) and 
transition energy ε(0/–) is rather small, about 0.1 eV, 
both values are shifted upward in the bandgap by about 
0.2 eV. This makes defect states and transition levels 
too deep, indicating an excess of exact exchange 
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energy in the HSE functional, which also tends to 
overlocalize the wavefunctions. As previously shown 
in Ref. [22], increasing the amount of exact exchange 
in a hybrid functional leads to the valence band shifted 
linearly downward, while the deep defect level (such as 
that of VGa) stays practically fixed with respect to some 
physical reference, such as average electrostatic 
potential, a core electron level, or vacuum. Therefore 
the difference in transition levels of VGa in Fig. 5 (a) 
and (b) originates mostly from the VBM shifting 
downward with increased amount of exact exchange. 
Thus, the Koopmans compliant HSE parametrization 
(Fig. 5 (a)) is a better choice for defect calculations, in 
spite of yielding a somewhat underestimated bandgap. 
The trade off is the correct defect eigenvalues and 
transition levels with respect to the VBM and self-
interaction free defect state wavefunctions.  

 
FIG. 5 (color online). Unoccupied neutral defect eigenvalue ei(N) 
(black circles), uncorrected (red squares), and corrected (green 
triangles) ε(0/–) transition energies as functions of the inverse 
supercell size for a unrelaxed lattice geometry of gallium vacancy 
VGa. Results obtained by two parametrizations of HSE hybrid 
functional, α = 0.25, μ = 0.161 Å-1 (a), fitted to fulfill generalized 
Koopmans condition; and α = 0.31, μ = 0.2 Å-1 (b), fitted to 
reproduce experimental bandgap. Energies are plotted with respect 
to the bulk GaN VBM. Dashed lines are extrapolations of 
electrostatic interactions to the limit of infinite supercells. 
 
 

D. Unrelaxed MgGa acceptor: a weakly localized 
defect state 

To this point, we have shown that the above 
HSE is tuned to generalized Koopmans condition for 
0/– transition level of one defect, gallium vacancy. 
Next, we test this for MgGa acceptor, which, as shown 
above, in unrelaxed defect lattice is a contrasting case 
to that of VGa. Fig. 6 shows supercell size scaling of 

neutral defect state eigenvalue and corresponding 
transition level of unrelaxed MgGa acceptor along with 
the defect state spin densities in three different 
supercells. The defect state wavefunctions are 
practically delocalized in 72-atom supercells, and 
weakly localized in 128- and 300-atom supercell. The 
electrostatic corrections are not applied in this case, 
since, as shown above, MgGa acceptor does not exhibit 
expected electrostatic interactions in either neutral or 
1– charge state, and standard corrections lead to an 
improper scaling of transition energies. Due to a 
significant delocalization in this case, the artificial 
interactions between the defects are dominated by the 
wavefunctions overlap, as indicated by the downward 
scaling trend. These interactions scale exponentially 
with the supercell size,30,48 which is shown with dashed 
lines in Fig. 6. The extrapolations of unoccupied ei(N) 
and ε(0/–) to infinite supercells are very close. It 
should be noted that these extrapolations are not as 
accurate as those for VGa. In case of MgGa they contain 
contributions from both electrostatic and delocalization 
errors. However, if we do not resort to extrapolations, 
in a 300-atom supercells the difference between ei(N) 
and uncorrected ε(0/–) is only ~0.07 eV (Fig. 6), 
compared to 0.23 eV for the localized state (Fig. 5(a)). 
There are two reasons for this. First is above-
mentioned partial cancellation of electrostatic 
interaction errors of neutral and charged supercells in 
ε(0/–). Second is a significantly reduced self-
interaction for a weakly localized state. In the limit of 
completely delocalized Bloch states, self-interaction 
energy is approaching zero and the Koopmans 
condition is always fulfilled. It would also formally be 
fulfilled in a semi/local approximation to the density 
functional theory, even though in this case MgGa defect 
state cannot be reproduced since it merges with the 
VBM. Similarly, a standard parametrization of HSE (α 
= 0.25 and μ = 0.2 Å-1) is also unable to reproduce 
MgGa defect state. On the other hand, a commonly used 
bandgap tuned HSE with α = 0.31 and μ = 0.2 Å-1 
yields MgGa scaling similar to that shown in Fig. 6, 
with transition level close to the eigenvalue, albeit both 
slightly deeper in the gap. In other words, for a weakly 
localized defect state, such as that of unrelaxed MgGa, 
Koopmans condition is approximately fulfilled for a 
range of HSE parameters. Provided that these defect 
states are resolved, with varying α or μ in HSE these 
states roughly follow the shifting VBM, and acceptor 
ionization energy is not very sensitive to the choice of 
HSE parameters.24  
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Thus, the HSE hybrid functional with α = 0.25 
and μ = 0.161 Å-1 enforces the generalized Koopmans 
condition for a well-localized defect states, such as that 
of VGa, and to a good degree represents weakly 
localized defect states, such as that of unrelaxed MgGa 
acceptor. By using this parametrization of HSE we 
should be able to analyze the interplay between small 
polarons and weakly localized state of Mg acceptor, in 
order to correctly interpret the experimental data.  

 
 

 
FIG. 6 (color online). Unoccupied neutral defect eigenvalue ei(N) 
(black circles) and uncorrected ε(0/–) transition energies (red 
squares) as functions of the inverse supercell size for an unrelaxed 
lattice geometry of MgGa acceptor. Energies are plotted with 
respect to the bulk GaN VBM. Dashed lines are exponential fits, 
extrapolating to the limit of infinite supercells. The isosurfaces of 
the defect state spin density are plotted at 5% of their maximum 
values for three supercell sizes. Large orange atom is Mg, large 
green atoms are Ga, and small grey atoms are N. The view is along 
[0001] direction.  

 
 

E. Relaxed MgGa acceptor: influence of HSE tuning 
on optical properties  

As mentioned above, it has been shown5 that 
neutral MgGa acceptor exhibits three defect states with 
different wavefunctions. Two of them are strongly 
localized small polarons, and the third one is 
anisotropically delocalized defect state. Only the 
shallow acceptor state is observed in experiments, 
explanation for which is presented in Sec. V.B. The 
calculated polaronic defect states are expected to 
produce optical transitions with PL maxima and ZPLs 
separated by large (0.4-0.6 eV) relaxation energies for 
any set of HSE parameters. These predicted broad 
defect PL bands, indicative of deep defect states, are 

not observed experimentally (see Sec. V.B.). Fig. 7 
shows HSE tuning influence on optical properties of 
the anisotropically delocalized defect state (shallow 
acceptor state). The calculated results are compared to 
experimentally observed PL parameters. 
 

 
FIG. 7 (color online). Dependence of calculated optical properties 
of the shallow defect state of MgGa acceptor on the range separation 
parameter μ in HSE hybrid functional with α = 0.25. Horizontal 
dashed lines are experimentally measured values of PL maximum 
(defined as a maximum of the PL band envelope) and ZPL of the 
UVL band shown in Fig. 1. Vertical dashed line marks a value of μ 
for which generalized Koopmans condition is fulfilled. Upper 
horizontal axis shows IP calculated with corresponding values of μ.  

 
The calculated IP linearly depends on the HSE range 
separation parameter μ, which allows comparison of 
the optical transitions via MgGa acceptor with varying 
μ and IP along the same axis. The shallow 
anisotropically delocalized defect state produces 
reasonable results for a range of HSE parameters μ. 
However, as shown in Fig. 7, excellent agreement with 
experiment is obtained for μ = 0.161 Å-1, which is 
where the generalized Koopmans condition is fulfilled, 
and PL maximum of shallow MgGa acceptor state 
approaches an experimental value of 3.24 eV. The ZPL 
of the obtained PL band in this case is overestimated 
only slightly by 0.03 eV. It is also interesting to note 
that for these HSE parameters bulk GaN IP is 
calculated to be 6.7 eV, which happens to be an 
average value of available experimental values.  

 
 

V. DUAL NATURE OF Mg ACCEPTOR 
 

A. Small polarons and anisotropically delocalized 
state 
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As mentioned above, three distinct defect 
states of neutral MgGa,5 with different lattice 
configurations of similar energies are two localized 
small polarons and one anisotropically delocalized 
shallow state. The latter is delocalized in [ 1120 ] 
direction of wurtzite GaN and localized in all other 
directions. The spin densities of three MgGa

0  defect 
states, calculated using the Koopmans tuned HSE, are 
shown in Fig. 8. Lattice distortions that lead to the two 
small polaronic states (a) and (b), and the 
anisotropically delocalized acceptor state (c) are 
similar to those in Ref. 5. Our calculations show that 
the lowest energy defect state is the small polaron 

localized along the [1100 ] direction (Fig. 8 (a)). The 
distortion that leads to self-trapping of the hole is the 
Mg-N bond length increased in this direction to 2.20 Å, 
compared to the other three Mg-N bonds of 2.01 Å. 
The state localized along [0001] direction (Fig. 8 (b)) 
is 12 meV higher in energy, with Mg-N bond in this 
direction extended to 2.27 Å. Finally, the 
anisotropically delocalized state (Fig. 8 (c)) is 31 meV 
above the lowest energy state, with Mg-N bond lengths 
with localized spin density of 2.06 Å, only slightly 
larger than the other two of 2.03 Å. 
 

 
FIG. 8 (color online). Spin density isosurfaces at 10% of maximum 
value of the three stable defect states of neutral MgGa acceptor. For 
clarity, only nitrogen atoms around the Mg impurity are shown, and 
the rest of GaN host atoms are removed. Wurtzite crystallographic 
axes are shown to illustrate orientation of the defect states: (a) and 
(b) are localized small polarons, and (c) is the anisotropically 
delocalized acceptor state.  
 

 
For a well localized acceptor state, i.e. small 

polaron, there is virtually no defect state wavefunction 
overlap between adjacent supercells and no defect state 

dispersion. However, a shallow acceptor state, can lead 
to delocalization errors, so k-point sampling and 
supercell sizes are critical. Fig. 9 shows the HSE band 
structure of neutral MgGa acceptor calculated using 128 
and 300-atom supercells, using above discussed HSE 
parameters. The bulk GaN bandgap in this case is 3.22 
eV, computed in k-point converged primitive unit cell. 
The 128-atom supercell calculation at the  Γ-point 
shows slight error in the bandgap due to k-point 
sampling, yielding the bandgap of 3.28 eV. This k-
point sampling error is significantly reduced in 300-
atom supercells, yielding the bandgap of 3.23 eV, close 
to the converged bulk value.  
 

 

FIG. 9 (color online). Band structure of the shallow defect state of 
neutral MgGa acceptor calculated using Koopmans tuned HSE (α = 
0.25, μ = 0.161 Å-1). Panel (a) shows band structure obtained from 
128-atom supercells. Panel (b) shows the comparison of the MgGa 
impurity bands computed with 128- and 300-atom supercells, with 
impurity bandwidths in the Γ-M direction of 0.36 and 0.18 eV, 
respectively. 

 
   
Of the three possible defect states, Fig. 9 shows the 
band structure for the shallow state (Fig. 8 (c)), which 
exhibits the largest dispersion. In 128-atom supercell 
the defect wavefunction overlap leads to a significant 
dispersion and an upward shift of the eigenvalues 
around the Γ point. In this case the bandwidth of the 
MgGa

0  impurity band in a 128-atom supercell in the Γ-M 
direction is 0.36 eV, while that in 300-atom supercell is 
0.18 eV. For a Γ-point only calculation, the k-point 
sampling error in each case can be estimated by finding 
the energy difference between the Γ-point eigenvalue 
and the impurity band center of mass. Since this 
impurity band is localized in all directions except 

(a) (b) 

(c) 
[1120]

[0001]
[1100]

[0001]

[0001]
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[1120], we find this error to be ~0.12 eV in 128-atom 
supercell, which is about half of the energy of defect 
transition level itself. For 300-atom supercell this error 
is 0.05 eV. In both cases this error is partially cancelled 
by the potential alignment of eigenvalues to the bulk 
VBM (Sec. IV.C). However, the impurity band center 
of mass in 128-atom supercell is also shifted upward 
by ~0.07 eV compared to that of the 300-atom 
supercell, due to a larger wavefunction overlap. Also, 
using 128-atom (or smaller) supercells with a k-point 
mesh for a shallow acceptor can lead to erroneous 
occupations of the impurity band at k-points far from Γ, 
due to the spurious band dispersion. This can lead to 
wrong defect charge densities, forces, and atomic 
relaxations. Therefore, a safer approach, adopted in 
this work, is to use a relatively large 300-atom 
supercell at the  Γ point, albeit at a significantly 
increased computational cost. In calculations of 
transition levels and optical transitions,  Γ-point 
eigenvalues are corrected using both the potential 
alignment to the bulk VBM and k-point sampling error 
correction. For a neutral MgGa in 300-atom supercell, 
both corrections are small, -0.015 eV and 0.05 eV, 
respectively.  
 

B. Why localized small polaron states of MgGa are 
not observed in PL experiments 

Ignoring vibrational properties of MgGa, and 
taking into account typically large (microseconds) 
lifetimes of defect PL bands, the energies of the three 
defect states suggest that the lowest energy localized 
small polaron (Fig. 8 (a)) should be responsible for the 
optical properties of MgGa acceptor. Our calculations 
show that this defect state would produce a PL 
maximum at 2.8 eV, with a ZPL at 3.23 eV, and the 
0/− thermodynamic transition level at 0.27 eV. This is 
similar to other theoretical results obtained in Refs. [3-
5]. Strongly localized nature of this small polaron leads 
to the predicted wide PL band, with the Franck-
Condon shift of 0.43 eV, which is a signature of a deep 
defect state. However, this prediction clearly 
contradicts the experiment, where a very narrow PL 
band is observed (Fig. 1), which is a signature of a 
typical shallow defect with a weakly localized hole. 
Varying the HSE parameters leads to slight changes in 
the relative energies between the three states in Fig. 8, 
but the hole ground state always remains well localized, 
with large relaxation energies, around ~0.4-0.5 eV. 
   

 
FIG. 10 (color online). Configuration coordinate diagram of MgGa 
acceptor. Left panel shows full-scale CC diagram with lowest 
parabola corresponding to the 1− charge ground state of MgGa 
acceptor. The three upper parabolas labeled (a-c) correspond to the 
three configurations of the neutral MgGa acceptor shown in Fig. 8. 
Downward arrows show possible optical transitions, however only 
the anisotropically delocalized acceptor state (c) is observed in 
experiment (see text). Right panel shows a zoomed-in configuration 
potential curve of the neutral MgGa acceptor (upper parabolas in the 
left panel), with computed vibrational energy levels and probability 
densities shown with dashed lines.  
 

This contradiction can be resolved with the 
help of a detailed to scale CC diagram for all three 
neutral MgGa acceptor states, which is shown in Fig. 10. 
The lowest parabola on the left panel is the 1− charge 
state of MgGa acceptor, with the curvature determined 
from the relaxation energies computed for 1− charge 
state of the defect. Left panel in Fig. 10 also shows the 
vibrational levels of the 1− ground state, separated by 
91 meV, which are obtained from the measured 
phonon replicas (Fig. 1). Calculated resonant 
absorption, and subsequent relaxation energy of the 
neutral defect yields the curvature of the upper 
parabola corresponding to the anisotropically 
delocalized acceptor state (Fig. 8(c)). The calculated 
curvature of parabola (c) is very similar to that of the 
1− ground state, suggesting similar vibrational energies 
of the anisotropically delocalized acceptor state (c). 
However, the presence of the localized polaronic states 
(a) and (b) introduces a perturbation to the total 
configuration potential of the neutral MgGa acceptor. 
The curvatures of the polaronic state parabolas were 
obtained using HSE calculations combined with NEB 
method. To test the validity of the harmonic 
approximation we also used this approach for the 
anisotropically delocalized state (c). The resulting HSE 
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computed total energies for MgGa
0  are shown as red 

circles in Fig. 10. The parabolic fits into relaxation and 
transition energies in Fig. 10 are in a very good 
agreement with these direct HSE calculations of the 
CC diagram. HSE calculations yield the barrier of 53 
meV, between the (a) and (b) localized states. The 
calculated barrier between the delocalized state (c) and 
the localized state (a) is ~100 meV (from (c) to (a)). 
Assuming the same reduced masses of the local 
vibrational modes for both 1− and neutral states of 
MgGa acceptor, allows numerical solution of a 
vibrational problem in the total triple-well potential of 

MgGa
0  (right panel of Fig. 10). We find the vibrational 

ground state of the MgGa
0

 to be 73 meV above the 
bottom of the well (a), which is 42 meV above the 
delocalized state minimum (c). In the ground state, the 
square of the vibrational wavefunction, shown with a 
dashed line in Fig. 10, exhibits a single peak around 
the delocalized acceptor state (c). The PL band shape 
can be thought of as a projection of this vibrational 
probability onto the 1– ground state configuration 
curve (see, for example, Fig. 14 in Ref. [9]). Therefore 
in this case only the shallow acceptor state can be 
observed as the PL peak and ZPL in experiment. The 
optical transitions associated with the two small 

polaronic states of MgGa
0  are significantly less 

probable. These states do not produce separate PL 
bands at 2.8 and 2.7 eV, but instead may slightly 
distort the low-energy tail of the UVL band. Thus, 
upon photoexcitation, the system captures a hole and 
relaxes into the vibrational ground state of neutral 
MgGa acceptor, from where optical transition occurs, 
producing experimentally observed UVL band, with a 
characteristic shallow fine structure (Franck-Condon 
shift of 0.07 eV), a computed maximum of 3.24 eV 
(Fig. 10), and ZPL of 3.31 eV. From the CC diagram 

we also estimate the Huang-Rhys factor for this PL 
band to be ~1, which is close to the experimental value 
of 0.5. Thus, all calculated parameters are in excellent 
agreement with experimentally measured data for the 
Mg-related UVL band.  

 
VI. CONCLUSIONS 

 
 In conclusion, we have resolved a long-
standing disagreement between optical measurements 
of the UVL band in GaN and theoretical predictions of 
the strongly localized polaronic hole ground state of 
MgGa acceptor. We have used HSE hybrid functional 
tuned to fulfill generalized Koopmans condition, rather 
than a commonly used tuning of HSE to the 
experimental bandgap. The advantage of this approach 
is that it correctly reproduces the defect state 
eigenvalues with respect to the VBM. In case of 
acceptors, neutral defect state eigenvalues can be used 
to calculate optical transition energies, without relying 
on corrections for the artificial electrostatic interactions 
in periodic supercells. The calculated results show 
excellent agreement with experimental PL 
measurements. Therefore, the HSE hybrid functional 
parametrization obtained in this work represents an 
improvement for calculations of defects in GaN, with 
exception of those where the transition levels are close 
to the conduction band.  
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