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The growing interest in using x-ray spectroscopy for refined materials characterization calls for
accurate electronic-structure theory to interpret x-ray near-edge fine structure. In this work, we pro-
pose an efficient and unified framework to describe all the many-electron processes in a Fermi liquid
after a sudden perturbation (such as a core hole). This problem has been visited by the Mahan-
Noziéres-De Dominicis (MND) theory, but it is intractable to implement various Feynman diagrams
within first-principles calculations. Here, we adopt a non-diagrammatic approach and treat all the
many-electron processes in the MND theory on an equal footing. Starting from a recently introduced
determinant formalism [Phys. Rev. Lett. 118, 096402 (2017)], we exploit the linear-dependence of
determinants describing different final states involved in the spectral calculations. An elementary
graph algorithm, breadth-first search, can be used to quickly identify the important determinants
for shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small
terms. This search algorithm is performed over the tree-structure of the many-body expansion,
which mimics a path-finding process. We demonstrate that the determinantal approach is com-
putationally inexpensive even for obtaining x-ray spectra of extended systems. Using Kohn-Sham
orbitals from two self-consistent fields (ground and core-excited state) as input for constructing the
determinants, the calculated x-ray spectra for a number of transition metal oxides are in good agree-
ment with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by
this approach, are also discussed, such as shakeup excitations and many-body wave function overlap
considered in Anderson’s orthogonality catastrophe.

I. INTRODUCTION

There is a fast-growing interest in using first-principles
computational methods to interpret x-ray spectroscopies
for characterizations of materials and thereby enhance
our basic understanding of electronic structure1–20. Ful-
filling this task requires a reliable prediction of possible
atomic structures that could lead to the observed spec-
tra, and more challengingly, a generic theory that can
predict accurate x-ray spectral fingerprints for given sys-
tems. Central to a first-principles spectroscopic theory
is solving the dynamics of a many-electron Hamiltonian
upon excitation of a core electron by an x-ray photon,
for realistic systems ranging from molecules to solids, in
an efficacious manner.

From a fundamental viewpoint, the approaches to
tackle a many-body problem fall into two major cat-
egories. Quantum-field-theoretical methods21–24 focus
on describing the trajectories of a many-body system.
Through computing the path integrals of all trajecto-
ries from one many-body state to another, one obtains
the transition probability between the two. The field-
theoretical approach has given rise to a set of powerful
first-principles tools such as the GW and Bethe-Salpeter-
Equation (BSE) method25–28. In current implementa-
tions of these methods, only a finite set of diagrams are
incorporated, due to the daunting complexity of evalu-
ating all them. The other category of approaches fo-
cuses on the description of many-body wave functions
based on Slater determinants29–31. This leads to meth-
ods that are used prevalently in quantum chemistry such
as the full configuration interaction (CI) approach and
the coupled-cluster technique32–34, or exact diagonaliza-

tion for solving strongly-correlated systems35,36. Cur-
rently these methods are mostly applied to systems with
10 − 20 electrons limited by the exponential growth of
the configuration space.

For x-ray excitations and associated spectra, we have
witnessed the success of the constrained-occupancy den-
sity functional theory (∆SCF)4,11,14,15,19,37,38, which ap-
proximates an x-ray excited state as the combination of a
static core-hole perturbation with one empty Kohn-Sham
(KS) orbital in the final state. Recently, we highlighted
the shortcomings in this single-particle (1p) approach for
a class of 3d transition metal oxides (TMOs) and the
significant contributions of higher-order excitations in-
volving multiple electron-hole (e-h) pairs39. Driven by
these deficiencies, we proposed a better many-body wave-
function ansatz that approximates the initial and final
state with a single Slater determinant. The initial-state
Slater determinant is constructed from the KS orbitals
of the ground-state system, while the Slater determi-
nant for a specific final-state is derived from the KS or-
bitals of the core-excited system. Within this approxima-
tion, the transition amplitude can also be expressed as a
determinant39–43 comprising transformation coefficients
between the two KS basis sets. We find this determinant
approach can rectify the deficiency of the 1p ∆SCF ap-
proach for a few TMOs39. It is natural to ask: (a) when
it is necessary to apply the determinant approach, given
the previous success of the 1p ∆SCF approach in other
systems ? (b) can this approach permit access to higher-
order excitations and describe various many-body x-ray
spectral features beyond the BSE, especially for metallic
systems ? (c) is it practicable for calculations of extended
systems, given the huge configuration space?
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In this work, we answer these questions by demon-
strating an efficient yet simple approach to explore the
large configuration space in the determinant formalism.
A crucial first step is to relate similar determinants to one
another via exterior algebra44,45 and then evaluate them
via updates, rather than from scratch. Even so there are
still 106 to 109 many-body states to consider for configu-
rations with double e-h pairs . However, only a small por-
tion of these determinants have significant transition am-
plitudes, due to the spatially localized nature of core-level
excitations, as can be tested by brute-force calculations.
Motivated by this observation, we adopt a breadth-first
search (BFS) algorithm46,47 to look for nontrivial config-
urations rather than exhausting the entire configuration
space.

The BFS algorithm is a basic algorithm for travers-
ing a tree structure, finding the shortest path48,49, solv-
ing a maze50, and other combinatorial search problems.
Although the BFS algorithm cannot guarantee answers
within a polynomial time, substantial speed-up can often
be achieved via heuristically pruning the search tree51,52.
For the many-body configuration problem, we design the
BFS to search for active “pathways” from the initial state
to many excited-state configurations. Instead of directly
accessing a large number of high-order configurations, the
search algorithm first visits their parent configurations
with fewer e-h pairs. If the amplitude of a transition
to a high-order configuration is below a certain thresh-
old, the search algorithm will discard the configuration
before its child configurations are generated. Further-
more, if multiple pathways to a configuration interfere
destructively and result in a small transition amplitude,
the search algorithm will also discard that configuration.
We will show that this tree-pruning technique can typi-
cally lead to at least 100-fold speed-up in the calculation
of x-ray spectra. Although examples investigated in this
work are x-ray excitations, the search algorithm does not
require the perturbation to be local and can be extended
to arbitrary types of sudden perturbation to a Fermi gas.

This heuristic search process shares similar philoso-
phy with the restricted CI approaches53–56 in quantum
chemistry, or the expansion-series method57–59 for ob-
taining x-ray excitations over small strongly-correlated
clusters, in that these methods all actively construct the
most relevant configurations instead of passively enumer-
ating them. During the construction of the configuration
space, these methods estimate how likely a class of con-
figurations may contribute to the transition amplitude or
the multi-determinant expansion of interest. If a class of
configurations is proven to be barely relevant for the final
result, they will be thrown away to constraint the rapid
growth of the configuration space. What is unique in the
proposed BFS algorithm is that it relies on the hierarchi-
cal expansion of the many-body configurations at differ-
ent orders (1-, 2-, 3-body, etc.). Then we makes use of
the tree-pruning technique to remove configurations with
small transition amplitudes. These observations turn out
to be particularly helpful for simulating x-ray excitations

for systems in which strong correlations are absent, such
that a single-determinant approach is reasonably accu-
rate. However, in the presence of strong correlations,
the application of this approach to a multi-determinant
expansion will be explored in future work.

The determinant formalism is an exact solution to
the Mahan-Noziéres-De Dominicis (MND) model60,61

in which multiple electrons interact with a core hole.
Hence, this approach can naturally incorporate all many-
electron processes in the MND theory, which includes
the direct and exchange diagrams as in the BSE26–28,
the zig-zag diagrams, and the diagrams with a core hole
dressed by many e-h bubbles. While the BSE diagrams
mainly describe e-h attraction, or excitonic effects, the
zigzag or bubble diagrams describe higher order e-h ex-
citations that lead to shakeup features43,62–67 or many-
body effects due to reduced wave-function overlap. A
reduction in many-body wave function overlap is the ori-
gin of the Anderson orthogonality catastrophe40,66. If
one were to include all of these effects using the dia-
grammatic approach, a comprehensive set of techniques,
such as solving BSE-like equations and using a cumulant
expansion68,69, would be required. Here, the determi-
nant formalism, in conjunction with the first-principles
KS orbitals, provides an efficient means to investigate all
many-electron effects within the MND model rigorously,
for a wide energy range, within a simple unified frame-
work.

This new determinant formalism has already shown
great practicality to address realistic problems in ma-
terials characterization. We systematically study the O
K-edge (1s→ np) x-ray absorption spectra (XAS) of var-
ious TMOs and find this approach can faithfully repro-
duce the experimental x-ray line shapes for most of the
investigated systems. This can be immediately applied
to study various energy conversion and storage systems
involving oxides70–78, where the interpretation of x-ray
spectra can be challenging, and the conclusions often de-
pend sensitively on intricate near-edge line shapes.

The rest of this work is mainly divided into three sec-
tions. First, Sec. II discusses the theoretical backgrounds
and the newly proposed search algorithm, with technical
details included. Secondly, Sec. III shows the simulated
XAS of a variety of oxides using the new method, to-
gether with a comparison with previous theories, and dis-
cusses how many-body effects help contribute to defining
the x-ray spectral line shape. The many-body aspects
beyond the BSE as captured by this method will be dis-
cussed in Sec. III D and III E, using the half-metal CrO2

as an example. Finally, the numerical details and effi-
ciency of this algorithm are analyzed in Sec. IV.

II. THEORETICAL MODELS AND METHODS

The methodology section is organized as follows. Sec.
II A revisits the many-body effects captured by the MND
theory in terms of Feynman diagrams. Sec. II B and II C
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provides a solution to the MND model from the perspec-
tive of many-electron wave functions and introduces the
determinant formalism. Sec. II D introduces exterior al-
gebra to elucidate the linear dependence of the determi-
nants that is encoded in the so-called ζ-matrix, followed
by a BFS algorithm for an efficient evaluation in Sec.
II E. Sec. II G discusses how to combine this algorithm
with DFT simulations and its validity in the presence of
e-e interactions.

A. Independent-electron model and diagrammatic
approaches

We first revisit the conceptually simple MND model
from the perspective of Feynman diagrams. The incor-
poration of first-principles calculations will be deferred to
Sec. II G. In the MND model43,61,66, the electrons only
interact with the core hole and electron-electron (e-e) in-
teractions are neglected. Consider a supercell with one
of the atoms replaced by its core-excited version. This is
typically a good approximation to a core-excited system
at low photon flux. Assume there are N valence electrons
in its ground state and there is only one core level. The
MND Hamiltonian without e-e interactions reads

H = H0 +HI
H0 =

∑
c

εca
†
cac − εhh†h

HI =
∑
cc′

Vcc′a
†
cac′h

†h

(1)

where the diagonal part H0 is composed of the valence
orbitals (c iterates over both occupied and empty valence
orbitals) and the core level (h). a†c and h† are electron
and hole creation operators respectively. The only two-
body term in H is the Coulomb interaction between the
valence orbitals and the core level, as described by HI ,
in which the core-hole potential Vαβ is defined by

Vαβ =

∫
d3rd3r′ψ∗α(r)ψβ(r)V (r, r′)ψ∗h(r′)ψh(r′) (2)

where ψi’s are the 1p wave functions and V (r, r′) is the
(effective) Coulomb potential. The two-body interaction
Vαβ accounts for the electron scattering from orbital β
to α due to the core-hole potential.

The x-ray photon field can be described by a current
operator66 that promotes one core electron to a valence
orbtial

Ĵ =
∑
c

a†ch
†〈ψc|ĵ|ψh〉+ h.c. (3)

The transition operator is the electric field polarization-
projected position operator that couples the core level to
valence orbitals: ĵ = ε ·r, in the limit of zero-momentum
transfer and within the dipole approximation4,79. In

FIG. 1. Four distinct types of e-h processes in the second-
order Feynman diagrams in the MND theory. There are ex-
actly two Coulomb lines (at t1 and t2) in each diagram, as
marked by vertical dashed lines.

principle, the transition operator ĵ can be any other lo-
cal sudden perturbation, not necessarily limited to a core
hole.

The independent-electron model was originally consid-
ered by the MND theory60,61,66 using diagrammatic tech-
niques. The time-evolution of the many-electron system
after photon absorption is described by the Kubo current-
current correlation function

Π(t) = − i

V
〈Ψi|T Ĵ(t)Ĵ(0)]Ψi〉

=
1

V
∑
cc′

〈ψc|ĵ|ψh〉〈ψh|ĵ|ψc′〉Lcc′(t)

=
1

V
∑
cc′

wcw
∗
c′Lcc′(t)

(4)

where wc = 〈ψc|ĵ|ψh〉 is the vertex that represents the
absorption of a photon to create an e-h pair (w∗c repre-
sents the opposite process). The x-ray absorption spec-
trum (XAS) A(ω) is the spectral function of the photon
self-energy in the frequency domain

Π(ω) =

∫ ∞
−∞

dteiωtΠ(t)

A(ω) = − 1

π
ImΠ(ω)

(5)

In the following discussion, we focus on the e-h correla-
tion function as defined in Eq. (4)

Lcc′(t) = −i〈Ψi|T h(t)ac(t)a
†
c(0)h†(0)|Ψi〉 (6)

which includes all the many-electron processes in x-ray
absorption.

We exemplify these many-electron processes by four
types of second-order Feynman diagram of Lcc′(t), as



4

shown in Fig. 1. The time axis runs from left to right
and the Coulomb lines are vertical due to the neglect of
dynamical effects in the Coulomb interaction HI . The
BSE captures two kinds of processes: direct e-h attrac-
tion as described by the ladder diagram Fig. 1 (a), and
e-h exchange as described by the diagram in Fig. 1 (b).
In these diagrams, there is only one e-h pair present at
any time of the propagation. However, there are other
diagrams with more e-h pairs present at a time, e.g., the
zigzag diagram in Fig. 1 (c). The corresponding process
involves a core hole causing the ground state to decay
into a valence e-h pair (c′ and v) at t1. At a later time
t2, the core hole assists the newly generated valence hole
(v) to recombine with incoming electron (c), leaving an
outgoing electron (c′) and the core hole. Lastly, it is also
possible that the valence e-h pair (c′ and v) generated
earlier does not correlate with the incoming electron at
all and simply annihilates at a later time t2. This leads
to a bubble diagram with a freely propagating electron
and a core hole dressed by e-h bubbles as shown in Fig.
1 (d). These e-h bubbles tend to reduce the many-body
wave function overlap and are the causes for the Ander-
son orthogonality catastrophe40.

The MND theory60,61,66 systematically studies and es-
timates the impact of these diagrams on the near-edge
structure of x-ray spectra. In essence, it is found that
denominators in the BSE diagrams involve εc−εh, which
is roughly the energy required to create an electron-core-
hole excitation, while the denominators in the zigzag or
bubble diagrams involve an offset of εc − εv, the energy
required to create an additional (valence) e-h pair. This
means the zigzag processes or the bubble diagrams can
become significant in a metallic system where εc − εv
can be vanishingly small, or if the photon energy is suf-
ficiently high to be in resonance with double e-h excita-
tions.

In practical first-principles calculations, as will be dis-
cussed in Sec. II G, the bare Coulomb interactions in the
above MND diagram will be replaced by the exchange-
correlations potential due to the core hole, and the va-
lence electronic screening will be taken into account by
self-consistently relaxing the electron density.

B. An alternative MND solution based on
many-body wave functions

In the last section we have discussed the diagrammatic
approach, or many-body perturbation theory (MBPT),
for solving the MND model [Eq. (1)]. However, this
Hamiltonian is essentially quadratic and exactly solvable.
For the initial state, no core hole is excited and 〈h†h〉 =
0 and hence the initial-state Hamiltonian Hi is simply
H0 For the final state, there is exactly one core hole,
i.e., 〈h†h〉 = 1, and the final-state Hamiltonian Hf also

becomes quadratic

Hf = Hi +
∑
cc′

Vcc′a
†
cac′ (7)

Within the quadratic forms, it is straightforward to con-
struct the many-body wave functions of the initial- and
final-state. The initial state is simply a Slater determi-
nant that consists of N valence electrons occupying the
N lowest-lying orbitals:

|Ψi〉 =
( N∏
µ=1

a†µ
)
h|0〉 (8)

where µ goes over all the occupied valence orbitals, h
annihilates the core hole (fills the core level with one
electron), and |0〉 is the null state with no electrons. The
final-state XAS wave functions can be expressed in a sim-
ilar manner, but using the eigenvectors of Hf

|Ψf 〉 =

N+1∏
µ=1

ã†fµ |0〉 (9)

where the index f is a tuple: f = (f1, f2, . . . , fN+1),
which denotes the valence N + 1 orbitals that the N + 1
electrons will occupy in the final state. ãi (with tilde)
correspond to the eigenvectors of Hf so that Hf =∑
i ε̃iã

†
i ãi. To apply the Fermi’s Golden rule, one needs

to work within the same basis set. We express the final-
state basis set in terms of the initial-state one:

|ψ̃i〉 =
∑
j

ξij |ψj〉

ã†i =
∑
j

ξija
†
j

(10)

where ξij ’s are the transformation coefficients: ξij =

〈ψj |ψ̃i〉.
With these expressions for |Ψi〉 and |Ψf 〉, the many-

body transition matrix element for any one-body opera-
tor O has been calculated in previous work39,42,43

〈Ψf |O|Ψi〉 =
∑
c

(Afc )∗〈ψc|o|ψh〉 (11)

in which the transition amplitude also takes a determi-
nantal form

Afc = det


ξf1,1 ξf1,2 · · · ξf1,N ξf1,c
ξf2,1 ξf2,2 · · · ξf2,N ξf2,c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N ξfN+1,c

 (12)

The row index goes over N + 1 occupied final-state or-
bitals fi, the column index over the lowest-lyingN initial-
state orbitals plus one empty orbital labeled by c (This
empty orbital is coupled to the core level with the one-
body operator O). This determinantal form reflects how
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these N+1 electrons transit from the initial to final state
in the x-ray excitation process. All the possible electronic
pathways are taken into account by the transformation
matrix in Afc . The transition amplitude of an individual
electron is quantified by the matrix elements, i.e., the
initial-final orbital overlap ξij = 〈ψj |ψ̃i〉. The interfer-
ence of these pathways is lumped into a determinant due
to the fermionic nature of electrons.

For the quadratic Hf , the energy of a final-state |Ψf 〉
can be obtained by direct summation of orbital energies

Ef =

N+1∑
j=1

ε̃fj (13)

where ε̃fj are taken from the diagonalized Hf . A relative
energy Ωf = Ef − Eth may also be defined for later dis-
cussion, where Eth is the energy of the lowest-lying |Ψf 〉:
Eth =

∑N+1
j=1 ε̃j .

For ease of calculation, previously we have also re-
grouped the final-state multi-electron configurations ac-
cording to the convention in quantum chemistry30,33,41.
The configuration f = (1, 2, · · · , N, c0) with c0 > N is
dubbed as a single or a f (1) configuration because it
has one electron-(core-)hole pair. A shorthand notation
for an f (1) configuration can be employed, using (c) to
denote the the orbital of the excited valence electron.
f = (1, 2, · · · , v1 − 1, v1 + 1, · · · , N, c0, c1) with v1 ≤ N
and c1 > c is dubbed as a double or f (2) configuration
because it has one extra (valence) e-h pair as defined by
the electron (hole) index c1 (v1). The shorthand notation
for f (2) is (c0, v1, c1). This definition can be extended to
higher orders such as triples and so forth. For unique
indexing, we require c0 < c1 < c2 < · · · < cn−1 and
v1 > v2 > · · · > vn−1 in a f (n) index. Examples of final-
state f (n) are shown in Fig. 2 (schematics on the second
row).

C. Interpretation of the final-state many-body
approach from an initial-state perspective

In this section, we provide a comparison between the
outlined determinant formalism and MBPT using Feyn-
man diagrams. While the determinant formalism con-
structs many-electron states using both initial- and final-
state orbitals, MBPT, such as BSE, relies on initial-state
quantities only. To relate the two theories, we can ex-
press the MND many-electron final states |Ψf 〉 in Eq.
(9) using only the initial-state orbitals. Rewriting final-
state operators ãi according to a linear combination of
the initial-state operators ai [Eq. (10)] and expressing

FIG. 2. Definitions of the multi-electron configurations used
in the initial(i)- and final(f)-state picture according to the
convention in quantum chemistry. A final-state configura-
tion (a single Slater determinant) at the order of f (n) can
be hybridized from a number of initial-state configurations at
multiple orders, as shown by the thick opaque downarrows,
which illustrates the spirit of Eq. (9). The solid uparrows
in a configuration indicate one possible multi-electronic path-
way to access that configuration from the ground-state. The
dashed uparrows show the other possible pathway to access
the f (2) configuration.

the wave function |Ψf 〉 in terms of |Ψi〉:

|Ψf 〉 =

N+1∏
µ=1

∑
jµ

ξfµ,jµa
†
jµ
|0〉

=

N+1∏
µ=1

(
∑
jµ

ξfµ,jµa
†
jµ

)
( N∏
ν=1

aν
)
h†|Ψi〉

(14)

Expanding the product of the operators and regrouping
like terms,

|Ψf 〉 =
∑

c∈unocc

Afc a
†
ch
†|Ψi〉

+
∑

c,c′∈unocc
v∈occ

Bfcc′,v(a
†
ch
†)(a†c′av)|Ψi〉

+ · · ·

(15)

The leading-order term comprises linear combinations of
single electron-(core-)hole pairs, because there are N + 1

creation operators a†i and N destruction operators ai in
Eq. (14), leaving at least one creation operator a†c for an
unoccupied state. For this term, N out of N + 1 indices

jµ are chosen from 1, 2, · · · , N so that N a†i ’s can cancel
with N ai’s. There are (N + 1)! such permutations, and
reordering the fermionic operators gives rise to the de-
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terminantal form of the coefficients, as previously stated
in Eq. (12).

The next term in Eq. (15) is a double term

(a†ch
†)(a†c′av), which has one additional valence e-h pair

(a†c′av) generated on the top of the electron-core-hole
pair. This term takes into account the second-order
many-electron processes: the valence e-h excitations in-
duced by the core-hole potential, which are also known
as the shakeup excitations43,62–67, because an additional
amount of energy is required to create these valence ex-
citations. As the series expansion proceeds, each term
will have one more valence e-h-pair than the last, and
more complicated shakeup processes with multiple e-h-
pairs are included. A full schematic for the relation of
one single final-state configuration |Ψf 〉 (written as one
Slater determinant using final-state orbitals) in terms of
initial-state configurations is shown in Fig. 2.

Within MBPT, the configuration series in Eq. (15)
is typically truncated, and the coefficients are solved by
expanding the Hamiltonian over the restricted config-
uration space and solving the eigenvalue problem. In
the BSE, for instance, the final-state Hamiltonian is ex-
panded over the single-e-h-pair space a†ch

†|Ψi〉 and the
eigenvector coefficients (analogous to Afc ) refer to this
single-e-h basis. In some sense, this approximation cor-
responds to the ladder and exchange diagrams: at any
point in time of the propagation, there is only one e-h
pair involved.

By contrast, the determinant formalism does not re-
strict the number of e-h-pairs in the final-state config-
uration space. When |Ψf 〉 is projected onto |Ψi〉 as in
Eq. (15), a superposition of single, double, and high-
order terms naturally arises, although only the leading-
order coefficients Afc are relevant for calculating matrix
elements of one-body operator. In this way, the zig-zag
and bubble diagrams, present within MND theory, which
involve multiple e-h-pair generation, are automatically
incorporated.

D. Efficient evaluation of determinantal transition
amplitudes

The above determinantal formalism provides an alter-
native solution to the MND model in Eq. (1) without
using diagrammatic approaches. If a sufficient number of
final states are included, one may expect the determinan-
tal method to give the spectrum as solved from the MND
model. However, an brute-force calculation is rarely used
because the many-electron configuration space grows fac-
torially with the number of electrons. It does not seem
to be practical to compute the large number of determi-
nants that would represent all configurations.

For a half-filled system with M orbitals and N (N ≈
M/2) electrons, even the f (2) group has (M − N)(M −
N−1)N ≈M3/8 configurations. Iterating the index c of
Afc [Eq. (12)] over all empty initial-state orbitals multi-
plies the time complexity by a factor of M/2. Calculating

the determinant for each configuration requires a compu-
tational cost of O(M3). With all the three factors com-
bined, obtaining the determinants for all of the f (2) con-
figurations gives rise to a time complexity of O(M7). For
metallic systems where the fermi surfaces are susceptible
to the core-hole potential, higher-order terms such as f (3)

are typically needed for testing convergence, which leads
to a higher time complexity ofO(M9). Such a brute-force
calculation that scales up quickly with number of states
is not very practical for realistic core-hole calculations in
which there could easily be 102 to 103 orbitals.

In this section, we introduce an efficient algorithm at
much lower computational cost to access the determi-
nants that are important for determining the x-ray spec-
trum. The O(M3) determinant calculation needs to be
performed only once for a given configuration, and subse-
quently the determinants for other configurations can be
derived from it. More importantly, a BFS algorithm is
employed to identify the important determinants above a
specified threshold, largely reducing the number of con-
figurations to be visited.

An apparent first step is to move the summation over c
in Eq. (11) into the definition of the transition amplitude
coefficient, so that for each final-state configuration f ,
obtaining Af = 〈Ψf |O|Ψi〉 requires calculating only one
determinant. More specifically, we rewrite Af as

Af = detAf

Af =


ξf1,1 ξf1,2 · · · ξf1,N

∑
c ξf1,cw

∗
c

ξf2,1 ξf2,2 · · · ξf2,N
∑
c ξf2,cw

∗
c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N

∑
c ξfN+1,cw

∗
c


(16)

where wc = 〈ψc|o|ψh〉. The summation in the (N + 1)th

column of Af can be calculated first before obtaining the
determinant. This reduces the overall time complexity by
a factor of M .

Secondly, when considering transitions to various final-
state configurations, the determinants of interest in fact
have many common rows so one can make use of the
multilinearity of determinants to speed up the calcula-
tions significantly. For example, the tuple for a double
configuration (1, 2, · · · , v1 − 1, v1 + 1, · · · , N, c, c1) only
differs from the ground-state one (1, 2, · · · , N,N + 1) by
3 indices, meaning their corresponding determinants Af

only differ by 3 rows. This observation motivates us to
choose the determinant for the ground state as a refer-
ence, and evaluate other determinants for excited states
via a low-rank updating technique.

To demonstrate this technique, it is most transparent
to express the determinant in terms of the wedge (exte-
rior) product44,45 of its row/column vectors. The wedge
product is anticommutative and has similar algebra to
the Fermionic operators. Suppose an arbitrary matrix A
has n row/column vectors a1, a2, · · · , an, its determinant
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can be expressed as

detA = a1 ∧ a2 ∧ · · · ∧ an (17)

Assume detA has been calculated from scratch and is
nonzero (assume A is full-rank). If an is replaced by
a new vector an+1, which can be considered as a rank-
1 update, the updated determinant can be obtained by
expanding an+1 in terms of a1, a2, · · · , an

detA′ ≡ a1 ∧ a2 ∧ · · · ∧ an+1

= a1 ∧ a2 ∧ · · · ∧
n∑
i=1

ζn+1,iai

= ζn+1,na1 ∧ a2 ∧ · · · ∧ an
= ζn+1,n detA

(18)

where ζij is the expansion coefficient defined as

an+1 =

n∑
i=1

ζn+1,iai (19)

ζn+1,i can be obtained via the matrix inversion of A:
ζn+1,i =

∑
j an+1,j(A

−1)ji. When multiplied by a1 ∧
a2 · · · ∧an−1, only an survives in the summation because
ai ∧ ai = 0. Then the new determinant detA′ is simply
the product of an expansion coefficient ζn+1,n and the
already-known detA.

Now if the last two lines of A are replaced by two new
row vectors an+1 and an+2, the rank-2 updated determi-
nant is

detA′′

≡a1 ∧ · · · ∧ an−2 ∧ an+1 ∧ an+2

=a1 ∧ · · · ∧ an−2 ∧
n∑
i=1

ζn+1,iai ∧
n∑
j=1

ζn+2,jaj

=a1 ∧ · · · ∧ an−2 ∧ (ζn+1,n−1ζn+2,nan−1 ∧ an
+ζn+1,nζn+2,n−1an ∧ an−1)

=a1 ∧ · · · ∧ an−2 ∧ (ζn+1,n−1ζn+2,nan−1 ∧ an
−ζn+1,nζn+2,n−1an−1 ∧ an)

= det

[
ζn+1,n−1 ζn+1,n

ζn+2,n−1 ζn+2,n

]
detA

(20)

The minus sign arises from the anticommutative prop-
erty of the wedge product: ai ∧ aj = −aj ∧ ai. Thus the
new determinant is the product of a 2 × 2 determinant
composed of the expansion coefficients and detA. The
above procedure can be carried out to more general situa-
tions where more row/column vectors are replaced. This
remove the need to calculate the new determinant from
scratch using the O(n3) algorithm. For a rank-r update,
one only needs to compute the product of the reference
determinant Aref ≡ detA and a small r × r determinant
containing ζij , at the cost of O(1).

In the context of the determinantal formalism as in Eq.
(16), we define the row vector corresponding to the ith

final-state orbital as:

ai =
[
ξi,1 · · · ξi,N

∑
c ξi,cw

∗
c

]
(21)

Then the ground-state reference determinant can be ex-
pressed as Aref = a1∧a2∧· · ·∧aN ∧aN+1. To access the
determinants for excited states via this updating method,
we formally introduce the auxiliary ζ-matrix (ζ) for a sys-
tem with M orbitals and N valence electrons (M > N),
which is the transformation matrix from a1, a2, · · · , aN+1

to aN+1, aN+2, · · · , aM :
aN+1

aN+2

...
aM

 =


0 0 · · · 1

ζN+2,1 ζN+2,2 · · · ζN+2,N+1

...
...

...
ζM,1 ζM,2 · · · ζM,N+1




a1

a2

...
aN+1


(22)

Rewrite the above matrix multiplication in a compact
form, we haveAnew = ζAref, where (ζ)ij = ζN+i,j . Then
ζ can be obtained easily via matrix inversion and multi-
plication

ζ = Anew(Aref)−1 (23)

Note that Aref is a (N + 1)× (N + 1) matrix and we find
it is typically invertible in practical calculations.
ζ is of size (M − N) × (N + 1). Its column indices

map onto the lowest-lying (N + 1) orbitals while the row
indices map onto the (N + 1)th to M th orbitals. A f (n)

determinant can be obtained from the product of Aref, a
n× n minor of ζ, and an overall ± sign due to permuta-
tion of rows (trivial to consider in the single-determinant
case). The last column of this n×n minor must be taken
from the last (the (N + 1)th) column of ζ, because there
are n electron orbitals and (n− 1) hole orbitals in a f (n)

configuration, and the extra one electron can be viewed
as removed from the hole on the (N + 1)th orbital. The
n×n minor reflects the interference effect of n! pathways
to access the f (n) configuration via permuting n empty
orbitals. The rows (columns) of the n×n minor indicate
the electrons (holes) that are excited in the given f (n)

configuration: the minor formed by rows i1, i2, · · · , in
(i1 < i2 < · · · < in) and columns j1, j2, · · · , jn−1, N + 1
(j1 < j2 < · · · < jn−1 < N + 1) corresponds to the con-
figuration (c0, v1, c1, · · · , vn−1, cn−1) = (i1 +N, jn−1, i2 +
N, · · · , j1, in +N).

E. Pruning the configuration space using the
breadth-first search algorithm

With this updating technique, we can access the de-
terminants of many configurations without repeatedly
carrying out the full determinant calculation for each.
However, the number of configurations still grows expo-
nentially with the order n. Even the f (3) group grows
rapidly as M5, and a system with M = 103 orbitals may
have 1015 f (3) configurations. The problem now becomes
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how to efficiently find all the significant minors of ζ at
all orders. Enumerating all of these minors will definitely
be a hard problem that can not be solved within a poly-
nomial time, and the question is whether it is necessary
to visit all of them. In fact, we find that for the sys-
tems studied in this work (introduced in Sec. III A) ζ
is sparse, with its non-vanishing elements concentrated
in some regions, as will be shown in Sec. IV. A more
efficient algorithm should be possible given the sparsity
of ζ.

To make the best use of the sparsity of ζ, we investi-
gate its minor determinants in a bottom-up and recursive
manner. According to the Laplace (cofactor) expansion,
an n × n determinant can be expanded into a weighted
sum of n minors of size (n−1)×(n−1). The n×n deter-
minant is non-vanishing only when at least one of these
(n−1)× (n−1) minors is non-vanishing. Physically, this
means that a transition to an f (n) configuration is only
probable when at least one of its parent f (n−1) configu-
rations is probable, otherwise the transition to that f (n)

configuration is forbidden. Assume that ζ is sparse, and
one can keep a short list of non-vanishing (n−1)×(n−1)
minors. When proceeding to nth order, one can construct
the n×n determinant from the short list of non-vanishing
(n − 1) × (n − 1) minors instead of exhaustively listing
all of them.

This recursive construction of n-minors from the (n−
1)-minors leads us to an ultimate improvement to the ef-
ficiency of the determinantal approach. We employ the
breadth-first search (BFS) algorithm to enumerate all im-
portant minors of ζ. A f (n) configuration can be con-
sidered as a descendent of f (n−1) via creating one more
e-h pair with the f (n−1) configuration. Through arrang-
ing f (n) according to this inheritance relation, a tree-like
structure of the many-body expansion is formed, as illus-
trated in Fig. 3. The BFS algorithm visits this tree-like
structure in ascending order of f (n). Note that a f (n)

configuration can be accessed from its multiple f (n−1)

parents via different pathways. If these pathways to the
f (n) configuration interfere destructively such that the
transition amplitude is vanishingly small, the BFS algo-
rithm will discard this f (n) configuration, hence reducing
the search space for the next order. Here is the detailed
algorithm

Algorithm 1. Breadth-First Search for Pathways

1: initialize f (1) *
2: n← 2
3: repeat
4: for f ∈ f (n−1) do
5: extract the indices of f : (c0, v1, c1, · · · , vn−2, cn−2)
6: for all ζcv satisfying |ζcv| > ζth do *
7: if c /∈ {c0, c1, · · · , cn−2} and v < vn−2 then *

8: Obtain a composite index at f (n) order:
f ′ ← (c′0, v

′
1, c
′
1, · · · , v′n−1, c

′
n−1) *

9: if f ′ /∈ f (n) then
10: Add f ′ to f (n)

11: Af ′ ← 0
12: Ef ′ ← Ef + (ε̃c − ε̃v)

13: Af ′ ← Af ′ + (−1)pζcvA
f *

14: for f ∈ f (n) do
15: if |Af |2 < Ith then Delete f *

16: Calculate the spectral contribution from f (n)

17: n← n+ 1
18: until the spectrum converges

Below are further instructions on the lines marked by
asterisks.

L1: Af of f (1) can be simply taken from the nonzero
matrix elements on the last column of ζ.

L6: ζth is a threshold for small matrix elements. One
can set ζth = rthζm, where ζm ≡ max |ζij | and rth

is a user-defined relative threshold.

L7: The n× n determinant of f (n) is constructed via a
Laplace expansion along its first column. v < vn−2

ensures the chosen matrix element ζcv is always on
the first column of the n× n determinant.

L8: Compare to f , f ′ contains one more e-h pair la-
beled by c and v. Because we require the ordering
of c0 < c1 < · · · and v1 > v2 > · · · for unique
indexing, the new index (c′0, v

′
1, c
′
1, · · · , v′n−1, c

′
n−1)

must obey the same order. The new sequence (c′i)
can be obtained by this procedure: first place the
new c in front of the (ci) sequence of f (n−1) that is
already increasingly sorted, and then shift c to the
right by swapping indices till the whole sequence
is also sorted. Define p to be the number of swaps
performed for deciding signs. (v′i) can be obtained
simply by placing v at the end of (vi).

L13: (−1)pζcv is the cofactor of the Laplace expansion
of a f (n) determinant. where p is the proper posi-
tion for inserting c into (ci), as defined above. At
the end of the ζcv loop, there are at most n con-
tributions to the total amplitude Af

′
of a specific

f (n) configuration, corresponding to the transition
amplitudes of n different pathways from its parent
f (n−1) configuration.

L15: Ith is a threshold for removing state with small os-
cillator strengths. Similar to ζth, Ith can be set
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to Ith = RthIm, where Im is the maximal oscil-
lator strength and Rth is a user-defined relative
threshold. Im can be chosen to be the maximal in-
tensity within the f (1) group which typically have
the strongest oscillator strengths among all f (n)

groups. Rth can be related to the previously de-
fined relative matrix-element threshold rth. If the
contribution from a small acv were not added to
Af
′
, its intensity would be |Af ′ − (−1)pζcvA

f |2 =

|Af ′ |2 − 2(−1)pRe[ζcvA
f ′(Af )∗] + O(|ζcv|2). Re-

placing ζcv with 0 will lead to an error of ∼
|ζcv||Af

′ ||Af | ≤ rth|ζm|Im. Therefore, choosing a
rth such that Rth ∼ ζmrth can guarantee error in
intensities smaller than Ith = RthIm. In practice,
one can lower Rth till convergence is achieved.

The detailed implementation of this search algorithm
can be found at Ref.80 within an open-source PYTHON
simulation package.

Here we demonstrate the BFS algorithm with a toy
model with M = 9 orbitals and N = 4 valence electrons.
Suppose ζ of the system is

1 2 3 4 5
5 0 0 0 0 1
6 0 ζ62 ζ63 0 ζ65

7 ζ71 0 0 0 0
8 0 0 ζ83 0 ζ85

9 0 ζ92 ζ93 0 0

 (24)

The BFS algorithm for this example of ζ is carried out
as follows:

First, the non-zero f (1) configurations are initialized,
(5), (6), and (8), whose determinants are simply the ma-
trix elements: 1, ζ65, and ζ85, respectively. These config-
urations are considered as the roots of the BFS trees, as
is shown in Fig. 3.

Next, the f (2) configurations are constructed based on
the obtained f (1) configurations. Take the configuration
(8) in f (1) for example. There are 5 non-zero matrix ele-
ments that are to the left of (8) and are not on the same
row as (8), which are ζ63, ζ93, ζ62, ζ92, and ζ71. Paired up
with these matrix elements, the (8) configuration spawns
5 f (2) configurations: (638), (839), (628) , (829), and
(718) (comma omitted due to the single-digit indices).
Likewise, (5) and (6) spawn 6 and 4 f (2) configurations
respectively.

Both (6) and (8) give rise to (638) and the contribu-
tions from the f (1) configurations are merged: A(638)
= ζ63ζ85 − ζ83ζ65. The two possible pathways are: (1)
the core electron is first promoted to orbital 6 and then
coupled with the e-h pair formed by orbital 3 and 8; (2)
the core electron is first promoted to orbital 8 and then
coupled with the e-h pair formed by orbital 3 and 6. If
A(638) is vanishingly small (ζ63ζ85 happens to be close
with ζ83ζ65) due to the destructive interference of the two
pathways, Then (638) will be removed from the f (2) list
because it cannot contribute to the transition amplitude
of any higher-order configuration. When the search pro-

cess for f (2) is completed, 13 nontrivial configurations are
found.

Proceeding to the third order, the 13 f (2) configura-
tions spawn 14 f (3) configurations. Paring (536) with
ζ92 and (539) with ζ62 both lead to (53629), whose de-
terminant is ζ62ζ93−ζ63ζ92. Paring (538)(= ζ83) with ζ62

leads to (53628) (the other two pathways are forbidden
because ζ52 = ζ82 = 0). If ζ83 and ζ62 are small num-
bers such that their product is smaller than the specified
threshold Ith, then (53628) will be removed from f (3).
The above process can be repeated until all new deter-
minants are small enough or no new determinants can be
found.

If one brute-forcely enumerates all possible determi-
nants, there are

(
5
2

)(
5
1

)
= 50 f (2) and

(
5
3

)(
5
2

)
= 100 f (3)

determinants to examine for the above ζ-matrix. By con-
trast, the BFS algorithm only visits the nontrivial deter-
minants and only 14 f (2) and 14 f (3) determinants are
computed.

F. Spin Convolution and X-Ray Photoemission
Spectra

This section discusses another speed-up by breaking
down the entire system into two spin channels and the
relation of XAS to x-ray photoemission spectra (XPS)
within the determinant formalism. In the collinear spin
polarized case, the total wavefunction can be decomposed
into the product of the spin-up wavefunction and the
spin-down one |Ψ〉 = |Ψ↑〉⊗|Ψ↓〉, and hence the transition
amplitude boils down to

〈Ψf |O|Ψi〉 = 〈Ψ↑,f |O|Ψ↑,i〉〈Ψ↓,f |Ψ↓,i〉+ {↑
↓} (25)

which essentially means the ξ-matrix is block-
diagonalized and each transition either occurs within
the spin-up or spin-down manifold. The total absorption
spectra can be obtained from combining individual spec-
tra from the two spin channels (for the collinear case)
using the spectral convolution theorem in Appendix C

σXAS(E) =

∫
dE′σXAS,↑(E − E′)σXPS,↓(E

′) + {↑
↓}

(26)

where σXAS,µ is the XAS of an individual spin channel
µ. σXPS,µ is the core-hole spectral function of spin µ

σXPS,µ(E) =
∑
f

|〈ΨNµ
µ,f |Ψ

Nµ
µ,i 〉|

2δ(E − (Eµ,f −minEµ,f ))

(27)

Here |ΨNµ
µ,f 〉 (|ΨNµ

µ,i 〉) is the Nµ-electron (excluding the

core electron) many-body wave function of final state f
(initial state i) within the spin manifold µ, and Nµ is
the number of electrons in its initial state (N↑ 6= N↓ for
a ferromagnetic system). Because the core-hole spectral
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FIG. 3. The search tree in the BFS algorithm for finding all nontrivial minors of ζ. The digits in the bracket denote the
configuration, e.g., (53629) means (c = 5, v1 = 3, c1 = 6, v2 = 2, c2 = 9). The semi-transparent configurations are discarded in
the search process so that they don’t spawn any child configuration.

function is analogous to the corresponding x-ray photoe-
mission spectrum (XPS)68, we dub the former as σXPS

(or σP for brevity) hereafter. The XPS does not involve
any transition matrix operator and can be regarded as
the pure wavefunction overlap effect, which has signifi-
cant meaning for determining the XAS lineshape for some
metallic systems, as will be discussed in Sec. III D.

The calculation of σXPS,µ resembles that of σXAS,µ.

The amplitude 〈ΨNµ
µ,f |Ψ

Nµ
µ,i 〉 can also be obtained from

the determinant formalism as detAµ, where Aµ =
(ξfi,j)Nµ×Nµ , and fi’s are the indices of the occupied
orbitals of the XPS final state. These final states can
be grouped similar to the convention in Sec. II B, ex-
cept that now f (0) denotes the (single) final-state ground
state, with no e-h pair, f (1) with one valence e-h pair, and

so forth. The prominent matrix elements 〈ΨNµ
µ,f |Ψ

Nµ
µ,i 〉 are

also found by the BFS algorithm outlined in Sec. II D.

G. Incorporating first-principles calculations into
the determinant formalism

In the above sections, we have demonstrated an ef-
ficient solution to the MND model using many-body
wave functions for simulating x-ray transition ampli-
tudes. However, in order to simulate reliable x-ray spec-
tra without fitting parameters from experimetns, we still
need accurate approximations to the initial and final
states and their energies. To this end, we rely on DFT
calculations to obtain the KS eigenstate energies (for

ε̃f ) and wavefunctions (for both |ψ̃i〉 and |ψj〉) as in-
put for constructing the transformation matrix Afc (Eq.
(12)) and computing the energies of many-electron ex-
cited states (Eq. (13)).

For the final state, we employ the standard ∆SCF core-
hole approach to obtain the KS orbitals and eigenen-
ergies. The core-excited atom is treated as an isolated
impurity embedded in the pristine system, and typi-
cal supercell settings for finite81 and extended11,14,15,39

systems can be employed. To simulate a electron-core-
hole pair, the core-excited atom is modeled by a mod-
ified pseudopotential with a core hole, and an electron

is added to the supercell system and constrained to one
specific empty orbital. In principle, a ∆SCF iteration
needs to be performed for each case of constraint occu-
pancy (for all f = (1, 2, . . . , N, c)) which may lead to an
expensive computational cost. As a trade-off, the elec-
tron is only placed onto the lowest unoccupied orbital
(f = (1, 2, . . . , N,N + 1)), which we have dubbed the
excited-state core-hole (XCH) method. After the ∆SCF
calculation is done, the KS equation with a converged
charge density is used for Hf .

Another important variation of the XCH method is
the full core-hole (FCH) approach, in which the core-
hole excited state is modeled by the configuration f =
(1, 2, . . . , N) without the excited electron. A homoge-
neous charged background is then added to the system
to ensure charge neutrality. The advantage of FCH is
that it does not bias towards the lowest excited state
and treat all excited states on an equal footing.

For the initial state, the same supercell as in the fi-
nal state is used except that the core-excited atom is
replaced by a ground-state atom, using the occupation
f = (1, 2, . . . , N), or the Fermi-Dirac occupation. A
standard DFT calculation can be done to obtain the KS
orbitals |ψi〉.

With the KS orbitals |ψ̃i〉 and |ψj〉 obtained from
the ∆SCF core-hole and ground-state calculations,
we can compute the orbital overlap integral ξij =

〈ψj |ψ̃i〉 for computing the determinantal amplitudes.
To reduce computational cost, we employ ultrasoft
pseudopotentials82 to model electron-ion interactions.
The atomic core regions of each orbital are reconstructed
within the frozen-core projector-augmented-wave (PAW)
formalism for the evaluation of matrix elements37,83,84.
The excited atom potential has deeper energy levels and
more contracted orbitals so its PAW construction differs
from the ground-state atom. In Appendix A, we derive
the formalism to calculate expectation values between
|ψj〉 of the ground-state system and |ψ̃i〉 of the core-
excited system. Initial dipole matrix elements 〈ψc|o|ψh〉
are also evaluated within this PAW formalism37,84.

As in typical DFT impurity calculations, some low-
lying excited states in the core-hole approach could be
bound to the core-excited atom, resembling mid-gap lo-
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calized electronic states near an impurity. In this situa-
tion, the electronic structure is well described by using a
single k-point (the Γ point) to sample the Brillouin zone
(BZ). However, for the purpose of spectral simulations,
which include delocalized scattering states well above the
band edges, we find that employing k-point sampling is
necessary to improve the accuracy of the calculated line
shape. Therefore, we perform the determinantal calcu-
lation individually for each k-point and take the k-point-
weighted average spectrum as the final spectrum. The
band structure and orbitals are interpolated accurately
and efficiently using an optimal basis set proposed by
Shirley85,86, whose size is much smaller than plane-wave
basis. In the Shirley construction, the periodic parts of
Bloch wave functions across the first BZ are represented
using a common basis which spans the entire band struc-
ture. Because there is only one optimal basis to represent
the Bloch states for all k-points, the overlap ξ-matrix for
every k-point can be computed quickly as in Appendix
B.

After the XAS is calculated by the first-principles de-
terminantal approach, an established formation-energy
calculation can be adopted to align spectra for core-
excited atoms in different chemical contexts, using the
XCH method to determine the excitation energy of the
first transition81,87.

Although there are no valence e-e interaction terms in
the MND theory, which results in a single-determinant
solution to the many-body wave functions, we argue that
our first-principles determinantal approach does not en-
tirely neglect valence e-e interactions. The DFT self-
consistent-field (SCF) procedure updates the total charge
density and KS orbitals simultaneously, and hence takes
into account some degree of valence electronic screening
through the mean-field. That said, the ∆SCF approach
should lead to a more realistic equilibrium total electron
density for the x-ray excited states. By contrast, MBPT
treats the core-hole perturbation within linear response,
which limits the change in the resulting excited-state
electron density. Presumably, a more accurate charge
density may lead to a better approximation to quasipar-
ticle (QP) wave functions. Finally, we may imagine the
bare Coulomb lines in Fig. 1 are replaced by the screened
core-hole potential, which is determined by the chosen
exchange-correlation functional that takes into account
some static dielectric screening effects.

H. Comparison with the one-body ∆SCF core-hole
approach

In many previous works,, the many-body transition
amplitudes in the ∆SCF core-hole approach were often
approximated with 1p matrix elements

〈Ψf |ε·R|Ψi〉 ≈ S〈ψ̃f |ε·r|ψh〉 (28)

where the core orbital |ψh〉 is in the initial state while

the electron orbital |ψ̃f 〉 is in the final states, both of

which can be taken from DFT calculations. S represents
the response of the rest of the many-electron system (ex-
cluding the electron-core-hole pair) due to the core hole,
and it is normally assumed to be a constant for ease of
calculations. This 1p form of the matrix element implies
that: (a) the transition from the initial core level |ψh〉
to the final electron orbital |ψ̃f 〉 occurs instantaneously
with the response of many other electrons in the system,
with no particular time ordering; (b) the core-level tran-
sition and the many-electron response are not entangled.
This is also the so called sudden or frozen approximation.

We know that from the diagrammatic interpretation of
the x-ray many-body processes in Fig. 1, the photon first
decays into an initial-state e-h pair instantaneously, and
then the other electrons see the core-hole potential and
begin to relax over a finite period of time. This physical
reality can also be seen in the determinant formalism,
in which the core hole is only coupled to an initial-state
orbital, and the subsequent many-electron response is de-
scribed by the determinantal amplitude. So the question
is why the simpler 1p matrix element in the frozen ap-
proximation still works for a good number of systems in
the past.

In this section, we approach this question theoretically
by relating the determinantal amplitude to the 1p matrix
element. To do this, we first express the (N+1)×(N+1)
determinantal amplitude Afc in terms of is N ×N minors
(wavefunction overlaps of N -electron systems, such as S)
by Laplace expansion along its last column

Afc =

N+1∑
i=1

Mf
i ξfi,c (29)

where ξfi,c are the matrix elements on the last column of

Afc as in Eq. (12) and Mf
i is the minor complementary to

ξfi,c. Since in the one-body core-hole approach only the

f (1) terms are summed, we limit our analysis here to the
many-body f (1) terms and condense the configuration
tuple into a single index: (1, 2, · · · , N, f) 7→ f . Then the
matrix elements 〈Ψf |O|Ψi〉 can be written as∑

c∈empty

(Afc )∗〈ψc|o|ψh〉

=(Mf
N+1)∗

∑
c∈empty

〈ψ̃f |ψc〉〈ψc|o|ψh〉

+

N∑
i=1

(Mf
i )∗

∑
c∈empty

〈ψ̃i|ψc〉〈ψc|o|ψh〉

(30)

First, for systems with significant band gaps (insula-
tors and semiconductors), we could expect that the over-
lap of the occupied final state orbitals with the unoccu-
pied initial state orbitals could be quite small. For many
orbitals unaffected by the localized core-hole perturba-
tion, for example, we might expect the final state occu-
pied orbitals to closely resemble their initial state coun-
terparts, which would render 〈ψ̃v|ψc〉 identically zero by
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orthogonality. Therefore, the sum over v in Eq. (30) may
only be significant in cases where the transformation ma-
trix ξ indicates mixing of unoccupied initial state char-
acter into the occupied final state orbitals, which might
easily be the case for orbitals close to the Fermi level in
a metal or otherwise open-shell system.

The first term in Eq. (30) is more directly relevant

to our previous one-body approximation. Here, Mf
N+1 is

the minor of (ξij)N×N , the transformation matrix with-
out its (N + 1)th column and row. It reflects the N -
electron many-body overlap between the initial and fi-
nal state occupied orbitals and should reflect the extent
to which the electron density is modified by the core-

hole perturbation. Since Mf
N+1 does not depend on f ,

we can relate it to the many-body prefactor that ap-

pears in the final-state rule of Eq. (28): S = (Mf
N+1)∗.

Using the completeness relation:
∑
c∈empty |ψc〉〈ψc| =

1 −
∑
v∈occ |ψv〉〈ψv|, the first term in the expansion of

Eq. (30) can be expressed as

S
[
〈ψ̃f |o|ψh〉 −

∑
v∈occ

〈ψ̃f |ψv〉〈ψv|o|ψh〉
]

(31)

If it happened that 〈ψv|ψ̃f 〉 = 0, then this expression
would amount to the final state matrix element as defined
in the one-body final-state rule (Eq. (28)). By the same
arguments made above, for systems with limited mixing
of orbital character across a significant band gap, then we
might easily expect orthogonality (zero overlap) between
occupied initial state and unoccupied final state orbitals.
By the same token, we should be wary of limitations in
the one-body approach when this is not the case.

It appears useful to focus on 〈ψv|ψ̃f 〉 to reveal the role
of hybridization in modulating near-edge spectral inten-
sity. To quantify the contribution of the second term in
Eq. (31), we introduce the projection spectrum

σfi(E) =
∑
f

|〈ψ̃f |Pco|ψh〉|2δ(E − ε̃f ) (32)

in which the single index f sums over all empty final-
state orbitals, and Pc ≡

∑
c∈empty |ψc〉〈ψc|. The ma-

trix element is nothing but Eq. (31) or the first term in
Eq. (30) with S = 1. However, it is easier to calculate
Eq. (31) because summation over all empty orbitals is
avoided.

III. RESULTS AND DISCUSSION

A. Applications to transition-metal oxides

In this section, we discuss an important application of
the determinantal approach to computing core-excited
state transition amplitudes, that is, to predict the x-
ray absorption spectra (XAS) for transition metal ox-
ides (TMOs). This is also our original motivation for
proposing the determinantal approach39, which can be

used to overcome the deficiency of the one-body core-
hole approach. It has been found for a number of TMOs,
that the one-body approach systematically underesti-
mates the intensity of near-edge features at the O K edge
that correspond to orbitals with hybridization between
oxygen p-character and TM 3d-character. This underes-
timation can prevent reliable interpretations of the X-ray
absorption spectra for this important class of materials.

We use the newly developed determinantal approach
to predict the XAS for eight TMOs: the rutile phase of
TiO2, VO2 (> 340 K), and CrO2, the corundum Fe2O3,
the perovskite SrTiO3, NiO, and CuO. SiO2 is also cho-
sen for a comparative study. Their experimental XAS
are extracted from Refs.87–95. The chosen TMOs cover
a wide range of electronic and magnetic properties and
therefore they are used as benchmark materials for the
determinantal approach.

The O K edges are investigated here, i.e., the transi-
tions from the O 1s level to np shells. For TMOs, the
O 2p orbitals are covalently hybridized with the transi-
tion metal 3d orbitals, and hence the O K-edge spectra
can serve as an informative and sensitive probe for the
d-electron physics70–78,96. Moreover, unlike transition
metal L2,3 edges (2p-to-3d transitions), in which atomic
multiplet effects split spectral features into many closely
space lines79, the O K edges can provide a picture of the
electronic density-of-states related to the d shell more
easily interpretable in terms of band theory or effective
1p states.

The angularly-averaged (except in CrO2, where the po-
larization is perpendicular to the hard axis) O K-edge
spectra for the chosen TMOs are shown in Fig. 4 (a).
The very near-edge part of the spectra, i.e., the spectral
features below 535 eV contain the most useful informa-
tion for 3d material characterization. For these TMOs,
the near-edge spectral fine structure exhibits two main
peaks corresponding to the splitting of the d-orbitals into
a t2g and an eg manifold in the (quasi-)octahedral crys-
tal field. Our goal is to produce reliably all the spectral
features, especially the very near-edge part, so that one
can interpret the spectra on a first-principles basis. More
specifically, we use the ratio of the intensity of the first
(lowest-lying) peak to that of the second (unless other-
wise specified) as a metric for the accuracy of different
levels of approximation.

We first calculate the XAS for the chosen compounds
using the conventional 1p FCH approach4,37,39 described
above. A modified pseudopotential generated with the
configuration 1s12s22p4 is used for the 1s-core-excited
O. We choose supercell dimensions of approximately 10Å
that is sufficient to separate the effect of the core-hole
impurity from its neighboring periodic images. The FCH
calculations are performed using the DFT+U theory94

with the U value adopted from Ref.97. A uniform 5×5×5
k-point grid of the supercell BZ is employed to sample
a continuous density-of-states at higher energies. As we
have demonstrated by calculations before39, the 1p FCH
approach universally underestimates the peak intensity
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FIG. 4. (Color online) (a) XAS for the selected crystal structures obtained from experiments (black), one-body FCH approach

(blue), and the many-electron determinant approach (red) introduced in this work. The XAS calculated with the f (1) configu-
rations are shown by dashed orange curves. The energy axes for NiO and SiO2 are relative. (b) Comparison of experimental
peak intensity ratios compared with the ones predicted by the one-body (circles) and the many-electron (triangles) formalism.
Each color represents the result for one system. The peak intensity ratio refers to the ratio of the lowest-energy maxima
to the second of the spectrum, unless otherwise specified by the numbers in (a). The spectra are broadened to the best as
compared with experimental broadenings. (c) Schematics showing how the one-body and the many-electron formalism treats
x-ray excitations, using a metal-3d-O-2p molecular model in both the initial (i) and final (f) state. The one-body approach
mainly relies on the single-particle (1p) matrix element and has skipped (red arrow) the dynamics of the many-electron charge
relaxation, while the many-electron formalism considers the actual multiple-step (blue arrows) excitation process that involves
all the electrons in the system.
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ratio for all selected TMOs (blue curves in Fig. 4 (a)).
This includes the newly added cases: MnO2, NiO, and
CuO, where the peak intensity ratios are just 50% of the
experimental ones.

The failure of the 1p FCH approach motivated us to
use the determinant formalism in Eq. (12) as a better
approximation to the dipole matrix elements39. In this
work, we implement the determinant approach with the
efficient procedures discussed in Sec. II G and the BFS
algorithm. We use exactly the same final-state SCF as in
the 1p FCH approach and an initial-state supercell of the
same dimensions. Besides employing the BFS algorithm
to reduce the computational cost, we separate the two
spin channels to speed up the calculations as in Sec. II F.

The spectra calculated with the determinantal ap-
proach up to f (2) order are shown in Fig. 4 (a). There is
substantial improvement in the peak intensity ratios and
the overall line shapes for the TMOs being investigated.
In particular, the peak intensity ratios of TiO2, CrO2,
Fe2O3, CuO, NiO, and SrTiO3 are in excellent agree-
ment with experiments [Figs. 4 (a) and (b) ]. The peak
intensity ratio of VO2 is still underestimated, however,
this may be related to missing contributions to the lead-
ing edge from the nearby V L edge, which is not included
in our simulation89. The prediction of the peak intensity
ratio of MnO2 is less satisfactory partly because we sim-
ulate its spectrum using a rutile unit cell with colinear
antiferromagnetic order, whereas its actual magnetic or-
der is found to be helical and has a larger periodicity98,99.
The lack of anisotropy in the Hubbard U interactions in
our current calculation may also explain why the sim-
ulated spectrum deviates from experiments. More ad-
vanced treatment of strongly correlated materials, using
hybrid functionals, for example,100–103, could be coupled
with the determinantal formalism to produce more accu-
rate results. In principle, any effective 1p orbital basis
can be used in this formalism.

B. Origins of XAS intensity underestimation using
one-body approaches

In a nutshell, the underestimation of the peak inten-
sity ratios by the one-body approach can be understood
from a three energy-level model. Consider a molecule
with one single metal level (M) hybridized with an O
2p level, plus one O 1s core level, as is shown in the
schematics in Fig. 4 (c). Hybridization within the empty
(c) and filled (v) states can be expressed using a uni-
tary transformation of the corresponding atomic orbitals:
(|ψ̃c〉, |ψ̃v〉)T = R(θi)(|M3d〉, |O2p〉)T , where R(θi) is a 2D
rotation matrix

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(33)

Initially the system is half filled and its hybridization rep-
resented by an angle θi ∈ [0, π/2]. The final state can be

expressed likewise using its own angle θf : (|ψ̃c〉, |ψ̃v〉)T =

R(θf )(|M3d〉, |O2p〉)T . Phenomenologically, we expect
the initial and final states to differ in their degree of
hybridization of these two atomic levels. The core-hole
potential lowers the energy of the oxygen 2p orbital in
the final state, enhancing the |O2p〉 component of the oc-
cupied final-state orbital v and reducing the same for the
unoccupied final-state orbital c. Hence, 0 < θf < θi.

Within this minimal model of just two electrons, there
is only one available core-excited transition, i.e., the ex-
citation from i = (h, v) to the final state f = (ṽ, c̃). The
exact spectral intensity calculated by the many-electron
formalism as in Eq. (12) is

|〈Ψf |ε·R|Ψi〉|2 = |det[R(θi − θf )]〈ψc|ε · r|O1s〉|2

= |1× 〈ψc|ε · r|O1s〉|2

= sin2 θi|〈O2p|ε · r|O1s〉|2
(34)

However, using the one-body core-hole approximation,
working with final-state orbitals only, we find

|〈Ψf |ε·R|Ψi〉|2 ≈ |〈ψ̃c|ε · r|O1s〉|2

= sin2 θf |〈O2p|ε · r|O1s〉|2
(35)

Therefore, based on the smaller value of θf , the one-body
final-state intensity is necessarily weaker than the many-
electron intensity. The origin of this underestimation lies
in erroneously formulating the excitation as a single-step
transition from the core level to the final-state empty
orbital, which contains a reduced O 2p component due
to core-hole attraction [as illustrated in Fig. 4 (c)]. On
the other hand, the many-electron formalism takes the
correct time-ordering into account, describing a multi-
step transition: the electron is promoted to the unper-
turbed initial-state empty orbital followed by a many-
electron charge transfer. By this argument, the absorp-
tion intensity is the same as in the initial-state picture,
sin2 θi|〈O2p|ε·r|O1s〉|2. Note, however, that the energy of
the final-state configuration should be used in the Fermi’s
golden rule.

For the two-peak near-edge fine structure in TMOs,
we can also make use of the above two-electron model.
Let us define an energy dependent hybridization within
the unoccupied orbitals between metal 3d and O 2p char-

acter according to sin2 θ = t2

t2+∆2 , where t is the intrin-

sic hybridization strength, ∆(ε) = (ε +
√
ε2 + t2), and

ε = ε3d − ε2p > 0. Within quasi-octahedral symmetry,
we would expect lower intrinsic hybridization values for
the t2g orbitals vs. the eg, but the eg orbital energies
should lie above those of the t2g. For a two-peak near-
edge, we can define the peak intensities using: t1 and
ε1 = εt2g − ε2p for the lower energy t2g peak and t2 and
ε2 = εeg − ε2p for the higher energy eg peak, assuming
0 < t1 < t2 and 0 < ε1 < ε2.

Assume, without loss of generality, that within the ini-
tial state picture the t2g and eg peaks have the same

intensity: sin2 θi1 =
t21

t21+∆(ε1)2
=

t22
t22+∆(ε2)2

= sin2 θi2 .

For the purposes of illustration, we can use the following
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ε̃2p -4.0 (ε2p) -6.0 -8.0 -10.0

sin2 θf1 0.2 0.113 0.072 0.049

sin2 θf2 0.2 0.138 0.100 0.075

ratio 1.0 0.82 0.72 0.65

TABLE I. The relative near-edge peak intensities in a simple
two-electron system with two available empty orbitals having
O 2p hybridization and energies consistent with t2g and eg
orbitals and their dependence on the final state orbital energy
ε̃2p.

numerical values: εt2g = 1.0, εeg = 4.0, ε2p = −4.0, and

sin2 θi1 = sin2 θi2 = 0.2 such that t1 = 2.5 and t2 = 4.0 (a
comparable energy unit could be eV), with the expected
ordering.

If the core hole deepens the O 2p orbital energy, ε2p, to
ε̃2p, then the one-body final-state intensities will change
and the intensity ratio decreases, as shown numerically
in Table I. It can be seen from this example that a one-
body final-state estimate of the 3d peak-intensity ratio
(sin2 θf1/ sin2 θf2) always decreases with increasing core-
hole binding.

C. Charge-transfer effects and impact on simulated
spectra

While the one-body approach fails systematically in
predicting the XAS for the chosen TMOs, it produces a
satisfactory lineshape for SiO2. This is consistent with
the previous success with using the one-body approach
for a wide variety of systems4,11,14,15,19,37,38 that are not
TMOs. We make use of the connections between the one-
body and many-body approaches outlined in Sec. (II H)
to understand why this is the case here.

A comparison of spectra obtained in different ways is
shown in Fig. 5. The projection spectrum is more in-
tense than the final-state spectrum in all cases, indicating
the hybridization term 〈ψv|ψ̃f 〉 is not neligible. However,
the spectra of the chosen systems are affected in different
manners by this term. For SiO2, the projection spectrum
σfi is in proportion to the final-state spectrum σf (mul-
tiplication by the many-body overlap, S, correctly renor-
malizes the spectrum). On the other hand, the near-edge
spectral profiles in TiO2 and CrO2 are substantially mod-
ified from the one-body approximation by the projection
onto empty orbitals, in particular for CrO2 where the first
peak is partly retrieved in terms of its relative intensity
with respect to the second peak (around 532.5 eV). This
indicates that the projection defined in Eq. (32) plays
an important role in retrieving some key absorption fea-
tures, which makes this definition an efficient means to
determine whether the final-state rule is sufficient for ob-
taining a satisfactory XAS.

Although the projection spectrum can rectify the defi-
ciency of the final-state rule to some extent, it is still nec-
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FIG. 5. comparison of the final-state spectra (σi) and the
projection spectra (σfi) for TiO2, SiO2, and CrO2. The
final-state spectra and the spectra from the determinantal
approach (up to f (2)) are taken from Fig. 4.

essary to employ the determinant formalism for a correct
and physical spectrum. For CrO2, the projection spec-
trum still deviates significantly from experiments, even
after it is rescaled by S. This suggests the many-electron
effects described by the second terms in Eq. (30) are not
trivial and should be included.

We consider the XAS of CrO2 in more detail. Fig.
6 (a) shows the spin-dependent f (1) and f (2) contribu-
tions to the spectrum separately, together with the oscil-
lator strengths of some main transitions (> 10% of the
strongest transitions) presented as “sticks”. We begin
with an analysis of the f (1) terms that consist of only
a single electron-core-hole pair. Because the core hole
is fixed, an f (1) term can be mapped to a single empty
final-state orbital

A 7→ ẽ1 ↑, B 7→ ẽ3 ↑, C 7→ ẽ3 ↓, D 7→ ẽ4 ↑ (36)

where ẽ3 ↑ and ẽ3 ↓ closely resemble one another, only
one of which is shown in 6 (d). The orbitals defining
A, B, C, and D correspond to a t2g dxy, an eg dz2 ↑,
an eg dz2 ↓, and an unbound itinerant (p-like) orbital
respectively. Hereafter, ↑ is omitted unless for spin-down
orbitals.
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FIG. 6. (a) Decomposed contributions from the single f (1) and double f (2) configurations to the O K edge XAS of CrO2. For
each case, the spectrum is decomposed into an spin-up (↑) and an spin-down (↓) channel. All the spectra are plotted with
the same intensity scale, with sticks, i.e., oscillator strengths of the final states, in the background. Only 10% states with the
strongest oscillator strengths are shown. The major sticks are highlighted with black bars. (b) O 1s XPS of CrO2. The energy
of the final ground-state (with the least binding energy) is aligned with zero. (c) Comparison of the peak-intensity ratios of
the initial-state spectrum (σA↑ ∗ σP↓ + σA↓ ∗ σP↑, black), the final spectrum convoluted from the two spin-channels (red), and
the fictitious spectrum without convolution (σA↑ + σA↓, red). The first peaks are rescaled to the same height. (d) Charge
difference ρf − ρi of the N -electron charge-transfer (CT) state and relevant 1p orbitals. ei and hi denotes empty and occupied
orbitals respectively. Final-state orbitals are annotated with tilde. a and b are two hard axes of CrO2 and c is the easy axis.
The photon polarization is in the hard-plane. Note that the CT state is shown from a perspective different from the 1p orbitals.
For the CT plot, the charge gain (loss) is shown in orange (green). For the orbital plots, yellow and cyan indicate the phases
of the spatial wave functions.

What do these transitions have in common? They all
reflect projections of the initial (ground) state, mediated
by the photon electric field, onto final states that share a
common O 1s core-hole excitation and its associated per-
turbing potential. The core hole attracts electron density
towards the excited O site, as can be seen from the plot-
ted isosurface of the charge-density difference ρf − ρi in
Fig. 6 (d) (top left). This charge transfer results from the
response of the N -electron system to the core-hole poten-
tial. It is computed as the deviation of final-state DFT
charge density ρf (without the excited electron as in the
FCH approximation) from the one of the initial state ρi.
According to the first term in Eq. (30), there is a single
prefactor common to all final states for this component of
the f (1) transitions, also denoted S in Eq. (31). This N -
electron determinant is yet another way of representing
the CT state. Generally speaking, all (N + 1)-electron
final states, within this MND single-determinant picture,
only differ by a few composite single-particle orbitals that
slightly modulate this CT density. The f (1) states differ
by the addition of just one final-state unoccupied orbital.

Close examination of the final state orbitals in 6 (d)
reveals, surprisingly, that the brightest transition of the
entire spectrum originates from state A, even though its
excited electron orbital, ẽ1 , does not overlap with the
excited O atom [marked by “X”in Fig. 6 (d)]. As a result,

the one-body final-state rule gives a transition amplitude
of only

|〈ẽ1|x|ψh〉| = 9.16× 10−6(a.u.) (37)

which explains the lack of any significant first peak in
the simulated one-body XAS of CrO2 in Figs. 4 and 5.
This small amplitude is due to Pauli-blocking resulting
from the charge transfer – in other words, the core-hole
potential has lowered some initially unoccupied O 2p or-
bital character below the Fermi level of this half-metal,
rendering it inaccessible within this 1p picture.

By contrast, the many-body determinantal amplitude
of A is a few orders of magnitude larger:

|
∑

c∈empty

(Afc )∗〈ψc|x|ψh〉| = 1.08× 10−2
(38)

To understand why the many-body state A still has a
strong oscillator strength, an analysis can be provided
based on the Laplace expansion of the determinantal am-
plitude in Eq. (30). By inspection, we find that the most
important contributions to the amplitude of A are from
ψ̃i = ẽ1, h̃4, and h̃3. They have substantial overlap (in-
tegrals tabulated in Tab. II) with a number of initial-
state empty orbitals that exhibit p character at the ex-
cited O atom, such as e1, e2, and e3, as shown in Fig. 6
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ψ̃i |〈ψ̃i|Pcx|ψh〉| |〈ψ̃i|e1〉| |〈ψ̃i|e2〉| |〈ψ̃i|e3〉| |Mf
i |

ẽ1 3.79× 10−3 0.30 0.51 0.05 0.34

h̃4 9.93× 10−3 0.28 0.08 0.24 0.24

h̃3 1.23× 10−2 0.27 0.07 0.28 0.26

TABLE II. Quantities relevant for analyzing the expansion in
Eq. (30 for state A.)

(d) (top row). Consequently, the projection amplitudes

|〈ψ̃i|Pcx|ψh〉| of ẽ1, h̃4, and h̃3 are still significant (i.e.,
similar in magnitude to the amplitude of A), although
these final-state orbitals may have small overlap with
the core hole. Furthermore, the corresponding many-

electron overlaps, Mf
i , are not small (Tab. II). There-

fore, the combined contribution
∑
i(M

f
i )∗〈ψ̃i|Pcx|ψh〉 for

ψ̃i in {ẽ1, h̃4, h̃3} is significant: 6.91× 10−3, comprising
64% of the total amplitude of A. From this example, it
can be seen that empty initial-state orbitals and a multi-
orbital picture are crucial for understanding the bright-
ness of near-edge transitions in metallic systems.

D. Shake-up effects in half-metallic CrO2

The determinantal approach introduced in this work
does not set any constraint on the number of e-h pairs to
be included and is capable of considering more complex
excitations than in the BSE. Higher-order e-h-pair pro-
duction (so-called shake-up effects due to the core-hole
perturbation) should be less costly from an energy per-
spective in systems with smaller band gaps, and therefore
more evident in the near-edge fine structure. This section
discusses these effects for the half-metallic CrO2, whose
majority-spin channel is metallic, while the minority-spin
channel is insulating. The interplay of the two spin chan-
nels in x-ray excitations gives rise to intriguing physics
that cannot be simply explained by excitonic effects. We
will discuss how the measured XAS takes shape to il-
lustrate additional many-body effects that are captured
within the determinantal approach, beyond those already
highlighted above for the f (1) transitions.

For CrO2, the f (2) XAS contribution becomes compa-
rable to that of f (1) at ∼ 4.0 eV above the absorption
onset (Fig. 4 (a)). The f (2) configurations can be con-
sidered as shake-up excitations derived from f (1). Below
is the composition of some major f (2) configurations out-
lined in Fig. 6 (a)

E 7→ (ẽ1, h̃4, ẽ2), F 7→ (ẽ1, h̃3, ẽ3),

G 7→ (ẽ1, h̃3, ẽ3 ↓), H 7→ (ẽ1, h̃3, ẽ4)
(39)

They can be derived from the f (1) states by adding one
more e-h pair

E 7→ A+ (ẽ2, h̃4), F 7→ B + (ẽ1, h̃3),

G 7→ C + (ẽ1, h̃3), H 7→ D + (ẽ1, h̃3)
(40)

where h̃3, h̃4, ẽ1, and ẽ2 are t2g orbitals close to the Fermi
level. As is shown in Fig. 6 (d), orbital ẽ1 has significant

spatial overlap with h̃3 (sharing the dxz character at the
Cr atom next to the excited O), and so does orbital ẽ2

with h̃4 (near the oxygens at the corners of the plot),
albeit weaker. This overlap makes E, F , G, and H also
bright transitions. There are alternative pathways to ac-
cess these states with two e-h pairs. For instant, F can
also be mapped to A + (ẽ3, h̃3), i.e., A coupled with an

e-h pair (ẽ3, h̃3) (a shake-up d− d transition).
The shake-up excitations can also be found in the satel-

lite features of XPS, as shown in Fig. 6 (b). Recently
these excitations were investigated with a cumulant ex-
pansion technique68,69. Here, we show that these satellite
features can also be included naturally within the de-
terminant formalism of the non-interacting MND theory
(albeit poorly approximating their energies due to miss-
ing additional interactions between these extra e-h pairs).
The computation of XPS using the determinant formal-
ism is outlined in Sec. II F. The strongest transition
(labelled as state I) originates from the overlap of the N -
electron states, describing the initial ground state valence
system and the final core-excited valence system (assum-
ing the excited electron has escaped, approximated using
the full-core-hole approach): 〈ΨN

f,FCH|ΨN
i,GS〉. This cor-

responds to the charge-transfer state in Fig. 6 (d). We
may define I as the only zero-order configuration (f (0))
of XPS. f (1) configurations emerge at larger binding en-
ergies and appear as satellite features in the XPS profile.
Two representative states are J and K

J 7→ (ẽ1, h̃2), K 7→ (ẽ1, h̃1) (41)

which are shake-up excitations from h̃2 (a Cr 3d - O 2p
hybrid with mixed bonding and anti-bonding character)

and h̃1 (a deep O 2p orbital) to the ẽ1 orbital, respec-
tively. The charge transfer associated with K is particu-
larly strong.

E. Many-body wavefunction overlap effects in
CrO2

As shown in Sec. III C, the projection onto empty
initial-state orbitals alone cannot account for the XAS
lineshape for CrO2, and one must employ the determi-
nant formalism. This suggests that there are impor-
tant many-electron effects in the determinantal ampli-
tude that lead to the ultimate peak-intensity ratio of
∼ 1.7 between the first and second absorption features.
To explain this, we rewrite the spectrum as the convolu-
tion defined in Eq. (26)

σA = σA↑ ∗ σP↓ + σA↓ ∗ σP↑ (42)

where σA ≡ σXAS, σP ≡ σXPS, ∗ represents the convo-
lution integral in Eq. (26), σAµ and σPµ are spectra of
one-spin channel before convolution. Then the spectral
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FIG. 7. Spin-wise spectral function σP↑ and σP↓. The x-
axis is the binding energy (EB). EB = 0 is aligned with the
threshold.

functions σPµ can be considered as weighting factors of
the two absorption channels σAµ. If the weighting factors
are not considered, the hypothetical spectrum

σ′A = σA↑ + σA↓ (43)

has a peak-intensity ratio of ∼ 1.3 that still deviates sig-
nificantly from experiment (Fig. 6 (c)). This implies that
the modulation effects of σP↑ and σP↓ on their counter-
spin channel are quite different.

The spectral functions, σP↑ and σP↓, are shown in Fig.
7. In both cases, most spectral weight is concentrated at
zero binding energy, EB = 0. But for the metallic ↑
channel, more spectral weight is transferred to shake-up
satellites at higher energies because its lack of a band
gap makes e-h pair production easier. As a result, σP↓
is more intense than σP↑ near EB = 0. The integrated
intensity of σP↑ is ∼ 2/3 of σP↓ for EB < 1.7 eV (shaded
areas). The more intense σP↓ enhances the contribution
of σA↑, especially the lowest-energy peak defined by t2g ↑
orbitals, leading to a peak-intensity ratio of ∼ 1.7 as
measured.

To conclude, the three contributing factors leading to
the near-edge lineshape of CrO2 are: (a) the core-level ex-
citonic effect in the metallic screening environment lead
to a mild increase in the edge intensity (the initial-state
spectrum is also shown in Fig. 6); (b) shakeup excitations
in the spin-up channel reduces the many-body wave func-
tion overlap σP↑ at EB = 0; (c) the smaller wave function
overlap (orthogonality effects) reduces the intensity of the
spin-down channel that mainly contributes to the second
absorption feature, leading to a even stronger first peak
versus the second.

IV. NUMERICAL CONSIDERATIONS AND
COMPUTATIONAL EFFICIENCY

A. Properties of the ξ-matrix

One primary concern of the determinantal approach is
the numerical accuracy of the ξ-matrix (ξ). In practice,
one can only choose a finite number of orbitals (bands)

in first-principles calculations and this set of orbitals can
not span the full 1p Hilbert space, as illustrated in Fig.
8 (a). Therefore, the initial-state orbital set may not
overlap with the final-state one, resulting in a ξ that is
projective rather than unitary. Furthermore, it may be
worrisome if the numerical error in the matrix elements
of ξ is accumulative, leading to determinant values that
are either vanishingly small or unrealistically large.

Here, we demonstrate that using the optimal basis set
for expanding 1p wave functions can produce a ξij ma-
trix close to unitary, such that the spectral weight of the
determinantal spectrum is on the same order of magni-
tude as the 1p final-state spectrum as compared in Sec.
III C. When constructing the Shirley optimal basis sets,
we include a sufficient number of bands (Tab. III) so
that the optimal basis functions can cover a range of
1p wave functions, from localized 3d-orbitals to delocal-
ized states. We measure the quality of a transformation
matrix by its eigenvalues. A close-to-unitary transfor-
mation matrix should have eigenvalues that are close to
1 predominantly. Through examining ξ of the studied
systems, we find more than 90% of the eigenvalues are
larger than 0.995, with a maximum below 1.0001, which
suggests these ξ’s are close to unitary. A typical statis-
tics of the eigenvalues of ξ using Fe2O3 and CrO2 ↑ as
examples is provided in Fig. 8 (b).

The second concern regarding the practicality of the
determinantal approach is how many configurations are
relevant for a converged lineshape. From the analysis of
the BFS algorithm, we know that this depends on the
sparsity of ζ and how many non-vanishing minors one
can extract from ζ.

We first analyze the properties of ξ. Fig. 8 (c) dis-
plays the ξ for the three representative cases, the large-
band-gap SiO2 (690 × 690), the semiconducting TiO2

(800 × 800), and the metallic spin channel (↑) of CrO2

(1200 × 1200). All ξ’s are quasi-block-diagonal, which
indicates the core-hole-induced hybridization mainly oc-
curs within orbitals of similar energies. Overall, the ξ
of SiO2 and TiO2 has more off-diagonal matrix elements
compared to CrO2 because electronic screening of the
core hole is weaker in an insulator/semiconductor than in
a metal. In the region near the Fermi levels, however, the
ξ of SiO2 and TiO2 has less off-diagonal matrix elements
than CrO2: for SiO2 and TiO2, the significant matrix el-
ements are mainly concentrated at the vv-(occupied-to-
occupied) and cc-(empty-to-empty) blocks; but for CrO2,
there are more non-vanishing matrix elements in the vc-
or cv-block, especially in the vicinity of the Fermi-level
crossing. This is because the Fermi surface of a metal-
lic system is susceptible to the core-hole potential, which
strongly rehybridizes the orbitals near the Fermi surface.

ξ of SiO2 is also significantly different from those of
TiO2 and CrO2. The distribution of nontrivial matrix el-
ements is more homogeneous within the vv and cc block
for SiO2 compared to TiO2 or CrO2. This is also con-
sistent with the analysis with projection spectra in Sec.
III C: the conduction bands of SiO2 hybridize uniformly
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FIG. 8. (a) Schematic showing the relation of the subset of initial(final)-state orbitals chosen in practical calculations to the full
Hilbert space. (b) Histograms for the distribution of the eigenvalues of the square ξ′s. Counts of eigenvalues are in logarithm
scale. The bar widths (above 0.9) are 2

3
× 10−3. (c) ξ-matrices for SiO2, TiO2, and CrO2 ↑. The dashed lines mark the Fermi

level of the initial (vertical) and final (horizontal) state. The right panels are the regions enclosed by the bolded squares on
the left ones near the crossings of the two Fermi levels. Within these regions, the CrO2 has large matrix elements in all four
quadrants while the large matrix elements are mainly located within the vv− or cc−block for SiO2 and TiO2. (d) ζ-matrices
that correspond to the ξ-matrices in (c). Rows iterates over empty-orbital indices with 1 being the lowest empty one. Columns
iterates over occupied-orbital indices with 1 being the lowest occupied one. Right panels are enlarged views of the square
regions in the left ones. Both (c) and (d) display the absolute values of the complex matrix elements in logarithm scale.

with the valence bands due to the core hole, leading to
very similar lineshapes in the 1p, projection, and deter-
minantal spectrum, whereas the cv-hybridization in TiO2

or CrO2 is less uniform and orbital-dependent, leading to
a few-body molecular description of x-ray excitations as
in Sec. III C and III D.

B. Properties of the ζ-matrix

Consider an ideal situation where there is no hybridiza-
tion induced between the occupied and empty orbitals as
the core-hole potential is introduced. The ξ-matrix is
exactly block diagonal and ζ only has non-zero matrix
elements in its last column. The actual ζ-matrix can be
considered as a deviation from this ideal situation. How
much it deviates depends on the hybridization of the oc-
cupied and empty orbitals. Fig. 8 (d) displays the ζ-
matrices for SiO2, TiO2, and CrO2 ↑, for the region that
spans the lowest 170 unoccupied orbitals (rows) and the
topmost 16 occupied orbitals plus the lowest unoccupied
orbital (columns). Near the Fermi levels, the ξ-matrices
of SiO2 and TiO2 are quasi-block-diagonal, which leads
to a ζ-matrix with significant matrix elements mainly lo-
cated on its last column. There are relatively a small

number of non-vanishing 2× 2 or high-order minors, and
therefore the XAS converges mostly at the f (1) order.
We can also see that the more uniform, reduced cou-
pling between occupied and unoccupied orbitals in SiO2

leads to a ζ-matrix with a more dominant final column.
By contrast, the hybridization across the band gap in
TiO2 exhibits less uniformity, reflecting the existence of
more localized orbitals subspaces affected by the core-
hole potential, and the corresponding ζ-matrix exhibits
more significant terms outside the final column, indicat-
ing that the many-body approach may be more accurate
for TiO2. For CrO2 with strong hybridization, ζ has
more significant matrix elements beyond the last column.
These matrix elements form several strips with widths of
a few columns, leading to more nontrivial high-order mi-
nors.

C. Computational overhead

The computational complexity of the BFS depends on
how many nontrivial minors can be found from ζ. A
statistics of the computational effort required to converge
XAS is shown in Table. III. The XAS is simulated with a
supercell with dimensions around 10 Å and several hun-
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System Calc. Eg (eV) |det | #Orb. #Elec. # f (2) (M) # Significant f (2) (M) Ratio (%)

TiO2 1.79 0.8077 800 288 37.7 0.0567 0.15

SrTiO3 2.26 0.8125 1200 540 117 0.891 0.76

Fe2O3 1.10 0.7922 1000 400 71.9 0.197 0.27

VO2 0.00 0.7594 800 300 37.4 0.0345 0.09

CrO2↑ 0.00 0.3397 1200 336 125 0.242 0.19

CrO2↓ 3.68 0.8474 1200 288 119 0.282 0.24

MnO2 0.09 0.8047 800 324 36.6 0.708 1.9

NiO 3.33 0.8122 500 256 7.59 0.0812 1.1

CuO 0.12 0.4871 1024 544 62.5 0.604 0.97

SiO2 6.19 0.8370 690 192 23.7 0.179 0.75

TABLE III. (Initial-state) band gaps Eg obtained on the DFT (+U) level; the absolute values of the determinants for the
transformation matrix from the initial to final state for the N -electron systems, i.e., |〈ΨN

i |ΨN
f 〉|(|det |), of individual spin

channels without the photoelectron; numbers of all orbitals and those of the occupied ones; numbers of all f (2) configurations
and the prominent ones that contribute to converged lineshapes and their proportions among the whole; for the systems being
studied;

dred (Nv) electrons. To cover an energy window up to 20
eV above onset, another few hundred (Nc) empty orbitals
are also included. Since the investigated XAS converges
at the f (2) order, we use the number of nontrivial f (2)

configurations as a measure of the computational costs.
There are Nc(Nc − 1)Nv/2 f (2) configurations in total,
whose numbers are from tens to hundreds of millions for
the investigated systems. The number of the nontrivial
f (2) configurations as found by the BFS algorithm is typ-
ically around 1% of the total. In all of the investigated
systems, this translates to at least a 100-fold speed-up of
calculations, thanks to the BFS algorithm that screens
out configurations of weak transition amplitudes. For
insulators such as diamond or TiO2, even fewer config-
urations are needed to achieve convergence. The overall
trend for the computational cost is: the smaller the band
gap (Eg), the more the valence orbitals tend to hybridize
with the empty orbitals (due to the core-hole potential),
the smaller the determinant of the overlap matrix be-
tween the initial- and final-state (〈ΨN

i |ΨN
f 〉), and more

configurations and computational efforts are required.

V. CONCLUSIONS AND OUTLOOKS

In conclusion, we have implemented an efficient algo-
rithm for simulating x-ray absorption spectra (XAS) em-
ploying transition amplitudes computed within a many-
body determinantal ansatz. The core of the algorithm
exploits the linear dependence of the determinants repre-
senting various electronic configurations for a fixed num-
ber of electrons and a breadth-first search (BFS) graph
algorithm that efficiently and controllably neglects con-
figurations whose contributions are insignificant to com-
puted XAS, as defined by some numerical tolerance. The

new methodology has been applied to study a series
of transition metal oxides (TMOs), and this simulation
technique can be readily used for interpreting XAS of
these technologically important materials. In the ma-
jority of cases, this approach provides an accuracy com-
parable to or exceeding Bethe-Salpeter equation (BSE)
solutions and naturally includes electronic confgurations
representing higher-order excitations beyond the subset
of Feynman diagrams accessible within the BSE.

The determinantal approach can be extended to other
types of x-ray spectra besides XAS, such as x-ray photoe-
mission spectroscopy (XPS) and resonant inelastic x-ray
scattering (RIXS), using a similar linear algebra tech-
nique and search algorithm. It will be worthwhile to
compare this new method with recent studies that ap-
ply a cumulant expansion to capture the charge-transfer
satellites in XPS68,69,104. And it will be interesting to
test the efficiency of the current approach to produce 2D
RIXS spectra that provide rich information for materials
characterization.

The main drawback of the current approach relates
to its approximation of the various final state configura-
tions, which are currently derived from a single (core-
orbital excited-state) self-consistent field and its asso-
ciated valence KS orbitals. The spectrum of excita-
tion energies within this orbital space neglects addi-
tional valence-orbital excited-state electron interactions.
Therefore it cannot describe further excitonic final-state
effects resulting from the shake-up of additional valence
e-h pairs nor coupling with many-body collective modes,
such as plasmon excitations. These effects can be cap-
tured within the cumulant expansion through accurate
determination of the valence dielectric response function
beyond the random-phase approximation. However, this
is an excellent approximation for higher-order contribu-
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tions to the spectra of metallic or semi-metallic systems,
as demonstrated here for CrO2, and future work will ex-
plore solutions for an interacting picture to refine our de-
scription of higher-order excited states of semiconductors
and insulators and their associated spectral features.
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Appendix A: PAW formalism for obtaining the
overlap matrix elements

To obtain the transition amplitude Afc , a prerequisite is
to find the overlap integral between the initial- and final-
state KS orbitals, i.e., the matrix elements ξij = 〈ψj |ψ̃i〉.
In our implementation of the ∆SCF calculations, we em-
ploy a plane-wave basis and the electron-ion interaction
is modeled using Vanderbilt’s ultrasoft pseudopotentials.
The computational efficiency gain through the use of a
smaller plane-wave energy cutoff compared to what might
be required when using norm-conserving pseudopoten-
tials is offset by some additional steps in the formalism
which account for using non-orthogonal projections in
the pseudopotential. In the above calculations with the
many-electron method, we have used the PAW formal-
ism to find the overlap matrix elements ξij and here we
provide the details for finding these quantities.

In the PAW formalism, the real (all-electron, AE) wave
function is reconstructed from the pseudo (PS) wave
function via a linear transformation T

|ψAE〉 = T |ψPS〉 (A1)

In practice, there is one such T for each pseudized atom.
To simplify notation, we will omit the sum over atomic
indices, I, for most of what follows, until it is neces-
sary to the discussion. T is responsible for correcting
the wave function within the augmented spherical region
Ω centered at the atom of interest. First, T projects
the pseudo wave function onto the preselected projectors
|pl〉 of a particular angular momentum l; then T cor-
rects the wave function in the augmented region using
the difference of the real and pseudo atomic wave func-
tions of the corresponding l, i.e., |φAE

l 〉−|φPS
l 〉, and scales

the wave function difference with the projection ampli-
tude. |φAE

l 〉 and |φPS
l 〉 and the associated projectors are

all determined when generating the pseudopotential. Put

together, the linear transformation reads

T = 1 +
∑
l

(|φl〉 − |φPS
l 〉)〈pl| (A2)

For simplicity, “AE” is dropped and only “PS” is kept to
indicate a wave function is pseudo.

A PAW construction satisfies the following conditions:
(i) the projector functions 〈r|pl〉 are zero outside the aug-
mented region Ω; (ii) the difference of the atomic wave
functions of the same l, i.e., 〈r|φl〉 − 〈r|φPS

l 〉, is also zero
outside Ω; (iii) and we have an orthogonality and com-
pleteness relation: 〈φPS

i |pj〉 = δij , for all i and j, and
P =

∑
l |φPS

l 〉〈pl| is the identity operator over Ω. It
should be noted that in the PAW formalism each an-
gular momentum may have more than one channel so
〈φl|φ̃l′〉 = δll′ may not hold in general.

As stated, there is one such linear transformation T for
each type of atom (i.e., for each element) and the projec-
tions should include a structure (phase) factor to account
for different atomic positions within an extended, peri-
odic context. In the x-ray core-hole approach, however,
we introduce a new type of atom. We have, as before, the
initial-state (ground-state) atoms and one new type to
describe the final-state atom with an excited core hole. In
practice, this means that there are two sets of projectors
and atomic wave functions involved for this particular
atom. If one wants to obtain the overlap matrix elements
ξij , it is necessary to obtain overlap integrals of two wave
functions that are reconstructed from two different PAW
constructions. Here, we focus on the single-atom case
and find the expression for the overlap. Consistent with
the notation in the rest of the manuscript, we use a tilde
to denote quantities related to the final (excited) state.
Omitting the irrelevant indices, the overlap between an
initial-state and a final-state orbital is

〈ψ|ψ̃〉 = 〈ψPS|T †T̃ |ψ̃PS〉 (A3)

where ψ and ψ̃ are reconstructed from two different lin-
ear transformations, T and T̃ . Expanding the operator
product, we find

T †T̃

= 1 +
∑
l

|pl〉(〈φl| − 〈φPS
l |) +

∑
l′

(|φ̃l′〉 − |φ̃PS
l′ 〉)〈p̃l′ |

+
∑
ll′

|pl〉(〈φl| − 〈φPS
l |)(|φ̃l′〉 − |φ̃PS

l′ 〉)〈p̃l′ |

(A4)

This expansion can be regrouped and simplified by mak-
ing use of the properties of the projectors and PAW
atomic wave functions in conjunction with the complete-
ness relation.

First, the last summation in Eq. (A4) can be further
expanded so as to make use of the projection operators



22

P =
∑
l |φPS

l 〉〈pl| and P̃ , as follows:∑
ll′

|pl〉(〈φl| − 〈φPS
l |)(|φ̃l′〉 − |φ̃PS

l′ 〉)〈p̃l′ |

=
∑
ll′

|pl〉(〈φl|φ̃l′〉 − 〈φPS
l |φ̃PS

l′ 〉)〈p̃l′ |

−
∑
l

|pl〉(〈φl| − 〈φPS
l |)

(∑
l′

|φ̃PS
l′ 〉〈p̃l′ |

)
−
(∑

l

|pl〉〈φPS
l |
)∑

l′

(|φ̃l′〉 − |φ̃PS
l′ 〉)〈p̃l′ |

(A5)

The last two terms can be regrouped with the two single-
summations over l and l′ in Eq. (A4). For instance, the
second summation in Eq. (A5) can be combined with the
second term in Eq. (A4) as∑

l

|pl〉(〈φl| − 〈φPS
l |)(1− P̃ ) (A6)

While the operator |pl〉(〈φl| − 〈φPS
l |) is only non-zero

within Ω, (1− P̃ ) projects the wave function onto the re-

gion complementary to Ω̃. Therefore, we can consider the
union of the augmented regions for the ground-state and
the core-excited atom, Ω∪Ω̃ as a volume within which the
product of these operators will zero out any wave func-
tion, and the operator in Eq. (A6) is a zero operator. In
practice, we can set the radial limit for atomic integrals,
like 〈φ|φ̃〉 to the maximum of the cutoff radii used when
generating the pseudopotentials for the ground-state and
the core-excited atom. More often than not, these cut-off
radii are identical and Ω = Ω̃. And so, the second and
third summations in Eq. (A5) cancel exactly with the
second and third terms in Eq. (A4).

With all terms combined, the final expression for the
operator product is simplified as

T †T̃ = 1 +
∑
ll′

|pl〉(〈φl|φ̃l′〉 − 〈φPS
l |φ̃PS

l′ 〉)〈p̃l′ | (A7)

In a multi-atomic system, the overlap matrix elements in
Eq. (A3) can be written as

〈ψ|ψ̃〉 = 〈ψPS|ψ̃PS〉

+
∑
I,ll′

〈ψPS|pIl 〉(〈φIl |φ̃Il′〉 − 〈φ
I,PS
l |φ̃I,PS

l′ 〉)〈p̃
I
l′ |ψ̃PS〉

(A8)

in which the index I goes over all the PAW atoms in the
system. Here, we only consider one core-excited atom
within a given supercell, and so, for all but one of the
atoms, the initial and final state PAW projections are
identical (i.e., we can drop the tildes).

The first term in Eq. (A8) can be obtained efficiently
using the pseudo wave functions in their native plane-
wave basis. The routines to evaluate the projection
amplitude 〈ψPS|pIl 〉 are already required to obtain the
core-level position matrix operator at the core-excited

atom (as we have done in the past for the one-body fi-
nal state approach). The same procedure can be triv-
ially extended to estimate projection amplitudes for all
atoms and for both the initial and final state, using
outputs from the pseudopotential generation. An ad-
ditional routine is needed for the atomic overlap term

SIll′ ≡ 〈φIl |φ̃Il′〉 − 〈φ
I,PS
l |φ̃I,PS

l′ 〉, which can be obtained
beforehand using the atomic wave functions from two
given PAW constructions. All of these quantities can be
computed and stored in advance for an established set of
pseudopotentials and then used for any number of further
periodic calculations.

Appendix B: Optimal Basis Set for Obtaining
Electronic Structure over Dense k-Grid

Generating electronic states over a dense enough k-
grid within the first Brillouin zone (BZ) is an essential
step for producing continuous spectral functions that re-
spect the continuity in the electronic density of states.
This is particularly important for simulating X-ray ab-
sorption spectra, especially when excited states extend
into the continuum, either beyond the ionization poten-
tial in a non-infinite system or into the Bloch-periodic
states of extended periodic systems. Although setting
up a supercell for simulating XAS is equivalent to us-
ing some k-point sampling over the BZ of the primitive
unit cell, generating a k-grid on the top of the supercell
setups in some occasions does further improve the qual-
ity of simulated spectra, particularly at higher energies.
Similarly, a metallic system may have a large number of
extended states near the Fermi level, which need to be
included to accurately reproduce the near-edge fine struc-
ture. The number of extended states is proportional to
and limited to the size of the supercell that can be re-
alistically simulated in the ∆SCF core-hole calculation.
In this circumstance, using k-point sampling over the
supercell BZ may partially compensate for the disadvan-
tage of using a supercell that is not quite large enough.
However, k-point sampling will not correct for a model of
the final state within which the charge-density response
to the core-excited state has not sufficiently converged
within the supercell.

Previously, we have studied, implemented, and tested
an efficient calculation scheme for obtaining band struc-
ture on a dense k-grid. By employing so-called optimal
basis sets85,86, one can first generate the band structure
on a coarse k-grid and then reproduce band energies and
wave functions at any k-point with much less computa-
tional effort. The optimal basis set is the minimal basis
for representing the periodic components of Bloch-waves
across the BZ, constructed by removing linear depen-
dence between these vectors (with the assumption that
these functions vary smoothly throughout the BZ). Simi-
lar to plane-wave basis sets or maximally-localized Wan-
nier functions105, the optimal basis functions, denoted
as {Bi}, can be used to expand a Bloch-periodic wave
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function |ψk〉 = eik·r|uk〉, in terms of its periodic compo-
nent: 〈Bi|uk〉, but are not limited to extended or local-
ized states, no more than the actual KS orbitals them-
selves. Moreover, the number of optimal basis functions
required is much smaller than the number of plane-waves
for expanding these orbitals. The size of a good optimal
basis set ranges from 103 to 104, which can be at easily
1000 times smaller than the plane-wave basis set of equiv-
alent accuracy. The energies and eigenstates at a given
k-point are obtained from diagonalization of a represen-
tation of the original (k-dependent) KS Hamiltonian in
this much smaller basis.

Now we revisit the quantities needed for computing
the overlap matrix elements in Eq. (A8), 〈ψPS|ψ̃PS〉 and

〈pIl |ψPS〉(〈p̃Il |ψ̃PS〉), which will benefit greatly from using
optimal basis sets. First, the pseudo overlap matrix el-
ement (carried out at every k-point independently) can
be computed as

〈ψPS
nk |ψ̃PS

mk〉 =
∑
ij

〈uPS
nk |Bi〉〈Bi|B̃j〉〈B̃j |ũPS

mk〉 (B1)

where 〈uPS
nk |Bi〉 (〈B̃j |ũPS

mk〉) are the eigensolutions (Her-
mitian conjugates) of the k-dependent Hamiltonian in
their corresponding optimal bases. Although each opti-
mal basis set is constructed to be orthonormal, 〈Bi|Bj〉 =

δij and 〈B̃i|B̃j〉 = δij , note that the k-independent over-

lap matrix is not, in general: 〈Bi|B̃j〉 6= δij , because we
employ different optimal basis sets to represent initial-
and final-state systems. We could in principle employ a
sub-optimal basis to describe both systems, but it has
not been attempted here.

Although optimal basis functions themselves are rep-
resented in a plane-wave basis, {Gi}, the relatively ex-

pensive calculation, 〈Bi|B̃j〉 =
∑
i′〈Bi|Gi′〉〈Gi′ |B̃j〉, only

needs to be computed once, and the matrix is univer-
sally applicable to any k-point. Similarly, 〈pIl |ψPS〉 can
be obtained by inserting the optimal basis set, in the
same manner used to construct the same projectors in
the non-local pseudopotential within the Hamiltonian.
This procedure has been implemented in the one-body
core-hole approach and it simply needs to be extended
to all atoms in the system.

Appendix C: Spectral Convolution Theorem

In practice, we may encounter a situation where a
many-electron system can be factorizable into subsys-
tems that are not entangled with each other, and inter-
system transitions are forbidden. For example, in a sys-
tem where electron spins are collinear, and each elec-
tron can be associated with either a spin-up or -down
state, then a many-body transition operator which can
be similarly partitioned cannot induce transitions from
the spin-up subsystem to the spin-down subsystem. The
many-body dipole operator, which is the sum of one-
body dipole operators, behaves in this way, and so, light-

induced transitions of spin-collinear systems (within the
dipole approximation) cannot affect spin cross-over.

In general, if a spectrum reflects a multidimensional in-
tegral over a function factorizable for each independent
variable (or, equivalently, over some partitioning of the
same space), then we can take advantage of the spec-
tral convolution theorem. For two independent variables,
x sampling subsystem A and y sampling subsystem B,
suppose f(x, y) = fA(x)fB(y), and we define a spectral
function

σ(E) =

∫ ∫
f(x, y)δ(E − (x+ y))dxdy

=

∫ (∫
fA(x)δ((E − y)− x)dx

)
fB(y)dy

=

∫
σA(E − y)fB(y)dy

=

∫
σA(E − E′)σB(E′)dE′

(C1)

where we have just changed variable (E′ = y) in the last
line and defined the following subsystem spectral func-
tions for each subset I in the partition {A,B}:

σI(E) =

∫
I

fI(E
′)δ(E − E′) (C2)

The general case, for many subsystems I in {In} can be
written as a set of nested integrals over each subsystem,

σ(E) =

∫
dE1σI1(E − E1)

×
∫
dE2σI2(E1 − E2)

· · · ×
∫
dEnσIn−1(En−1 − En)σIn(En)

(C3)

Let us assume that the many-body wave functions are
factorizable and limit our discussion to two subsystems,
A and B, so that |Ψ〉 = |ΨA〉 ⊗ |ΨB〉. Then the tran-
sition amplitude can be factorized by considering final
states where the transition probes each subsystem at
a time, assuming that the transition operator can also
be partitioned, for example, O =

∑
i∈AOi +

∑
j∈B Oj .

Note that, in practice, if the symmetry of the system
causes final states in different subsystems to be distinct,
we should do a separate ∆SCF calculation to define each
final state orbital subspace. Here, let us focus on the
components of the transition operator which act directly
on subsystem A, inducing a many-body response in sub-
system B, and index each final state by similarly par-
titioning the orbital configuration vector: f = (fA, fB)
(same for i) as follows:

〈Ψf |O|Ψi〉 = 〈ΨfA |O|ΨiA〉〈ΨfB |ΨiB 〉 (C4)

Then the total spectrum can be written using Eq. C1,
but recognizing a subtle difference between the subset
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spectral functions:

σA(E) =
∑
fA

|〈ΨA
fA |O|Ψ

A
i 〉|2δ(E −∆EfA) (C5)

this includes the transition operator, while

σB(E) =
∑
fB

|〈ΨB
fB |Ψ

B
i 〉|2δ(E −∆EfB ) (C6)

reflects the response of subsystem B to the excitation in
A. ∆Ef = ∆EfA + ∆EfB is the energy required to make
the transition.

This theorem is particularly useful for combining spec-
tra from opposite spin orientations and different k-points
by performing each calculation separately. In the many-
electron formalism, the size of determinants for each sub-
system is much smaller than the determinants for the
entire system with spins taken into account, and hence
one can compute a spectrum for each subsystem at much
lower memory cost and time complexity and then obtain
the resulting total spectrum via the nested spectral con-
volution outlined in Eq. C3.

Appendix D: K-Point Sampling over Supercell BZ
and the Determinant Formalism

This section mainly addresses two issues: (1) why it
is necessary to employ k-point sampling over the BZ of
the supercell in the x-ray calculation; and (2) why it is
justified to perform a determinant calculation for each
k-point separately and take the k-weight-averaged spec-
trum as the output spectrum.

First, a k-grid over the BZ of the supercell is employed
to include the natural dispersion of high-energy, scatter-
ing orbitals whose density of states is poorly approxi-
mated by sampling at the Γ-point alone. The size of the
supercell that can be achieved in practical x-ray (impu-
rity) calculations could be limited by the first-principles
computational capability. In this circumstance, using k-
point sampling for a smaller supercell can produce some
continuum states that are represent in Γ-point calcula-
tion for a very large supercell106. On the other hand, the
very near-edge features due to localized electronic states
bound by the core hole are not sensitive to k-point sam-
pling. We may illustrate this point by the simulated O K
edge of TiO2 as in Fig. 9. It can be seen the two peaks
in the near-edge part are not altered significantly by k-
point sampling, but the humps between 535 and 545 eV

are smoothened out, making a better comparison with
experiment.

Secondly, the supercell with k-point sampling over its
BZ is no longer the actual system with one core hole
that is of interest in x-ray excitations. In the pres-
ence of k-point sampling, the full physical system is a
“grand cell” with duplicates of the supercell, namely,
the core hole. Imagine we extend the determinant for-
malism to this grand-cell system. Within the single-

525 530 535 540 545
Energy (eV)

In
te
ns
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.u
.)

Γ-point
5×5×5

FIG. 9. Comparison of O K edge of TiO2 computed using
the Γ-point and the 5× 5× 5 k-point sampling.

determinant picture, the overall wavefunction is a prod-

uct state: |Ψ〉 =
nk⊗
k=1

|Ψk〉, and this applies to both the

initial and final state. Assume the transitions allowed by
the dipole operator O are still vertical. From Appendix
C, the total transition amplitude is

〈Ψf |O|Ψi〉 =

nk∑
k=1

[
〈Ψf

k |Ô|Ψ
i
k〉
∏
k′ 6=k

〈Ψf
k′ |Ψ

i
k′〉
]

(D1)

Note that 〈Ψf
k′ |Ψi

k′〉 is always smaller than 1.0 and hence
the overall amplitude vanishes exponentially as the num-
ber of k-points nk increases. The reason is that the prob-
ability for simultaneously creating many core holes in the
grand cell is indeed very small. However, this system is
no longer the single-core-hole system that we are inter-
ested in. Therefore, we only view k-point sampling as a
better means for sampling high-energy continuum states,
and just take the k-weight-averaged spectrum as the final
spectrum.
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M. Gorgoi, S. Benedetti, P. Torelli, A. Shukla, D. Chan-
desris, and C. Brouder, K-Edge X-Ray Absorption Spec-
tra in Transition-Metal Oxides beyond the Single-Particle
Approximation: Shake-Up Many-Body Effects, Phys.
Rev. B 86, 165102 (2012).

66 G. D. Mahan, Many-Particle Physics. Springer Science
& Business Media, 2013.

67 C. Lemell, S. Neppl, G. Wachter, K. Tőkési, R. Ernstorfer,
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