
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Self-learning Monte Carlo with deep neural networks
Huitao Shen, Junwei Liu, and Liang Fu

Phys. Rev. B 97, 205140 — Published 29 May 2018
DOI: 10.1103/PhysRevB.97.205140

http://dx.doi.org/10.1103/PhysRevB.97.205140

Self-learning Monte Carlo with Deep Neural Networks

Huitao Shen,1, ∗ Junwei Liu,1, 2, † and Liang Fu1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China

Self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its
efficiency has been demonstrated in various systems by introducing an effective model to propose
global moves in the configuration space. In this paper, we show that deep neural networks can be
naturally incorporated into SLMC, and without any prior knowledge, can learn the original model
accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity
for a local update from O(β2) in Hirsch-Fye algorithm to O(β lnβ), which is a significant speedup
especially for systems at low temperatures.

As an unbiased method, Monte Carlo (MC) simulation
plays an important role in understanding condensed mat-
ter systems. Although great successes have been made in
the past several decades, there are still many interesting
systems that are practically beyond the capability of con-
ventional MC methods, due to the strong autocorrelation
of local updates or due to the heavy computational cost of
a single local update. In the midst of recent developments
of machine learning techniques in physics1–17, a general
method called “Self-learning Monte Carlo (SLMC)” was
introduced to reduce or solve these problems, first in
classical statistical mechanics models18,19, later extended
to classical spin-fermion models20, determinantal quan-
tum Monte Carlo (DQMC)21, continuous-time quantum
Monte Carlo22,23 and hybrid Monte Carlo24. Recently,
it helped understand itinerant quantum critical point
by setting up a new record of system size in DQMC
simulations25.

Designed under the philosophy of “first learn, then
earn”, the central ingredient of SLMC is an effective
model that is trained to resemble the dynamics of the
original model. The advantage of SLMC is two-fold.
First, simulating the effective model is much faster, which
enables the machine to propose global moves to accel-
erate MC simulations on the original model. Second,
the effective model can directly reveal the underlying
physics, such as the RKKY interaction in the double-
exchange model20 and the localized spin-spin imaginary-
time correlation23. We note that there have been
many previous works incorporating effective potentials
or proposing various kinds of global moves to improve
Monte Carlo simulation efficiency26–30.

The efficiency of SLMC depends on the accuracy of the
effective model, which is usually invented based on the
human understanding of the original system18,20–23,25.
To further extend SLMC to complex systems where an
accurate effective model is difficult to write down, in this
work, we employ deep neural networks (DNN) as effective
models in SLMC. Instead of treating neural networks as
black boxes with a huge number of parameters and train-
ing them blindly, we show how to design highly efficient
neural networks that respect the symmetry of the system,
with very few parameters yet capturing the dynamics of
the original model quantitatively. The generality of this

approach is guaranteed by the mathematical fact that
DNNs are able to accurately approximate any continu-
ous functions given enough fitting parameters31,32. Prac-
tically, our DNNs can be trained with ease using back-
propagation-based algorithms33, and can be directly eval-
uated in dedicated hardwares34. Compared with other
machine learning models in SLMC such as the restricted
Boltzmann machine19,24, which can be regarded as a
fully-connected neural network with one hidden layer, our
DNNs have greater expressibility (more hidden layers)
and flexibility (respecting the symmetry of the model).

As a concrete example, we demonstrate SLMC with
DNNs on quantum impurity models. In the following,
we first review SLMC for fermion systems. We then im-
plement the simplest neural networks and test their per-
formances. Next, we show how the visualization of these
networks helps design a more sophisticated convolutional
neural network that is more accurate and efficient. Fi-
nally, we discuss the complexity of our algorithm.
SLMC for Fermions For an interacting fermion sys-

tem, the partition function is given by Z = Tr[e−βĤf],
where β = 1/T is the inverse temperature, and the trace
is over the grand-canonical ensemble. One often ap-

plies the Trotter decomposition e−βĤf =
∏L
i=1 e

−∆τĤf ,
∆τ = β/L, the Hubbard-Stratonovich transformation

Tr[e−∆τĤf] =
∑N
sj=±1 Tr[e−∆τĤ[sj]], and then integrates

out fermions. We denote sji as the j-th auxiliary Ising
spin on the i-th imaginary time slice. At this stage, the
partition function is written purely on the auxiliary Ising
spin degrees of freedom S ≡ {sji}35–37:

Z =
∑
S

det

[
I +

L∏
i=1

e−∆τĤ[si]

]
≡
∑
S
W [S]. (1)

The Monte Carlo sampling is in the configuration space
of S. The probability p of accepting a move, for
example in the Metropolis-Hastings algorithm, is the
weight ratio between two configurations: p(S1 → S2) =
min (1,W [S2]/W [S1]). Generally, one must evaluate the
determinant in Eq. (1), which is time-consuming.

The idea of SLMC is to introduce an effective model
Heff [S;α] that depends on some trainable parameters
α. We would like to optimize α so that Weff [S;α] ≡

2

e−βHeff [S;α] and W [S] are as close as possible. More for-
mally, we would like to minimize the mean squared error
(MSE) of the logarithmic weight difference:

min
α

ES∼W [S]/Z (lnWeff [S;α]− lnW [S])
2
. (2)

The morale of minimizing this error will be discussed
shortly later. Following the maximum likelihood princi-
ple, in practice one could minimize the MSE on a given
data set called the training set {S,W [S]}, which is ob-
tained from the Monte Carlo simulation of the original
model. This training set is of small size compared with
that of the whole configuration space, but is considered
typical mimicking the distribution of the original model
because it is generated by the importance sampling. Im-
portantly, the training data taken from the Markov chain
should be independently distributed in order for the max-
imum likelihood estimation to work well.

One then uses the trained effective model to propose
global moves. Starting from a given configuration S1,
one first performs standard Monte Carlo simulations on
the effective model S1 → S2 → . . . → Sn. Configuration
Sn is accepted by the original Markov chain with the
probability18,20

p(S1 → Sn) = min

(
1,
W [Sn]

W [S1]

Weff [S1;α]

Weff [Sn;α]

)
. (3)

As proven in Supplemental Material38, the acceptance
rate 〈p〉, defined as the expectation of configuration ac-
ceptation probability p defined in Eq. (3), is directly re-
lated to the MSE in Eq. (2) as 〈(ln p)2〉 = MSE. This
means MSE serves as a very good estimation of the accep-
tance rate. Indeed, we will see in the following that these
two quantities correspond with each other very well.

The acceleration of SLMC can be analyzed as follows.
Denote the computational cost of computing W [S] and
Weff [S;α] given S as T and Teff , and the autocorrelation
time of a measurement without SLMC as τ . Suppose
T ≥ Teff , one can always to make enough (& τ) updates
in the effective model so that the proposed configura-
tion Sn is uncorrelated with S1. In this way, to obtain
two independent configurations without or with SLMC, it
takes time O(τT) and O((τTeff + T)/〈p〉). If simulating
effective model is efficient τTeff � T , as demonstrated
by cases studied in Ref.20,21, the acceleration is of order
〈p〉τ .

In principle, there is no limitation on the functional
form of Heff [S;α]. In the following, we choose to con-
struct Heff [S;α] using neural networks of different ar-
chitectures. To be concrete, we study the asymmetric
Anderson model with a single impurity39

Ĥ =Ĥ0 + Ĥ1, (4)

Ĥ0 =
∑
k

εkĉ
†
kĉk + V

∑
kσ

(ĉ†kd̂σ + h.c.) + µn̂d, (5)

Ĥ1 =U

(
n̂d,↑ −

1

2

)(
n̂d,↓ −

1

2

)
, (6)

FIG. 1. The performance of the effective model at different
chemical potentials. The dashed blue line is the estimation of
acceptance rates through MSE computed in a test data set38:

e−
√
MSE. The discrepancy between the solid and the dashed

line is due to the fact that in general 〈p〉 6= e−
√
〈(ln p)2〉 =

e−
√
MSE and the effective model is biased. Here β = 20, U =

3.0, V = 1.0 and L = 120. The number of neurons in the first
and second hidden layers are set as N1 = 100 and N2 = 50.
The activation function is the rectified linear unit f(x) =
max{x, 0}. Inset: A schematic show of the fully-connected
neural network. The red circles represent neurons in the input
layer with L = 4, and the blue circles represent neurons in
two hidden layers with N1 = 6 and N2 = 3. The last layer is
a linear output layer.

where d̂σ and ĉk are the fermion annihilation operator
for the impurity and for the conduction electrons respec-

tively. n̂d,σ ≡ d̂†σd̂σ, n̂d =
∑
σ=↑/↓ n̂d,σ. With different

fillings, this model hosts very different low-temperature
behaviors identified by the three regimes: local mo-
ment, mixed valence and empty orbital40. The Hubbard-
Stratonovich transformation on the impurity site is (up
to a constant factor)

e−∆τĤ1 =
1

2

∑
s=±1

eλs(n̂d,↑−n̂d,↓), (7)

with coshλ = e∆τU/2. In total there are L auxiliary
spins, one at each imaginary time slice denoted as a vec-
tor s ≡ S. For impurity problems, one may integrate
out the continuous band of conducting electrons explic-
itly and update with Hirsch-Fye algorithm41,42. In the
following, the conduction band is assumed to have semi-
circular density of states ρ(ε) = 2

√
1− (ε/D)2/(πD).

The half bandwidth D = 1 is set to be the energy unit.
Fully-Connected Neural Networks To gain some insight

on how to design the neural network as the effective
model, we first implement the simplest neural network,
which consists of several fully-connected layers. Its struc-
ture is shown schematically in the inset of Fig. 1. The
effect of i-th fully-connected layer can be summarized as

3

FIG. 2. Upper: Weight matrix W1 taken from the fully-
connected neural network of µ = 0 in Fig. 1. Lower: Av-
erage magnitude of nonzero matrix elements in W1 of fully-
connected neural networks in Fig. 1. The “nonzero” matrix
element is defined as the element that is greater than 10% of
the maximum element in all 7 weight matrices W1 from net-
works trained at 7 different chemical potentials. Only around
3% elements are nonzero in these weight matrices.

ai+1 = fi(Wiai + bi), where ai is the input/output vec-
tor of the i-th/(i− 1)-th layer. Wi, bi, fi are the weight
matrix, bias vector, and the nonlinear activation func-
tion of such layer. The layer is said to have Ni neurons
when Wi is of size Ni×Ni−1. This structure as the varia-
tional wavefunction in quantum many-body systems has
recently been studied extensively43–52.

We take the auxiliary Ising spin as the input vector
s ≡ a1. It is propagated through two nonlinear hid-
den layers with N1 and N2 neurons, and then a linear
output layer. The output is a number represents the
corresponding weight lnWeff [s]. We trained the fully-
connected neural networks of different architectures and
in different physical regimes. The details on the networks
and training can be found in Supplemental Material38.

As shown in Fig. 1, the trained neural network resem-
bles the original model very well. It retains high accep-
tance rates (> 70%) steadily throughout all the parame-

ter regimes. In addition, e−
√

MSE indeed shares the same
trend with the acceptance rate 〈p〉. This suggests that to
compare different effective models, one can directly com-
pare the MSE instead of computing the acceptance rate
every time.

To extract more features from neural networks, we vi-

FIG. 3. The structure of the convolutional neural network.
The first layer is a convolutional layer with two kernels (dark
and light blue) of size 3. The stride of the sliding inner prod-
uct is 2. The second layer is a fully-connected layer and the
last layer is a linear layer.

sualize the weight matrix of the first layers in Fig. 2. The
most striking feature is its sparsity. Although the net-
work is fully-connected by construction, most of weight
matrix elements vanish after the training, and thus the
network is essentially sparsely connected. Clearly, even
without any prior knowledge of the system, and using
only field configurations and their corresponding ener-
gies, the neural network can actually “learn” that the
correlation between auxiliary spins is short ranged in
imaginary time.

Weight matrices in neural networks of different chem-
ical potentials look similar. The main difference lies in
the magnitude of the matrix elements. Shown in Fig. 2,
the neural network could capture the relative effective in-
teraction strength. When the chemical potential moves
away from half-filling, less occupation on the impurity
site 〈nd〉 leads to a weaker coupling between the auxil-
iary spins and the impurity electrons, according to the
Hubbard-Stratonovich transformation Eq. (7). This fur-
ther causes the decrease of interaction between the aux-
iliary spins induced by conducting electrons.

We end this section by briefly discussing the com-
plexity of fully-connected neural networks. The for-
ward propagation of the spin configuration in the fully-
connected network involves three matrix-vector multipli-
cations. Each multiplication takes computational cost
O(L2), with L the number of imaginary-time time slices
that is usually proportional to βU . Thus the run-
ning time for a local update in the effective model is
Teff = O(L2). In the Hirsch-Fye algorithm, each local
update also takes time T = O(L2)41,42. Since Teff = T ,
SLMC based on fully-connected networks has no advan-
tage in speed over the original Hirsch-Fye algorithm. In
the next section, we will show that by taking advantage
of the sparse-connection found in the neural network, we
can reduce the complexity and make the acceleration pos-
sible.
Exploit the Sparsity The sparsity found in the previ-

ous section inspires us to design a neural network that

4

is sparsely connected by construction. Moreover, it is
known physically that the interaction between the auxil-
iary spins in imaginary time is translationally invariant,
i.e., only depends on |τi− τj |. A neural network that has
both properties is known as the “(1D) convolutional neu-
ral network”33. Instead of doing matrix multiplications
as in fully-connected networks, convolutional networks
produce their output by sliding inner product denoted
by ∗: ai+1 = fi(ai ∗ hi + bi) (Fig. 3). hi and bi are called
the kernel and the bias of such layer. A detailed math-
ematical description of such networks can be found in
Supplemental Material38.

The key parameters in convolutional neural networks
are the number and size of kernels and the stride of slid-
ing inner product. The setup of these parameters can be
guided from the fully-connected neural networks: The
number and the size of kernels is determined according
to the pattern of weight matrices in the fully-connected
neural networks, and the stride could be chosen to be half
of the kernel size to avoid missing local correlations. For
example, for the model whose weight matrix is shown in
Fig. 2, we could choose 2 kernels of size 9 for the first
convolutional layer with a stride 3. Then several con-
volutional layers designed in the same spirit are stacked
until the size of the output is small enough. Finally, one
adds a fully-connected layer to produce the final output.

Compared with the fully-connected network, the con-
volutional network has much fewer trainable parame-
ters, which explicitly reduces the redundancy in the
parametrization. The fully-connected networks in Fig. 2
typically have 105 trainable parameters, while the con-
volutional networks have only 102 — smaller by three
orders of magnitude.

The performance of convolutional networks are shown
in Fig. 4. The measured fermion imaginary-time Green’s
function is shown in the Supplemental Material38. Inter-
estingly, the acceptance rate of global moves proposed by
convolutional networks are sometimes even higher than
those proposed by fully-connected networks. In princi-
ple, fully-connected networks with more parameters have
greater expressibility. However, for this specific Ander-
son model, the parameterization of the effective model
has a lot of redundancy, as the auxiliary spin interactions
are local and are translationally invariant. The convolu-
tional networks reduce this redundancy by construction,
and are easier to train potentially due to the smaller pa-
rameter space.

The fewer parameters not only make the network eas-
ier to train, but also faster to evaluate. Each slide inner
product has the computational cost O(L). It is impor-
tant to notice that the strides of the sliding inner product
are greater than one so that the dimensions of interme-
diate outputs keep decreasing. In this way, the number
of the convolutional layers is of order O(lnL) because
of the large stride. The final fully-connected layer is
small. Propagating through such layer only costs a con-
stant computational time that is insensitive to L. To
summarize, each local update on the effective model has

(a)

(b)

FIG. 4. (a) The performance of the convolutional network
compared with the fully-connected network in Fig. 1. The
number of trainable parameters is 211 (2 kernels in the first
convolutional layer) or 291 (6 kernels in the first convolutional
layer). Here β = 20, U = 3.0, V = 1.0 and L = 120. (b)
The performance of the convolutional network at different
temperatures. Here U = 3.0, µ = −1.0, V = 1.0 and L =
2βU . The conventional neural network details are described
in Supplemental Material38.

complexity Teff = O(L lnL), while that in Hirsch-Fye al-
gorithm is T = O(L2). Since the autocorrelation time
for the desired observable is at least of order τ = Ω(L)
in order for every auxiliary spin to be updated once, i.e.
τTeff ≥ T , the acceleration with respect to the original
Hirsch-Fye algorithm is then τT/(τTeff +T) ≈ T/Teff , of
order 〈p〉L/ lnL. It is especially significant for large L.
This efficiency allows us to train effective models at very
low temperatures very effectively (Fig. 4(b)), whereas
training a fully-connected network is very costly, if pos-
sible at all.

Conclusion In this paper, we showed how to integrate
neural networks into the framework of SLMC. Both the
architecture of the networks and the way we design these
networks are general and not restricted to impurity mod-
els. This work can help design neural networks as effec-
tive models in more complicated systems, thereby intro-
ducing the state-of-art deep learning hardwares into the
field of computational physics.

Particularly for impurity models, we demonstrated
that the complexity of the convolutional network for
a local update is improved to O(L lnL). We note
that there exist continuous-time Monte Carlo algorithms
that generally outperform the discrete-time Hirsch-Fye

5

algorithm53,54. Although similar self-learning approaches
have already been implemented in these systems22,23, de-
signing an accurate effective model in these continuous-
time algorithms is not straightforward as the size of the
field configuration keeps changing during the simulation.
Looking forward, there have already been attempts in-
troducing machine learning into dynamical mean-field
theory (DMFT)55,56. It will be interesting to accelerate
DMFT simulation by integrating SLMC into their im-
purity solvers57. Moreover, it is worthwhile to develop
more advanced network architectures beyond convolu-
tional networks, e.g., networks that are invariant under
permutations of the input58. We leave all these attempts

for future work.

ACKNOWLEDGMENTS

H.S. thanks Bo Zeng for helpful discussions. This work
is supported by DOE Office of Basic Energy Sciences,
Division of Materials Sciences and Engineering under
Award DE-SC0010526. J.L. is supported by the start-
up funds from HKUST. L.F. is partly supported by the
David and Lucile Packard Foundation.

∗ huitao@mit.edu
† liuj@ust.hk
1 J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
2 L. Wang, Phys. Rev. B 94, 195105 (2016).
3 A. Tanaka and A. Tomiya, J. Phys. Soc. Japan 86, 063001

(2017).
4 T. Ohtsuki and T. Ohtsuki, J. Phys. Soc. Japan 85, 123706

(2016).
5 E. P. L. van Nieuwenburg, Y.-H. Liu, and S. D. Huber,

Nat. Phys. 13, 435 (2017).
6 Y. Zhang and E.-A. Kim, Phys. Rev. Lett. 118, 216401

(2017).
7 K. Mills, M. Spanner, and I. Tamblyn, Phys. Rev. A 96,

042113 (2017).
8 S. J. Wetzel, Phys. Rev. E 96, 022140 (2017).
9 W. Hu, R. R. P. Singh, and R. T. Scalettar, Phys. Rev. E
95, 062122 (2017).

10 F. Schindler, N. Regnault, and T. Neupert, Phys. Rev. B
95, 245134 (2017).

11 S. Lu, S. Huang, K. Li, J. Li, J. Chen, D. Lu, Z. Ji, Y. Shen,
D. Zhou, and B. Zeng, arXiv:1705.01523.

12 M. Cristoforetti, G. Jurman, A. I. Nardelli, and
C. Furlanello, arXiv:1705.09524.

13 C. Wang and H. Zhai, Phys. Rev. B 96, 144432 (2017).
14 P. Zhang, H. Shen, and H. Zhai, Phys. Rev. Lett. 120,

066401 (2018).
15 W.-J. Rao, Z. Li, Q. Zhu, M. Luo, and X. Wan, Phys.

Rev. B 97, 094207 (2018).
16 N. Yoshioka, Y. Akagi, and H. Katsura, arXiv:1709.05790.
17 P. Huembeli, A. Dauphin, and P. Wittek, Phys. Rev. B

97, 134109 (2018).
18 J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95,

041101 (2017).
19 L. Huang and L. Wang, Phys. Rev. B 95, 035105 (2017).
20 J. Liu, H. Shen, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev.

B 95, 241104 (2017).
21 X. Y. Xu, Y. Qi, J. Liu, L. Fu, and Z. Y. Meng, Phys.

Rev. B 96, 041119 (2017).
22 L. Huang, Y.-f. Yang, and L. Wang, Phys. Rev. E 95,

031301 (2017).
23 Y. Nagai, H. Shen, Y. Qi, J. Liu, and L. Fu, Phys. Rev.

B 96, 161102 (2017).
24 A. Tanaka and A. Tomiya, arXiv:1712.03893.
25 Z. H. Liu, X. Y. Xu, Y. Qi, K. Sun, and Z. Y. Meng,

arXiv:1706.10004.

26 S. Baroni and S. Moroni, Phys. Rev. Lett. 82, 4745 (1999).
27 C. Pierleoni and D. M. Ceperley, ChemPhysChem 6, 1872

(2005).
28 O. F. Syljůasen and A. W. Sandvik, Phys. Rev. E 66,

046701 (2002).
29 V. G. Rousseau, Phys. Rev. E 78, 056707 (2008).
30 G. Carleo, F. Becca, S. Moroni, and S. Baroni, Phys. Rev.

E 82, 046710 (2010).
31 G. Cybenko, Math. Control. Signals, Syst. 2, 303 (1989).
32 K. Hornik, Neural Networks 4, 251 (1991).
33 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning

(MIT Press, 2016) http://www.deeplearningbook.org.
34 N. P. Jouppi, C. Young, N. Patil, D. Patterson,

G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, in Proceedings
of the 44th Annual International Symposium on Computer
Architecture, ISCA ’17 (ACM, New York, NY, USA, 2017)
pp. 1–12.

35 R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys.
Rev. D 24, 2278 (1981).

36 J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
37 S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E.

Gubernatis, and R. T. Scalettar, Phys. Rev. B 40, 506
(1989).

38 See Supplemental Material for (i) proof of the relation be-
tween the acceptance rate and the training MSE; (ii) ba-
sics of neural networks; (iii) details of the neural network
structure and the training hyperparameters; (iv) measured
fermion imaginary-time Green’s function.

39 P. W. Anderson, Phys. Rev. 124, 41 (1961).
40 F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1978).
41 J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521

mailto:huitao@mit.edu
mailto:liuj@ust.hk
http://dx.doi.org/10.1038/nphys4035
http://dx.doi.org/10.1103/PhysRevB.94.195105
http://dx.doi.org/10.7566/JPSJ.86.063001
http://dx.doi.org/10.7566/JPSJ.86.063001
http://dx.doi.org/10.7566/JPSJ.85.123706
http://dx.doi.org/10.7566/JPSJ.85.123706
http://dx.doi.org/10.1038/nphys4037
http://dx.doi.org/10.1103/PhysRevLett.118.216401
http://dx.doi.org/10.1103/PhysRevLett.118.216401
http://dx.doi.org/10.1103/PhysRevA.96.042113
http://dx.doi.org/10.1103/PhysRevA.96.042113
http://dx.doi.org/10.1103/PhysRevE.96.022140
http://dx.doi.org/10.1103/PhysRevE.95.062122
http://dx.doi.org/10.1103/PhysRevE.95.062122
http://dx.doi.org/10.1103/PhysRevB.95.245134
http://dx.doi.org/10.1103/PhysRevB.95.245134
http://arxiv.org/abs/1705.01523
http://arxiv.org/abs/1705.01523
http://arxiv.org/abs/1705.09524
http://arxiv.org/abs/1705.09524
http://dx.doi.org/10.1103/PhysRevB.96.144432
http://dx.doi.org/ 10.1103/PhysRevLett.120.066401
http://dx.doi.org/ 10.1103/PhysRevLett.120.066401
http://dx.doi.org/ 10.1103/PhysRevB.97.094207
http://dx.doi.org/ 10.1103/PhysRevB.97.094207
http://arxiv.org/abs/1709.05790
http://arxiv.org/abs/1709.05790
http://dx.doi.org/10.1103/PhysRevB.97.134109
http://dx.doi.org/10.1103/PhysRevB.97.134109
http://dx.doi.org/ 10.1103/PhysRevB.95.041101
http://dx.doi.org/ 10.1103/PhysRevB.95.041101
http://dx.doi.org/10.1103/PhysRevB.95.035105
http://dx.doi.org/ 10.1103/PhysRevB.95.241104
http://dx.doi.org/ 10.1103/PhysRevB.95.241104
http://dx.doi.org/ 10.1103/PhysRevB.96.041119
http://dx.doi.org/ 10.1103/PhysRevB.96.041119
http://dx.doi.org/10.1103/PhysRevE.95.031301
http://dx.doi.org/10.1103/PhysRevE.95.031301
http://dx.doi.org/ 10.1103/PhysRevB.96.161102
http://dx.doi.org/ 10.1103/PhysRevB.96.161102
https://arxiv.org/abs/1712.03893
http://arxiv.org/abs/1712.03893
http://arxiv.org/abs/1706.10004
http://arxiv.org/abs/1706.10004
http://arxiv.org/abs/1706.10004
http://dx.doi.org/10.1103/PhysRevLett.82.4745
http://dx.doi.org/10.1002/cphc.200400587
http://dx.doi.org/10.1002/cphc.200400587
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.66.046701
http://dx.doi.org/10.1103/PhysRevE.78.056707
http://dx.doi.org/ 10.1103/PhysRevE.82.046710
http://dx.doi.org/ 10.1103/PhysRevE.82.046710
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://www.deeplearningbook.org
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1145/3079856.3080246
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevB.31.4403
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1103/PhysRevB.40.506
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRevLett.40.416
http://dx.doi.org/10.1103/PhysRevLett.56.2521

6

(1986).
42 R. M. Fye and J. E. Hirsch, Phys. Rev. B 38, 433 (1988).
43 G. Carleo and M. Troyer, Science 355, 602 (2017).
44 J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang,

arXiv:1701.04831.
45 D.-L. Deng, X. Li, and S. Das Sarma, Phys. Rev. X 7,

021021 (2017).
46 X. Gao and L.-M. Duan, Nat. Commun. 8, 662 (2017).
47 Y. Huang and J. E. Moore, arXiv:1701.06246.
48 G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer,

R. Melko, and G. Carleo, Nat. Phys. 14, 447 (2018).
49 H. Saito and M. Kato, J. Phys. Soc. Jpn. 87, 014001

(2018).
50 Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada,

Phys. Rev. B 96, 205152 (2017).
51 S. R. Clark, J. Phys. A Math. Theor. 51, 135301 (2018).

52 I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Phys. Rev. X 8, 011006 (2018).

53 E. Gull, P. Werner, A. Millis, and M. Troyer, Phys. Rev.
B 76, 235123 (2007).

54 E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov,
M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349
(2011).

55 L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld,
and A. J. Millis, Phys. Rev. B 90, 155136 (2014).

56 L.-F. Arsenault, O. A. von Lilienfeld, and A. J. Millis,
arXiv:1506.08858.

57 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Rev. Mod. Phys. 68, 13 (1996).

58 R. Kondor, H. T. Son, H. Pan, B. Anderson, and
S. Trivedi, arXiv:1801.02144.

http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevB.38.433
http://dx.doi.org/10.1126/science.aag2302
http://arxiv.org/abs/1701.04831
http://arxiv.org/abs/1701.04831
http://arxiv.org/abs/1701.04831
http://dx.doi.org/10.1103/PhysRevX.7.021021
http://dx.doi.org/10.1103/PhysRevX.7.021021
http://dx.doi.org/10.1038/s41467-017-00705-2
http://arxiv.org/abs/1701.06246
http://arxiv.org/abs/1701.06246
http://dx.doi.org/ 10.1038/s41567-018-0048-5
http://dx.doi.org/10.7566/JPSJ.87.014001
http://dx.doi.org/10.7566/JPSJ.87.014001
http://dx.doi.org/10.1103/PhysRevB.96.205152
http://dx.doi.org/10.1088/1751-8121/aaaaf2
http://dx.doi.org/ 10.1103/PhysRevX.8.011006
http://dx.doi.org/ 10.1103/PhysRevB.76.235123
http://dx.doi.org/ 10.1103/PhysRevB.76.235123
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/ 10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.90.155136
http://arxiv.org/abs/1506.08858
http://arxiv.org/abs/1506.08858
http://arxiv.org/abs/1506.08858
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://arxiv.org/abs/1801.02144
http://arxiv.org/abs/1801.02144

	Self-learning Monte Carlo with Deep Neural Networks
	Abstract
	Acknowledgments
	References

