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The phonon-induced renormalization of electronic band structures is investigated through first-
principles calculations based on the density functional perturbation theory for nine materials with
various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormal-
ization (ZPR) of the electronic band structure is dependent on both crystal structure and material
composition. We have performed analysis of the EPC induced renormalization for two silicon (Si) al-
lotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions
of each material were computed, and our analysis indicates that materials with optical phonons at
higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPR’s, with
the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies
in the same range as graphite. Depending on the structure and material, renormalizations can be
comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, needs to be
considered in electronic structure calculations. The temperature dependence of the renormalizations
is also considered, and in all materials, the eigenenergy renormalization at the band gap and around
the Fermi level increases with increasing temperature.

I. INTRODUCTION

The effects of electron-phonon coupling (EPC) on
electronic structure has been an integral area of study
since the inception of the quantum theory of solids.
EPC is the primary mechanism behind superconductiv-
ity and the thermal dependence of the electrical resis-
tivity in metals; it leads to the optical absorption by
the indirect gap in semiconductors such as silicon, the
temperature-dependence of the band gap, the distortion
of electronic band structures, and hot carrier thermal-
ization, and it is one of the dominant factors deter-
mining the carrier mobility in semiconductors.1 In cur-
rent first-principles electronic structure calculations, the
electron-electron interaction responsible for the quasipar-
ticle (QP) excitation can be quantitatively described by
the GW approximation,2–4 and the GW band gaps (Eg)
agree with experimental data for many semiconductors
to within a few tenths of an eV. However, the electron-
phonon interaction involved in the QP excitation has
been largely ignored. This is because the QP eigenen-
ergy shifts (∆εnk) due to lattice vibrations in common
semiconductors are often less than 100 meV, which is well
within the margin of error for the current GW approxi-
mation methods.

The GW approximations are usually performed in ad-
dition to density functional theory (DFT5,6) calculations
within the local density approximation (LDA) or the
generalized gradient approximation (GGA) in order to
provide many-body corrections to the KS eigenenergies
and band gaps. In certain materials, ∆εnk and the re-
sulting band gap renormalization, ∆Eg, are compara-
ble to the corresponding many-body corrections, such
that the electron-phonon renormalization is significant
to electronic-structure calculations. For example, the
lattice vibrations at 0 K, or zero-point renormalization
(ZPR), of the direct band gap of diamond is ∼ 0.4 eV,7

which, compared to the GW correction of 2.04 eV, is
non-negligible. Furthermore, EPC may also depend on
the crystal structures of allotropes and polymorphs: for
instance, nanoscale materials8 or structures under high
pressures may have enhanced EPC (as with well-known,
high pressure induced superconductivity) despite the fact
that the ∆Eg in these materials is negligible for their bulk
counterparts under ambient conditions.

Early calculations performed by Allen and Cardona9,10

using rigid-ion pseudopotentials approximations and em-
pirical phonon models (Weber’s bond-charge model),
demonstrated that both Fan Migdal (Eq.3) and De-
bye Waller (Eq.4) self energy contributions are signif-
icant in determining the band gap renormalization in
Si and germanium (Ge). King-Smith et al. used
a self consistent DFT method to perform one of the
first parameter free calculations of the temperature
dependence of the band gap of Si. Rigorous first-
principles calculations7,11–18 of ∆εnk based on density
functional perturbation theory (DFPT19,20) emerged in
late 2000s. Giustino et al.

11,13 implemented Allen-Heine
theory21 calculations based on the EPW22), QUAN-
TUM ESPRESSO23, and WANNIER9024 codes11,25,
while Poncé et al.

7,17,18 used the Allen-Heine-Cardona
(AHC) formalism in the ABINIT package,26 which uses
the Sternheimer27 method that allows the summation in
equations 3 and 4 to be limited to occupied bands. This
drastically decreases the burden of computational conver-
gence. Another implementation12,15,16 was incorporated
into the Yambo code.28 Like Giustino’s13 method (which
we will call the QE+EWP method for convenience), the
Yambo implementation uses QUANTUM ESPRESSO23

as its base DFT package. Poncé et al.
17 have compared

the ZPR’s of eigenenergies in diamond obtained from
ABINIT and QE+Yambo and found that the discrep-
ancy between the two codes was less than 4 meV.

Other first-principles approaches to evaluate ∆εnk in-
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clude the frozen phonon (FP) method, which has been
used to examine the accuracy of the harmonic adiabatic
approximation18,29 as well as to evaluate the significance
of many-body effects on EPC.30 The FP approach suffers
from the necessity of untenably large supercells for long-
wavelength phonon modes; however, the intuitive aspect
of the method makes it attractive for calculations us-
ing smaller q-point grids. More recently, a deterministic
supercell method to phonon-induced band gap renormal-
ization has been explored by Zacharias and Giustino,31

in which they use the theory of Willams32 and Lax33

to study the temperature dependence of the band gaps
of silicon, diamond, and gallium arsenide. The pertur-
bative G0W0 approximation is another method used to
improve the accuracy of ∆εnk calculations. It has been
used in concert with the FP approach to compare the
renormalization results from perturbative DFT30 as well
as incorporate GW corrections into the EPC calculations
for nanostructures, such as fullerene C60.

34 In their com-
parison of FP, DFT, and GW calculations of the ZPR
of diamond, Antonius et. al.

30 found that the pertur-
bative G0W0 corrections resulted in a roughly 200 meV
increase in the magnitude of ∆Eg at the Γ-point, indi-
cating that GW corrections are a significant factor in ac-
curate ZPR calculations. The G0W0 approximation was
also recently implemented in a study by Monserrat to
calculate electron-phonon coupling strength for several
materials including diamond and silicon.35 As the goal of
this study is to compare and analyze EPC indued renor-
malizations for a large number of structures, we have not
included GW corrections due to time and computational
constraints.

Nonadiabatic corrections are also a key factor in ∆εnk
and ∆Eg calculations as discussed in section II B. Com-
parisons of adiabatic and nonadiabatic effects on ∆Eg

calculations have been performed by Antonius et. al.
29

and Poncé et al.7 These studies focus on semiconductors
and the semiconducting band gap. The results suggest
that certain materials, such as polar materials, or mate-
rials with a non-zero Born effective charge, are not well
described by the adiabatic approximation and, thus, re-
quire a nonadiabatic correction. Poncé et al.7, in particu-
lar, have performed extensive convergence studies on the
adiabatic and nonadiabatic methods for various semicon-
ductors and insulators. They also used fitting techniques
to predict the convergence of the ZPR as the broaden-
ing parameter, iη, approaches zero, which yielded larger
renormalizations for polar materials than were previously
calculated by Antonius et. al.

29

In this article we study the effects of crystal structure
and dimensionality on EPC from first-principles. Using
isoelectronic C and Si allotropes and BN polymorphs
as prototypical examples, we show that the zero-point
renormalization of the electronic eigenenergies around
the Fermi energy can be reduced or enhanced when the
crystal structure or dimension is modified. A total of nine
structures were examined: diamond Si, quasi-2D buck-
led silicene, diamond, graphite, graphene, zincblende BN

(z-BN), wurtzite BN (w-BN), layered hexagonal BN (h-
BN), and 2D hexagonal BN (2D-BN). In addition to
the ZPR, we examined the temperature dependence of
∆εnk and ∆Eg and the relationship between the ZPR
and phonon dispersion. Our results suggest that it be-
comes necessary to examine the phonon spectrum and
renormalization of electronic band structures when new
bulk crystal structures or new nanostructures are pro-
posed with computational materials design.
In section II we will briefly summarize the theory

and current computational methods for calculating the
phonon renormalization of QP energies using both the
adiabatic approximation (sec.II A) and the nonadiabatic
corrections (sec.II B) to AHC theory. In appendix A we
discuss the electronic structure calculations of each of the
considered materials. Results of the renormalization con-
vergence tests are given in section III. In section IV we
present and discuss the ZPR and temperature-dependent
electronic band structures for C allotropes (diamond,
graphite, and graphene) and BN polymorphs (zinc blend,
wurtzite, layered hexagonal, and single layer) calculated
from the adiabatic and nonadiabatic treatments of AHC
theory, followed by concluding remarks in section V.

II. THEORY AND METHODOLOGY

In this section, we briefly review the formalism of
Allen-Heine-Cardona theory in the adiabatic approxi-
mation and a nonadiabatic correction the AHC theory.
The notation and derivations below are summarized from
Giustino et al.

1

A. Allen-Heine-Cardona theory

Allen and Heine21 laid out the theoretical frame-
work for the temperature dependence of electronic band
structures based on second order perturbation theory in
the adiabatic and harmonic approximations. An effec-
tive study of these treatments requires the use of the
Fan-Migdal (FM) and Debye-Waller (DW) electron self-
energies where the shift in a particular energy level is
defined by

∆εnk = ∆FMεnk +∆DWεnk, (1)

where εnk is the eigenenergy of the state with band n
and wave vector k. The FM self-energy, ∆FMε, is the
dynamic correction to the electronic excitation energies.
It derives its name from the 1951 work done by Fan36 and
the work done by Migdal in 1958,37 but it is most often
referred to as either the Fan term9,21,38 or the Migdal
term.39,40 For continuity, the names are combined in re-
cent literature.1 The Fan-Migdal term describes the dy-
namic polarization of the lattice, and it is obtained by
multiplying the first-order perturbation terms to recover
the energy shift due to the second-order atomic displace-
ment. The second term in equation 1 is commonly called
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the Debye-Waller electron self-energy, ∆DWε, due to its
similarities to the factor of the same name associated
with temperature dependent x-ray diffraction spectra.
This is a static term that describes the difference be-
tween the total potential for an interacting system and
the potential for the same system with its nuclei clamped
at equilibrium.1 In other words, it is the result of the
second-order perturbation due to lattice vibrations in the
potential.
The theory developed by Allen and Heine21 relies on

two approximations: first is the implementation of the
Rayleigh-Schrödinger approximation and, second, the as-
sumption that the phonon energies associated with the
FM self-energy are negligible.1 Then, using translational
invariance of the thermal shift, Allen and Heine expressed
both the FM and DW corrections in terms of the first or-
der perturbations of the self-consistent potential via the
electron-phonon matrix elements,

gmnν(k,q) = 〈umk+q|∆qνv
KS |unk〉, (2)

where ∆qνv
KS is the scattering potential. These ma-

trix elements describe scattering of an electron from one
Bloch state (nk), to another Bloch state (mk+ q), with

phonon of frequency ωqν.

The self-energy terms are then expressed as

∆FMεnk =
∑

m 6=n,ν

∫

dq

ΩBZ

(2nqν + 1) |gmnν(k,q)|
2

εnk − εmk+q + iη
, (3)

∆DWεnk = −
∑

m 6=n,ν

∫

dq

ΩBZ

(2nqν + 1)[gDW
mnν(k,q)]

2

(εnk − εmk + iη)
.(4)

Here nqν is the Bose-Einstein occupation factor for the
phonon frequency associated with phonon q and branch
ν (Eq. 10) and ΩBZ denotes the volume of the Brillouin
zone. The small imaginary term, iη, in both the FM and
DW terms is added as a computational method to smooth
the self-energy functions and speed convergence of the en-
ergy shifts. In a majority of studies, iη is set to 100 meV
to account for the finite lifetimes of the electronic states
defined by the imaginary part of the self-energy7,13,29,30.
In equation 4, the DW electron-phonon matrix element,
gDW
mn,ν(k,q), is an effective matrix element approximated
from the products of standard electron-phonon matrix
elements (Eq. 2)1,13:

[gDW
mn,ν(k,q)]

2 =
1

2ωqν

∑

κα,κ′α′

tνκα,κ′α′(q)h∗
mn,κα(k)hmn,κ′α′(k), (5)

where

tνκα,κ′α′(q) =
eκαν(q)e

∗
κα′ν(q)

Mκ
+

eκ′αν(q)e
∗
κ′α′ν(q)

Mκ′

, (6)

hmn,κα(k) =
∑

ν

(Mκω0ν)
1/2eκαν(0)gmnν(k, 0). (7)

In the above expressions, eκαν(q) are phonon eigenvectors of the dynamical matrix with atomic species κ, Cartesian
direction α, and phonon branch ν.
Combining the FM and DW self-energy terms, as dictated by equation 1, the temperature dependent eigenenergy

shift is

∆εnk =
∑

m 6=n,ν

∫

dq

ΩBZ

[

∑

m

|gmnν(k,q)|
2

εnk − εmk+q + iη
−

[gDW
mnν(k,q)]

2

(εnk − εmk + iη)

]

(2nqν + 1), (8)

and the renormalized eigenenergy is

Enk = εnk +∆εnk. (9)

The temperature dependence in equation 8 resides en-
tirely in the Bose-Einstein factor, where

nqν =
1

e
h̄ωqν

kBT − 1
. (10)

In order to determine the eigenenergy shifts at zero tem-
perature, we set T = 0, and the Bose-Einstein factor van-
ishes. The remaining energy shift, ∆εZP

nk = ∆εnk(T =
0), is the “zero-point renormalization” or ZPR.

Equation 8 is the adiabatic formulation of eigenenergy
renormalization based on the initial work of Allen and
Heine21. Later this theory was developed into a compu-
tational method by Allen and Cardona9,10. Thus, the
literature generally refers to the complete formalism as
the Allen-Heine-Cardona (AHC) theory. The theory is
limited by its use of Rayleigh-Schrödinger perturbation
theory and static treatment of the electronic screening.
This is insufficient for certain materials including met-
als, semi-metals, and polar materials, thus, in the next
section (II B), we discuss the nonadiabatic correction the
AHC theory.
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B. Nonadiabatic corrections to

Allen-Heine-Cardona theory

The Born-Oppenheimer,41 or adiabatic approximation,
treats phonons as static perturbations such that the in-
teratomic force constants are calculated for electrons in
the ground state, resulting in a phonon-frequency in-
dependent electronic screening. This approximation is
effective for insulators and large gap semiconductors in
which the band gap is much larger than the phonon en-
ergy; however, for narrow-gap semiconductors, semimet-
als, metals, and polar materials variations in adiabatic
and nonadiabatic phonon energies become significant at
the center of the BZ. This is due to the phonon behav-
ior in the region around q = 0, where the nonadiabatic
phonon energy correction is comparable to the adiabatic
phonon energy.1,42,43 In this case, the static perturbation
approximation fails and a dynamic correction, which does
not neglect the phonon frequencies (ωqν) in the FM self-
energy, is used.
The effects of nonadiabatic vibrational frequencies

were first investigated in the works of Lazzeri and
Mauri44 and Pisana et al.

45 They performed calcula-
tions in the adiabatic approximation on a particular
phonon branch of graphene then added a nonadiabatic
frequency renormalization derived from the phonon self-
energy. Around the same time, studies were done on
metallic single-walled carbon nanotubes (CNT) that con-
firmed the importance of nonadiabatic effects for such
materials around q = 0.46,47 A broader study of nonadia-
batic renormalizations was done for a variety of graphite
intercalation compounds by Saitta et al.

42 where they

found that the nonadiabatic results were in much bet-
ter agreement with experiments than the adiabatic cal-
culations. Two years later Calandra et al.

43 published
complete phonon dispersions calculated with nonadia-
batic corrections, which confirmed that nonadiabatic ef-
fects are most significant for small q.

In addition to certain metals and semi-metals, EPC in
polar materials is not adequately described by the adia-
batic approximation. The difficulty arises from the ex-
istence of the polar singularity in the electron-phonon
matrix elements, which results in a divergence of the
FM term as |q| → 0.1 Antonius et al.

29 have explored
the effects of a dynamic correction to energy band renor-
malizations for several materials including diamond and
zincblende BN. Using a similar method, Poncé et al.

7

have done a thorough study on the convergence issues
arising from the computational adiabatic and nonadia-
batic methods of calculating the ZPR in polar and non-
polar materials. The same formalism used for their study
is implemented in ABINIT package,26 and is the method
we have used to calculate nonadiabatic corrections to the
electronic band-structure renormalization.

A full treatment of the nonadiabatic electron self-
energy requires the Green’s function formalism of the
Hedin-Baym equations summarized by Giustino.1 How-
ever, it is not currently possible to perform self-consistent
calculations using this method, so for practical, ab initio

calculations, DFT or the GW method is used to obtain
an approximate nonadiabatic correction. These approxi-
mations result in the following self-energy expressions as
described by Giustino:1

∆εFMnn′k(ω) =
1

h̄

∑

mν

∫

dq

ΩBZ
g∗mnν(k,q)gmn′ν(k,q)×

[

1− fmk+q + nqν

ω − εmk+q/h̄− ωqν + iη
+

fmk+q + nqν

ω − εmk+q/h̄+ ωqν + iη

]

(11)

∆εDW
nn′k =

∑

ν

∫

dq

ΩBZ
gDW
nn′ν(k,q,−q)(2nqν + 1) (12)

Here nq is, again, the Bose-Einstein factor of equation 10 and

fnk =
1

e
(ε

nk−εF )

kBT + 1
. (13)

is the Fermi-Dirac factor derived from the Fermi-Dirac distribution. The combination of equations 11 and 12. Gives
the total eigenenergy correction

Enk = εnk +
1

h̄

∑

ν

∫

dq

ΩBZ

∑

m

g∗mnν(k,q)gmn′ν(k,q)

×

[

1− fmk+q + nqν

ω − εmk+q/h̄− ωqν + iη
+

fmk+q + nqν

ω − εmk+q/h̄+ ωqν + iη

]

+
∑

ν

∫

dq

ΩBZ
gDW
nn′ν(k,q,−q)(2nqν + 1), (14)

known as the “nonadiabatic extension” of the AHC the- ory in equations 8 and 9.1,7 The expression is tempera-
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ture and frequency dependent. The ZPR is regained by
setting T = 0, as was done at the end of section II B.

C. Calculation parameters and methods

First-principles calculations were performed using the
ABINIT

26 DFT pseudopotential-plane-wave approach
and the dynamic DFPT method with Sternheimer
equations.27 The GGA-PBE48 was adopted for the
exchange-correlation functional. We have used Troullier-
Martins49 pseudopotentials, generated using the Fritz-
Haber code50, and written in the FHI format. Energy
cutoffs of 30 Ha for diamond, graphene, and 2D-BN, 40
Ha for graphite and hexagonal BN (h-BN), and 35 Ha
for zincblende BN (z-BN) and wurtzite BN (w-BN) were
necessary for convergence. Optimized lattice parameters
and electronic structures were calculated for each mate-
rial using 8 × 8 × 8 k-mesh for the bulk materials and a
12 × 12 × 1 k-mesh for 2D-BN, graphene, and silicene.
For the phonon dispersions, linear response calculations
were done using a 12×12×12 k-mesh for the bulk mate-
rials and a 20×20×1 k-mesh for the 2D structures. The
coarse q-point grids used in the phonon dispersion calcu-
lations were 12× 12× 12 and 6× 6× 6 for the diamond
bulk structures and hexagonal bulk structures, respec-
tively. Likewise, q-point grids of 20 × 20 × 1 were used
for the 2D structures in order to accommodate the diffi-
cult convergence of the acoustic phonon branches. Fine
q-point grids of 24× 24 × 24 and 40 × 40× 1 were used
for the 3D and 2D materials, respectively.
For graphene and, particularly, graphite, it was nec-

essary to include van der Waals corrections to the
exchange-correlation energy. According to Mounet and
Marzari,51 DFT within standard LDA and GGA does
not accurately predict the interlayer interactions depen-
dent on van der Waals dispersion forces. These forces
are known to be present in graphite, therefore, we have
applied the vdw-DFT-D3(BJ) correction, with Becke-
Johnson dampening, developed by Grimme.52,53 This
correction greatly improved the calculated interlayer dis-
tance for graphite compared with experimental measure-
ments, and it led to more accurate phonon dispersions
in both graphite and graphene as well.51,54 Calculations
of the lattice constants for graphite, as well as the other
structures considered in this study, are given in Table III.
Using AHC formalism, as well as nonadiabatic cor-

rections implemented in ABINIT and its corresponding
post-processing programs,7 the convergence of the ZPR,
∆εZP

nk , was tested for each structure. Linear response cal-
culation were performed using k-point grids of 8× 8× 8
for all bulk materials and 12×12×1 for all 2D structures.
Sternheimer equations27 were employed to limit the nec-
essary number of bands needed to converge equations 8
and 14 to 18 bands for the bulk and 2D structures. We
tested convergence for homogeneous q-point grids of up
to 34 × 34 × 34 for diamond and zincblende BN; up to
24 × 24 × 24 for wurtzite BN, h-BN, and graphite; and

up to 60× 60× 1 for the monolayer structures, graphene,
silicene, and 2D-BN. An imaginary smearing parameter
of iη = 100 meV was used for each structure, following
Poncé et al.

17 and Giustino, et al.’s13) to speed conver-
gence of summation in Equations (8) and (14). Thorough
investigations into the effects of this smearing parameter
are explored in Poncé et al.7 and Antonius et al.29

III. ZPR CONVERGENCE TESTS

We performed calculations to test the convergence of
the eigenenergy renormalizations for each of the struc-
tures discussed above. This section describes the results
of our tests to converge the total zero-point renormaliza-
tions of the energy bands nearest the Fermi level or at
the band gap. We define this quantity as

∆EZP
g = ∆εZP

VB +∆εZP
CB , (15)

where ∆εZP
VB is the ZPR of the valence band (VB), and

∆εZP
CB is the ZPR of the conduction band (CB). For the

considered semiconductors with non-zero Eg, we calcu-
lated the total ZPR at the band gap, ∆EZP

g . For the
semimetals with Eg = 0, we calculated the total ZPR
around the Fermi energy, ∆εZP

VB + ∆εZP
CB , which we will

call ∆EZP
g for convenience despite the fact that there is

not a true band gap in the case of the semimetals. Details
of the computational methods and parameters are given
in section II C. Convergence tests were performed for
each structure using an imaginary smearing of iη = 100
meV in the denominators of equations 8 and 14 to speed
convergence and mitigate computational demand.

A. ABINIT ZPR convergence tests for 3D and 2D

structures

Figure 1 summarizes our ZPR convergence tests for
each Si and C allotrope and BN polymorph using the
ABINIT26 implementation. We have calculated the total
ZPR of the semiconductor band gap for Si, diamond, z-
BN, w-BN, h-BN, and 2D-BN. In the cases of graphite,
graphene, and silicene, where Eg = 0, we calculate the
total ZPR around the Fermi energy. All ZPR calculations
for the convergence tests were done at the Γ-point using
the nonadiabatic corrections to AHC theory.
At least 500 irreducible q-wavevectors are required to

reach satisfactory convergence in the 3D materials [Fig.
1 (a)]. The 2D structures, on the other hand, start to
converge with around 300 q-wavevectors [Fig. 1 (b)].
For each material, we have calculated ∆EZP

g (Γ) values
converged to within 3-5 meV, and the final results are
listed in Table I along with the VB and CB eigenenergy
shift components. These convergence results are consis-
tent with those of similar materials.17 Both adiabatic and
nonadiabatic calculations were done for each structure,
but because the adiabatic approximation breaks down for
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FIG. 1. The ZPR convergence tests using the nonadiabaitc AHC treatment for (a) the 3D structures (Si, diamond, graphite,
z-BN, w-BN, and h-BN) and (b) 2D structures (silicene, graphene, and 2D-BN) at the Γ point. Renormalization values of are
given as a function of the number of q-points in increasingly large homogeneous q-point grids of up to 34 × 34 × 34 for the
diamond-like structure, 24× 24× 24 for w-BN and h-BN, and 60× 60× 1 for the 2D structures.

the polar BN materials,7 the data in Figure 1 were ob-
tained using the nonadiabatic formulation, as it is valid
for all of the materials considered.

The convergence of EPC eigenenergy renormalizations
is notoriously difficult. Due to our use of the smoothing
parameter iη = 100meV, the convergence calculations
shown in Figure 1 are relatively quick, but they still re-
quire extremely dense homogeneous q-point grids. How-
ever, the computation of each energy band shift relies on
the outcomes of consecutive first-principles calculations:
the structural relaxation, linear response calculations,
computation of the phonon eigenmodes and frequencies,
the EPC and electron-phonon matrix-elements, and fi-
nally the calculation of the FM and DW self-energies.
There are numerous possible methods to perform each
of these steps as well as small numerical errors from as-
sociated approximations that become amplified in later
calculations. The calculation protocol, pseudopotentials,
and approximations all factor into the variations in re-
sults for the total ZPR of a given structure.

In 2014, Poncé et al.
17 conducted a study to compare

several methods, different pseudopotentials, and conver-
gence techniques used to calculate the direct gap renor-
malization of diamond. They showed that the resulting
ZPR is sensitive to each of these aspects. Different for-
malisms or methods, such as FP and DFPT, can yield
different ZPR values across the band structure. Like-
wise, the use of different pseudopotentials and exchange-
correlation functional approximations produced varia-
tions as large as 50 meV in ZPR, as can the size of the
q-point sampling. In present calculations, we employed
homogeneous q-meshes, which, combined with the imag-
inary broadening parameter, iη, result in quicker con-
vergence and smaller variations in ZPR values than ran-
dom q-wavevector sampling.17 Large random q-meshes
can also be used, to aid in extrapolation. This is often
done using Wannier functions to reduce the computa-

TABLE I. The calculated zero-point renormalization (in meV)
of the CB, VB, and ∆EZP

g at the Γ-point.

Adiabatic nonadiabatic

Materials ∆εZP
VB ∆εZP

CB ∆EZP
g ∆εZP

VB ∆εZP
CB ∆EZP

g

Si 34.92 −8.019 −42.94 33.57 −8.603 −42.18
Silicene 52.28 −16.59 −68.87 51.30 −16.57 −67.87
Diamond 144.9 −263.3 −408.3 133.2 −274.1 −407.3
Graphite 693.7 56.05 −637.7 682.1 58.25 −623.9
Graphene 259.6 0.1830 −259.4 215.1 4.399 −210.7
z-BN 146.7 −174.8 −321.5 132.7 −182.3 −314.9
w-BN 120.0 −137.5 −257.5 113.9 −133.3 −247.2
h-BN 285.3 −160.2 −445.5 253.4 −154.7 −408.1
2D-BN 306.5 −203.7 −510.2 304.2 −164.9 −469.1

tional burden.11 In 2015, Poncé et al.
7 performed ZPR

convergence tests in the adiabatic and nonadiabatic for-
mulations of AHC theory using interpolation methods
to test the convergence behavior as the q-mesh goes to
infinity and the iη goes to zero. Due to this difference
in technique, their results for certain materials (z-BN in
particular) differ from other DFT results (Table II).
Our converged values for ∆EZP

g (Γ) are within the ac-
ceptable range of variation (50 meV), based on differences
in pseudopotential and q-mesh size. The results of the
calculations are recorded in Tables I and II.

IV. RESULTS AND DISCUSSION

Having tested the convergence of ∆EZP
g (Γ) for each

of the considered structures, we discuss the effects of the
zero-point renormalization on the electronic band struc-
tures. In addition, we compare the two Si allotropes,
three C allotropes, and four BN polymorphs to demon-
strate the effects of bulk crystal structure and dimen-
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sionality on EPC induced renormalizations calculated in
the adiabatic and nonadiabatic formulations of AHC the-
ory. Our final values for ∆EZP

g at the direct and indi-
rect semiconductor gaps as well as the Dirac-points of
graphene and silicene are given in Table II. Phonon dis-
persions were calculated in order to show that the rel-
ative magnitude of the phonon frequencies is related to
the size of the ZPR at the electronic band gap. The tem-
perature dependence of the eigenenergy renormalization
was also considered, and temperature dependence pro-
files were calculated for the 3D and 2D materials using
the adiabatic and nonadiabatic treatments of AHC the-
ory. The parameters and result of our electronic structure
calculations for each material are given in Appendix A.

A. Zero-point corrections of the electronic energy

bands using the adiabatic and nonadiabatic

calculations

We begin our discussion with Si, the most common
and widely used semiconductor, which has a diamond
cubic crystal structure. Our adiabatic calculations show
the ∆εnk for the conduction band (CB) edge and va-
lence band (VB) edge at the Γ-point are −8.0 meV and
34.9 meV, respectively, leading to a direct ∆Eg of −42.9
meV. We also note that ∆εCB is negative, while ∆εVB is
positive, so that both ∆εCB and ∆εVB reduce the band
gap. The nonadiabatic calculation gives ∆εCB = −8.6
and ∆εVB = 33.6 for a total renormalization of −42.2
meV, as summarized in Table I. The difference between
the adiabatic and nonadiabatic renormalization values is
only 0.8 meV or less than a thousandth of an eV. This
suggests that the adiabatic approximation is appropriate
for Si.
Table II gives the calculated ∆EZP

g of Si for both
its direct and indirect band gaps in the adiabatic and
nonadiabatic formalisms. As mentioned before, the cur-
rent adiabatic result of ∆EZP

g = −63.6 meV for the
fundamental (indirect) band gap agrees well with ex-
perimental data55 and previous predictions.7 The value
of the nonadiabatic renormalization at the fundamental
gap is slightly smaller at −54.6 meV, but this is within
the normal variation limits for this type of calculation.
The calculated adiabatic value for the direct gap of Si,
∆EZP

g = −42.9 meV, is consistent with the value of

−47.1 meV obtained by Poncé et al.
7 The nonadiabatic

value of ∆EZP
g = −42.2 meV is also in agreement with

Poncé et al.’s calculated value of 42.1 meV. An experi-
mental study of the direct gap of Si was performed by
Lautenschlageret al.56, in which they examined the tem-
perature dependence of critical points of Si’s electronic
band structure. Through fitting parameters, they deter-
mined the ZPR at the direct gap of Si to be 25 ± 17
meV(Table II). The upper range of this measurement is
in relatively good agreement with our calculation.
For silicene, we have calculated the renormalization of

the bands around the Fermi energy, ∆EZP
g . At the Γ-

point we found ∆εCB = −16.6 meV and ∆εVB = 52.3
meV in the adiabatic formulations and ∆εCB = −16.6
meV and ∆εVB = 51.3 meV in the nonadiabatic formu-
lation. Again, the difference in the total renormalization
between the two formulations is minuscule at 1 meV (Ta-
ble I), which indicates that the adiabatic approximation
is sufficient to describe electron-phonon renormalizations
in silicene. Table II summarizes the renormalization re-
sults at the Dirac-point. Here the cancellation of shifts
in the CB and VB gives ∆EZP

g = 0.

Next we discuss ZPR in the C allotropes. As reported
in I and II, the direct gap of diamond at the Γ-point
has a ∆EZP

g of −408.3 meV in adiabatic approximation
and −407.3 meV with the nonadiabatic correction. The
fundamental gap between Γ and 0.848X along the Γ−X
direction is ∆EZP

g = −331.9 meV and −329.3 meV in
the adiabatic and nonadiabatic formulations respectively.
These values are in excellent agreement with previous
theory7,17,29,30 and experimental data.55

When the crystal structure changes from diamond to
hexagonal graphite, ∆EZP

g (Γ) increases to −637.7 meV
in the adiabatic approximation and −623.9 meV with the
nonadiabatic correction. As summarized in Table I, the
magnitude of the shift in the VB is almost twelve times
larger than the shift in the CB at the Γ-point, and both
∆εCB and ∆εVB are positive, which is not seen in other
the semiconductors calculated or silicene.

Surprisingly, for a single layer of graphite (i.e.,
graphene60) the magnitude of ∆EZP

g at the Γ-point is re-
duced by a factor of about 2.5, to −259.4 meV, in the adi-
abatic approximation and a factor of around 3, to −210.7,
in the nonadiabatic formulation. We suspect this signifi-
cant decrease in the magnitude of the renormalization at
Γ is due to the interactions between the layers of graphite
that are not present in graphene. However, like graphite,
∆εCB and ∆εVB in graphene are positive at the Γ-point
and the main contribution to the total renormalization is
from the VB, which suggests this may be a characteris-
tic of the hexagonal C allotropes. Furthermore, in both
graphite and graphene, ∆EZP

g (K−K) is 0.02 meV. This
value for the renormalization is a numerical artifact fur-
ther demonstrating the difficulty in the convergence of
ZPR calculations, which is particularly delicate for the
phonon frequencies at high symmetry points, other than
Γ, with the Brillouin Zone. While spin-orbit coupling
has been shown to open a small gap in graphene,61 any
opening of a band gap by EPC is prevented by the sym-
metry of the structure around the Fermi energy.45 Again,
in this work we focus on the gap at Γ of graphene and sil-
icene to directly compare 3D and 2D materials; however,
this methodology could be used to calculated renormal-
izations for modified graphene or allotropes of graphene
with an opened gap at K.

It should also be noted that there is a substantial dif-
ference of 18.8% between the adiabatic and nonadiabatic
calculations of ∆EZP

g for graphene. The variation for
the same calculations is only 2.2% in graphite and 0.25%
in diamond. Based on this, the adiabatic approxima-
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TABLE II. The calculated total ZPR (in meV) for energy bands around the Fermi energy of all nine materials studied in
comparison with previous theoretical results (using FP DFT, DFPT, and Mote Carlo methods) and experimental data. The
direct and indirect band gaps are given where appropriate as are the Dirac-points of silicene and graphene.

Adiabatic nonadiabatic
Materials Present Other DFT Present Other DFT exp.
Si Γ− Γ −42.94 −47.17 −42.18 −42.17 −25± 1756

−4431

Γ− 0.848X −63.59 −64.37 −54.55 −56.27 −6255

−5731

−6057

Silicene Γ− Γ −68.87 − −67.87 − −

K −K 0.000 − 0.000 − −

Diamond Γ− Γ −408.3 −40917 −407.3 415.87 −45058

−4397

−43629

−40430

−43059

−61513a

Γ− 0.727X −331.9 −379.37 −329.3 −329.87 −36455

−34531

−33457

−34359

Graphite Γ− Γ −637.7 − −623.9 − −

K −K 0.027 − 0.019 − −

Graphene Γ− Γ −259.4 − −210.7 − −

K −K 0.021 − 0.020 − −

z-BN Γ− Γ −321.5 −38829 −314.9 −34429 −

−5027 −

Γ−X −246.3 − −221.9 −4067 −

w-BN Γ− Γ −257.5 − −247.2 − −

Γ−K −256.5 − −239.4 − −

h-BN Γ− Γ −422.5 − −408.1 − −

K −K −232.6 − −217.6 − −

2D-BN Γ− Γ −510.2 − −469.1 − −

K −K −472.2 − −445.9 − −

a This result was, at first, confirmed by an older QE+Yambo calculation that was later found to have a bug in its symmetry use at Γ17.

tion fails for graphene, which has been previously con-
firmed by Pisana et al.

45 We also suspect that the adia-
batic approximation is insufficient for ZPR convergence
in graphite as well, due to its semimetallic properties.

In the four polymorphs of BN, the variation of ∆EZP
g

is much more gradual than it is for the C allotropes.
Zincblende BN, also known as cubic boron nitride,
is isoelectronic to diamond and has superior chemical
stability.62 Our adiabatic and nonadiabatic calculations
yielded ∆EZP

g (Γ) = −321.5 meV and −314.9 meV, re-
spectively. These results are in decent agreement (i.e.
within 50 meV) with the prediction by Antonius et al.29

The difference between the adiabatic and nonadiabatic
results is about 2% at the Γ-point and 11% for the ZPR
at the indirect gap, ∆EZP

g (Γ − X). Poncé et al.
7 ar-

gued that a nonadiabatic treatment is necessary for polar
materials, which have a non-zero Born effective charge.
They showed that ∆EZP

g at Γ diverges in the adiabatic
approximation as the q-mesh increases. This combined
with the variation in the values yielded by the adiabatic

and nonadiabatic treatments suggests that the nonadia-
batic method is better suited in the case of z-BN.

Wurtzite BN is isoelectronic to Lonsdaleite (a.k.a
hexagonal-diamond),63 which is not included in this
study due to its relative obscurity. Like z-BN, w-BN is a
stable structure and is nearly as hard as diamond.62 Its
ZPR values are the smallest among the BN structures at
∆EZP

g (Γ) = −257.5 in the adiabatic approximation and

∆EZP
g (Γ) = −247.2 with the nonadiabatic correction,

which have a variation of about 4%. The nonadiabatic
ZPR at the indirect gap of w-BN is, likewise, about 7%
smaller than its adiabatic counterpart.

Hexagonal BN is isoelectronic to graphite and is stable
at ambient conditions.62 Unlike semi-metallic graphite,
however, h-BN is a wide-gap semiconductor. The adi-
abatic and nonadiabatic ZPR results for this structure
are ∆EZP

g (Γ) = −445.5 meV and −408.1 meV, respec-
tively. These two results differ by 8%, while ZPR’s for
the gap at K differ by 6% using adiabatic and nonadi-
abatic approximations, respectively. In both cases, the
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more accurate nonadiabatic approximation reduces the
magnitude of ZPR against the adiabatic approximation.

A structural analog to graphene, 2D-BN is a monolayer
material with a hexagonal lattice and a large band gap
whose ∆EZP

g at the Γ-point was calculated to be −510.2
meV in the adiabatic approximation and −469.1 meV
with a nonadiabatic treatment. This is the largest pre-
dicted ZPR among the BN materials, and the difference
in the Γ-point renormalization between the adiabatic and
the nonadiabatic results is 8%. The ZPR for the band
gap at K is also sizable at K: ∆EZP

g (K −K) = −445.9
meV in the nonadiabatic formulation. Our treatments
of the lattice calculations for each of the 2D materi-
als is described in Appendix A. We note that recent
studies indicate that spurious interactions from the peri-
odic plane-wave calculations of 2D materials can effect
electron-phonon calculations64. A truncated Coulomb
interaction technique may be needed for future EPC cal-
culations of 2D and 1D materials64,65.

In each of the nine structures for which ZPR calcula-
tions have been performed, the nonadiabatic treatment
always yielded smaller renormalizations at the band gap
than the adiabatic treatment. For Si, silicene, and dia-
mond the variations in ∆EZP

g were minuscule and the Γ-
point. For graphite, z-BN, and w-BN, the adiabatic and
nonadiabatic calculations varied by roughly 7-10 meV,
which is slightly larger than the variation in our conver-
gence tests done using the nonadiabatic treatment(Fig.
1). In h-BN and 2D-BN, the difference in the two calcu-
lation methods is ∼ 40 meV with nonadiabatic ZPR’s re-
duced by about 8% as compared to the adiabatic values.
Graphene has the largest disparity, of nearly 50 meV,
between its adiabatic and nonadiabatic renormalization
calculations.

These results suggest that Si and diamond behave sim-
ilarly. They are both non-polar semiconductors for which
the zero-point electron-phonon renormalizations are con-
sistently calculated in either the adiabatic or nonadia-
batic treatments of AHC theory. Likewise, z-BN and
w-BN have similar behaviors. Both are dense, wide-gap
semiconductors with hardness comparable to diamond,
and both are polar materials. The variations in their adi-
abatic and nonadiabatic ZPR at Γ are significant though
not dramatic given that the differences only slightly ex-
ceed the variation seen in their convergence tests. For
these materials, the nonadiabatic correction is important;
however, the adiabatic approximation gives reasonable
ZPR values that are within the expected variation66 due
to the use of different pseudopotential.17 Following this
trend, h-BN and 2D-BN have aspects consistent with ex-
pectations. Given that 2D-BN is essentially a single layer
of h-BN, it is intuitive that the two structures would
share similar EPC characteristics, especially since they
are both semiconductors. This is confirmed, to a degree,
by their Γ-point energy band shifts, which are close in
magnitude (though 2D-BN has a much larger renormal-
ization at theK-point than does h-BN). In addition, their
adiabatic and nonadiabatic calculations vary by about

8% for both structures indicating that nonadiabatic cor-
rections are necessary.
The exceptions are silicene, graphite, and graphene,

which are also the semimetals. In the case of silicene,
the unexpected element is the small difference between
the adiabatic and nonadiabatic calculations. As it is a
semimetal, we expected the ZPR convergence in the adia-
batic approximation to fail for silicene. However, we have
only performed ZPR convergence tests for the nonadia-
batic treatment in this study. It may be necessary to
examine the convergence of the adiabatic ZPR in sil-
icene to gain a better understanding of its reaction to
the adiabatic approximation as it applies to AHC the-
ory. Graphite’s outlying characteristic its relationship to
graphene. Unlike their isoelectronic counterparts, h-BN
and 2D-BN, graphite and graphene do not have similar
ZPR magnitudes at Γ. The renormalization in graphite
is considerably larger than it is in graphene. On the
other hand, graphene and graphite have in common that
both the ∆εCB and ∆εVB are positive resulting in a gen-
eral upward shift of the energy bands, and the largest
component of ∆EZP

g (Γ) is from the VB. We also note
that the adiabatic and nonadiabatic ZPR calculations
for graphite are not drastically different as they are in
graphene. While the nonadiabatic corrections are needed
for an accurate treatment of both materials, the failure
of the adiabatic approximation in graphene is apparent
from the ZPR values alone.
Of the materials considered for this study, experimen-

tal data is currently only available for diamond and Si.
As these structures have electron-phonon renormaliza-
tions that can be well described by the adiabatic ap-
proximation, it is difficult to assess, with the ZPR alone,
whether or not the EPC properties of other materials are
accurately calculated by the adiabatic or nonadiabatic
treatments. Additional tests and calculations are typi-
cally needed for a thorough understanding of the approx-
imation’s validity. However, our renormalization calcu-
lations do indicate that the nonadiabatic corrections are
more general as they do not contradict the results of the
adiabatic approximation where it is known to be valid.
From the ZPR calculations, we can also determine the
relative significance of the EPC on the electronic struc-
ture. In 2D-BN, for example, the total ZPR of its indi-
rect band gap is ∼ 0.45 eV, which is non-negligible for
a material with Eg = 4.64eV. Save for Si and silicene,
all of the other structures considered above exhibit sig-
nificant EPC renormalizations to their electronic energy
structures.

B. Phonon dispersions

To demonstrate the link between the electron-phonon
renormalization and the phonon characteristic of vari-
ous crystal structures, we have plotted phonon disper-
sions and phonon densities of state (DOS) for the Si
allotropes in Figure 2, the C allotropes in Figure 3,



10

and the BN polymorphs in Figure 4. We find that
the general trend that higher maximum optical phonon
frequencies (wider phonon spectrum ranges) lead to
stronger electron-phonon coupling and larger magnitudes
for ∆EZP

g (Γ). For example, panels Figure 3(a) and Fig-
ure 3(b) indicate that the highest optical phonon fre-
quency in graphite (∼ 1600 cm−1) is larger than that in
diamond (∼ 1300 cm−1). Also, the ∆EZP

g(Γ) of graphite

is larger than that of diamond. The situation is similar
for the bulk BN polymorphs. Among them, h-BN has
the highest maximum optical phonon frequency (∼ 1450
cm−1), while w-BN has the lowest (∼ 1250 cm−1), as
seen in Figure 4 (a, b, and c). The Si allotropes fol-
low the same pattern. Si has a slightly smaller phonon
frequency range than silicene, and ∆EZP

g (Γ) for Si is
roughly 25 meV smaller than it is for silicene. Addi-
tionally, Si and silicene have much narrower phonon fre-
quency ranges than the C and BN materials, and their
electron-phonon induced renormalizations are substan-
tially smaller. Comparing bulk C allotropes and BN
polymorphs, the trend that materials with higher max-
imum optical frequencies have larger ZPR magnitudes
still, roughly, holds true. This observation is in line with
the fact that stronger electron-phonon coupling is often
caused by stronger atomic interactions.

Figure 5 maps out ∆EZP
g (Γ) as a function of frequency

for the combined structures. Using this representation of
the data, it is clear that there is a general trend toward
larger absolute renormalization values as the phonon fre-
quency range becomes wider. The notable outliers in-
clude 2D-BN and graphene. There is not enough evi-
dence to determine if silicene is expressing behavior sim-
ilar to graphene as the sample size of the Si allotropes
is too small. It is possible that, due to its characteristic
buckling, silicene may be showing characteristics of a 3D
structure in this case. 3(b) and Figure 3(c) show that
the phonon frequency ranges of graphite and graphene
are similar, but ∆EZP

g (Γ) in graphene is about three
times smaller in magnitude than that of graphite. This
may be a result of differences in the EPC behavior due to
the interlayer interactions in graphite that are absent in
graphene. The opposite behavior is seen in h-BN and 2D-
BN, however. Like graphite and graphene, the phonon
frequency range of the two structures is comparable, but
unlike the C allotropes, ∆EZP

g (Γ) for h-BN in slightly
smaller (∼ 60 meV) than that of 2D-BN. This may be
an effect of the convergence of the ZPR calculations as
the two numbers are not as dramatically different as they
are with graphite and graphene. There is also the pos-
sibility that the deviation in 2D-BN from the behavior
of the bulk BN materials is due to a lack of out-of-plane
interactions. While we might expect graphene and 2D-
BN to show similar outlying behavior if this were the
case, the fact that graphene is a semimetal and 2D-BN
is a semiconductor could explain the variation in their
trends.

The evidence presented in the phonon dispersions and
Figure 5 suggests that crystal structure in combination

with phonon frequency data can be used to make rough
predictions about the significance of electron-phonon in-
duced renormalization of band gaps. The cubic struc-
tures, diamond, and z-BN are both dense stable materi-
als with maximum phonon frequencies in the intermedi-
ate range of this data set, and we have calculated non-
negligible band gap renormalizations for both. Si is iso-
electronic to diamond and z-BN, but its frequency range
is substantially smaller as is its calculated value of ∆EZP

g .
The hexagonal layered structures, graphite, and h-BN,
have the largest phonon frequency ranges that accom-
pany significant ZPR values at Γ. Furthermore, ∆EZP

g

for w-BN is the smallest of the BN polymorphs, which
is consistent with its frequency range as compared to h-
BN and z-BN. 2D-BN exhibits behavior that deviates
slightly from the bulk materials. It also has a high max-
imum phonon frequency paired with a large ZPR, but
its ∆EZP

g magnitude is larger than that of h-BN despite
having a slightly lower optical phonon frequency range.
Graphene is the most striking outlier. Despite having
a phonon frequency range nearly identical to graphite,
its ZPR is appreciably smaller. Given the many unique
qualities of graphene, it is not surprising that its behav-
ior, in this case, is also divergent. Further studies on the
EPC in graphene would be useful to fully understand its
differences from bulk and other 2D structures, such as
an examination of the van der Waals interaction and a
more in-depth dimensional analysis of carbon materials,
including 1D structures.

C. Temperature-dependent band gaps

Having thoroughly analyzed the renormalizations of
each considered structure at zero temperature, T = 0
K, it is instructive to perform calculations of the tem-
perature dependence of those renormalizations. While
zero-point motion in materials is significant and useful,
many experiments and calculations are done at non-zero
temperatures. As such, it is helpful to know how the
eigenenergy renormalizations change as T increases.
We established that nonadiabatic corrections to the

ZPR can be substantial depending on the material and
crystal structure under consideration. The temperature
dependent adiabatic and nonadiabatic renormalizations
were also calculated for each structure to compare tem-
perature trends and EPC characteristics for T > 0. Fig-
ure 6 shows the ∆Eg(Γ) temperature profiles for each
structure with the nonadiabatic calculations in black and
the adiabatic calculations in red. As expected from our
previous ZPR results (Table I), Si, silicene, and diamond
exhibit negligible differences between their adiabatic tem-
perature profiles and their nonadiabatic corrections. For
z-BN, w-BN, and 2D-BN the adiabatic and nonadiabatic
renormalizations are closer in magnitude at temperatures
below 300 K and diverge as T increases so that the
difference between the treatments is more dramatic at
high temperatures. For graphite, graphene, and h-BN
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FIG. 2. The calculated phonon spectra and density of states for two Si allotropes: (a) Si and (b) silicene. The phonon density
of states (DOS) is in unit of states/atom/cm−1 .
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FIG. 3. The calculated phonon spectra and density of states for three C allotropes: (a) diamond, (b) graphite, and (c) graphene.
The phonon density of states (DOS) is in unit of states/atom/cm−1 .

the nonadiabatic temperature profile is shifted uniformly
such that the difference in values due to the correction is
roughly the same at each temperature. Overall the nona-
diabatic corrections do not have a dramatic effect on the
relative temperature trends, so for our structural com-
parison, we will look at temperature profiles calculated
with the nonadiabatic treatment.

The temperature (T ) dependence of ∆Eg, calculated
with nonadiabatic corrections, at the direct band gap is
plotted for the Si allotropes, the C allotropes, and the
BN polymorphs in Figure 7. The ∆Eg temperature pro-
files in most of these materials are similar: at low to
room temperature, the ZPR dominates the total energy
shift and ∆Eg(T ) changes very gradually as a function
of T . In these cases, one needs only consider phonon
renormalization caused by the zero-temperature lattice
vibrations up to room temperature. The exceptions to
this are silicene and graphene, both of which have a more
linear profile such that the magnitude of the renormaliza-
tion steadily increases from the ZPR. This is particularly
pronounced in silicene, which increases more than tenfold
from 0 K to 1000 K, and at 300 K, the renormalization is
no longer negligible at ∆Eg ∼ 400 meV. As this behav-
ior is unique for our set of structures, silicene’s buckled
structure may be a contributing factor. The other 2D
materials are flat and have no out-of-plane atomic inter-
actions, and the bulk materials have consistent atomic
interactions in all three directions. Silicene, on the other

hand, has a slight deviation in its planar structure, and
even though it is electronically stable, the EPC could be
complicated by intricacies due to the slight out-of-plane
buckling. This dramatic temperature profile may also be
the result of a convergence issue. As our calculations for
silicene were preliminary, further studies are required to
explore the origins of its intense temperature dependence
in the EPC induced renormalization.
At high temperatures (T >

∼ 400 K), ∆Eg(T ) increases
dramatically as T rises in each of the structures. We also
find that for bulk materials with a large ZPR, ∆Eg(T )
increases slightly faster than it does in bulk materials
with smaller ZPR’s. The above can be easily understood
by a simple Debye:58

∆Eg(T ) = −a

[

1 +
2

eΘ/T − 1

]

, (16)

where a and Θ are fitting parameters. When T = 0 in
equation 16, the magnitude of ∆Eg(T ) is dependent on
the magnitude of a. The larger a is, the faster ∆Eg(T )
will grow as T increases.
This is not the case for 2D materials, however, as is

particularly clear in Figure 7(c) for h-BN and 2D-BN.
The monolayer structure has a larger ZPR than the lay-
ered structure, but at T >

∼ 300 K, ∆Eg for h-BN begins
to increase more quickly than it does for 2D-BN. In the
cases of silicene and graphene, it is more difficult to make
a definitive statement about the relationship between the
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FIG. 4. The calculated phonon spectra and density of states (in unit of states/atom/cm−1) for four BN polymorphs: z-BN (a),
w-BN (b), h-BN (c), and 2D-BN (d).

ZPR and the temperature dependent rate of increase in
the renormalization; however, a characteristic difference
of the electron-phonon renormalization temperature de-
pendence is indicated between the 2D and bulk materials.

V. CONCLUSIONS

We have investigated electron-phonon renormalization
of eigenenergies in two Si allotropes, three C allotropes,
and four BN polymorphs using DFPT. Our analysis
demonstrates that ∆Eg is sensitive to crystal structure
and dimension and that it can be substantial in electronic
structure calculations for some materials.This is the first
direct comparison of eigenenergy renormalizations in iso-
electronic structures as well as 3D and 2D materials. We
discovered that the magnitudes of the total renormal-
ization at the band gap, ∆EZP

g (Γ), is directly related
to the structural stiffness of a given 3D material. Low-
dimensional structures such as planar 2D materials do
not follow this trend indicating significant differences in
their EPC behavior.

Very few first-principles calculations of phonon renor-
malization have been carried out because of their pro-
hibitive computational cost. The major issue in these cal-
culations is slow convergence, requiring extremely large
and fine q-meshes. For these calculations, we have used
the ABINIT package with Sternheimer equations.27 Our
calculations suggest that the ABINIT implementation
converges relatively quickly, though it is highly memory
intensive.

Analysis of the adiabatic and nonadiabatic treatments

of AHC theory in ABINIT confirmed the conclusions of
previous studies7,67 that certain materials and crystal
structures cannot be accurately described by the adia-
batic, Born-Oppenheimer approximation.41 Our results
confirm that polar BN materials and semimetallic mate-
rials tend to have significant variations in their adiabatic
and nonadiabatic ZPR’s, suggesting a failure of the adi-
abatic approximation. Temperature-dependent ∆EZP

g

calculations also confirm that this disparity between the
two treatments continues at higher temperatures. In
different materials the adiabatic renormalizations have
various deviations from the nonadiabatic results as tem-
perature increases, indicating that the relative accuracy
of adiabatic temperature dependent renormalization pro-
files is not reliable for all materials.

Next, we considered the ZPR values in concert with
the phonon dispersions of each structure and found that
bulk materials with wide phonon frequency ranges tend
to have strong EPC and a sizable ∆Eg. These calcu-
lations suggest that high optical phonon frequency is a
good indicator of whether or not the electron-phonon
renormalization should be included in electronic struc-
ture calculations. However, this relationship does not al-
ways hold in monolayer structures, particularly graphene,
where the magnitude of ∆Eg is diminished compared to
graphite even though the top optical phonon bands in
graphene are located in roughly the same range as its
layered counterpart. The departure from the behavior
of the bulk structures may be a result of reduced DOS
of the optical phonons in 2D materials, or, possibly, the
absence of out-of-plane atomic interactions.

Our general observations of the behavior of electron-
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g (Γ) for each of the nine considered structures as a function of the phonon frequency range (ωmax). The black

circles indicate the ZPR data for the two Si allotropes (Si and silicene), the red squares are the ZPR data for the C allotropes
(diamond, graphite, and graphene), and the blue triangles are the ZPR data for the BN polymorphs (z-BN, w-BN, h-BN, and
2D-BN). The black, blue, and red lines are included group the Si, C and BN structures respectively, and the dashed green line
is a visual guide of the rough trend over the entire set of materials. The Spearman Correlation coefficient for these data is
rs = −0.733, which indicates a relatively strong correlation between the highest optical frequencies and the renormalization
values at Γ.

phonon energy band renormalizations in bulk materials
tended to be contradicted by the 2D structures. EPC
and ZPR have been previously shown to be enhanced
in nanoscale structures;8 however, here we find that the
magnitude of ZPR is significantly reduced in graphene
while it is slightly enhanced in 2D-BN and silicene. The
temperature dependent profiles also indicate substantial
differences between the 2D and 3D structures as temper-
ature increases. Thus it is imperative and pertinent to
study the effects of lattice vibrations and temperature
dependence in 2D materials and nanostructures, includ-
ing phonon-mediated electronic and optical properties. A
thorough treatment of these nanostructures may also re-
quire considering a truncated Coulomb interaction tech-
nique to account for artificial couplings between periodic
images of 1D and 2D materials.
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Appendix A: Electronic structures

Relaxed lattice constants and electronic band struc-
tures were calculated for the structures described above.
The methodology and computational parameters are dis-
cussed in section II C. In Table III the lattice constants
are listed with comparisons to previous theoretical re-
sults and experimental data, and our calculations are
in good agreement. The interlayer distances for the 2D
structures were optimized and found to be 2.0 nm for
silicene, 1.8 nm for graphene, and 1.7 nm for 2D-BN,
and the buckled separation, ∆0, for silicene was pre-
dicted to be 0.443 Å. As mentioned in section II C, van
der Waals corrections to the exchange-correlation energy
(vdw-DFT-D3(BJ)52,53) were considered for graphite and
graphene. The calculated out of plane lattice constants
with this correction are very close to the experimen-
tal values;54,68 without the van der Waals correction,
c/a = 3.45 for graphite, which is consistent with previous
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FIG. 6. The adiabatic and nonadiabatic electron-phonon renormalizations of ∆EZP
g (Γ) as a function of temperature for (a)

Si, (b) silicene, (c) diamond, (d) graphite, (e) graphene, (f) z-BN, (g) w-BN, (h) h-BN, and (i) 2D-BN. The nonadiabatic
calculations are denoted by the solid black curves, and the adiabatic calculations are given by the dashed red curves.

DFT calculations.51 Our EPC computations were done
using the theoretical equilibrium structures calculated in
Table III. Changes in ∆εnk due to small variations in lat-
tice constants compared with measured parameters are
expected to be negligible (less than a few percents).

For this study, we have considered isoelectronic struc-
tures with different elemental compositions. For exam-
ple, Si, diamond, and z-BN all have diamond crystal
structures; silicene, graphene, and 2D-BN all have planar
hexagonal structures; and graphite and h-BN both have
layered hexagonal structures.

Despite their similar symmetries, these materials have
notable differences in their electronic characteristics. Si,
diamond, z-BN, w-BN, h-BN, and 2D-BN are standard
(in the case of Si) or wide-gap semiconductors. On the
other hand, graphite, graphene, and silicnene are semi-
metals, so we anticipate that the EPC characteristics in
these materials may differ notably. We have included
calculations of silicene, graphene, and graphite for conti-
nuity in our isoelectronic comparisons as well as to com-
pare 3D and 2D structures of similar crystal symmetries.
Given that these materials are not semiconductors, we
will focus our calculations on the gap in the bandstruc-
ture at the Γ-point. While we have also considered the
Dirac points at K in both silicene and graphene, they are

not significant to our comparisons in later sections. Table
IV summarizes the direct and indirect band gaps for the
semiconducting materials. Our results are in good agree-
ment with those of previous DFT calculations, which are
known to underestimate the band gap as compared to
experimental data.

The band structures and densities of state for each
material are given in Figures 8, 9, and 10. Si and sil-
icene are shown in Figure 8. In addition to being the
most widely used semiconducting material, Si is also one
of the few materials for which there have been experi-
mental measurements done of the ZPR at the indirect
band gap, making it a useful structure for comparison
in this and similar studies.55 Silicene is reminiscent of
graphene with its similar Dirac point at K as well as
its hexagonal symmetry, and it is thought to share many
of graphene’s electronic properties.72,73 However, silicene
differs from graphene, as well as 2D-BN, in that it is not
flat. Due to sp2-sp3 hybridization, free-standing silicene
has a buckled honeycomb structure, making it a quasi-
2D structure.73 Furthermore, free-standing silicene is not
likely to be able to exist naturally. It is typically de-
posited on a metallic substrate, which changes its lattice
parameters slightly for experimental studies.72

The electronic dispersions of the carbon allotropes are
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TABLE III. Lattice constants (in Å), calculated using GGA-PBE48 pseudopotentials. Current values are compared to previous
theoretical results and experimental data. In the case of silicene, ∆0 is the relaxed buckled separation. The interlayer distances
for the 2D structures are 20Å, 18Å, and 17Å for silicene, graphene, and 2D-BN respectively.

Material Present Calculation Previous theory Experiment
Silicon 5.465 5.47569 5.43069

Silicene 3.870 3.83070 3.85071

∆0=0.443 ∆0=0.44070 ∆0=0.4772,73

Diamond 3.576 3.57669 3.56769

Graphite a = 2.458 a = 2.46054 a = 2.46268

c/a = 2.725 c/a = 2.74054 c/a = 2.72568

Graphene a = 2.458 a = 2.46051 a = 2.46268

z-BN 3.620 3.62174 3.61575

w-BN a = 2.572 a = 2.54276 a = 2.55062

c/a = 1.652 c/a = 1.63076 c/a = 1.63062

h-BN a = 2.508 a = 2.51176 a = 2.50462

c/a = 2.674 c/a = 2.66076 c/a = 2.66062

2D-BN a = 2.508 a = 2.51176 a = 2.50462

shown in Figure 9. Of these structures, only diamond
is a semiconductor with a wide indirect band gap calcu-
lated to be 4.233 eV (Table IV). Graphite and graphene
are considered semimetals as they have a zero band gap
but do not share the electronic properties of true met-
als. Graphite, for instance, has strong in-plane bonds
but weak, van der Waals dominated, interactions be-
tween each layer.51 In its single layer allotrope, graphite
is known as graphene, which is the most famous and

broadly studied of the 2D structures. Its zero band gap
associated with the relativistic Dirac fermions at the K
point in the BZ, make it unfeasible for optoelectronic
applications in its unaltered form.82 Graphene is, how-
ever, prevalent in a wide range of EPC based studies in-
cluding superconductivity,83–85 nonadiabatic vibrational
frequencies,44,45 and GW corrections to electron-phonon
matrix elements.86

Figure 10 shows our calculations of the electronic band
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TABLE IV. The electronic band gaps, in units of electron volts, of each of the semiconducting materials: Si, diamond, z-BN,
w-BN, h-BN, and 2D-BN.

Direct Gap (eV) Indirect Gap (eV)
Material Gap Present other DFT exp. Gap Present other DFT exp.
Si Γ− Γ 2.568 2.5674 3.37877 Γ-0.848X 0.607 0.61274 1.1777

Diamond Γ− Γ 5.583 5.5774 7.355 Γ-0.727X 4.233 4.11374 5.4855

z-BN Γ− Γ 8.850 8.7078 14.579 Γ-X 4.440 4.4574 6.479

w-BN Γ− Γ 8.150 8.078 - Γ-K 5.290 5.8178 -
h-BN Γ− Γ 6.560 - - 0.92K-M 4.620 4.578 5.97180

2D-BN Γ− Γ 6.340 - - - - - -
K-K 4.640 4.6476 5.581 - - - -
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FIG. 8. The electronic band structures and densities of state for Si (a) and silicene (b). The DOS is given in units of
states/eV/bohr3. Zero energy is set at the valence band maximum and εF indicates the Fermi energy.

structures and DOS for the four BN polymorphs. Boron
nitride can exist in various crystal configurations, but
its default form is the layered hexagonal structure, h-
BN, which consists of layers of flat sheets governed by
sp2 bonds between boron and nitrogen atoms. Large
out-of-plane distances separate each layer resulting in a
lower density structure. Conversely, zincblende BN, also
known as cubic BN, is second only to diamond in hard-
ness. It is constructed from sp3 bonds, which make is
denser and harder than h-BN. In addition, z-BN is chem-

ically inert, has a high thermal conductivity and a low
dielectric constant, as well as a wide band gap.87 Like
z-BN, w-BN has sp3 bonds and a higher density struc-
ture than h-BN. 2D-BN is the single layer polymorph
of h-BN and has the same honeycomb structure seen
in graphene, though, unlike graphene, 2D-BN is a wide
gap semiconductor.76 BN crystals do not occur naturally,
however, h-BN has been synthesized and transformed,
through pressure, into its denser polymorphs (z-BN and
w-BN),88,89 as well as isolated to extract single layers,
forming 2D-BN.81
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30 G. Antonius, S. Poncé, P. Boulanger, M. Cote, and

X. Gonze, Phys. Rev. Lett. 112, 215501 (2014).
31 M. Zacharias and F. Giustino, Phys. Rev. B 94,

075125 (2016), URL https://link.aps.org/doi/10.

1103/PhysRevB.94.075125.
32 F. E. Williams, Phys. Rev. 82, 281 (1951), URL https:

//link.aps.org/doi/10.1103/PhysRev.82.281.2.
33 M. Lax, The Journal of Chemical Physics 20, 1752

(1952), https://doi.org/10.1063/1.1700283, URL https:

//doi.org/10.1063/1.1700283.
34 C. Faber, J. L. Janssen, M. Côté, E. Runge, and X. Blase,
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