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We explore the combined impact of sulfur vacancies and electronic interactions on the optical prop-
erties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that ac-
counts for both randomly distributed sulfur vacancies and the presence of dielectric screening within
the material. Second, we parameterize this energy-dependent Hamiltonian from first-principles cal-
culations based on density functional theory and the Green function and screened Coulomb (GW)
method. Third, we apply a first-principles-based many-body typical medium method to determine
the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the
charge susceptibility χ with its imaginary part being related to the absorbance A. Our results show
that an increased vacancy concentration leads to decreased absorption both in the band contin-
uum and from exciton states within the band gap. We also observe increased absorption below the
band gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative
agreement with our numerical calculations. This latter increased absorption in the 1.0–2.5 eV makes
defect engineering of potential interest for solar cell applications.

PACS numbers: 61.72.jd, 71.35.Cc, 64.70.Tg, 73.21.-b,

Monolayer molybdenum disulfide (MoS2) and other
two-dimensional materials are increasingly being ex-
plored for modern and future device applications. This
interest originates in part from the atomically thin pla-
nar geometry [Fig. 1(A)], which allows for the applica-
tion of well-developed microelectronic, optical, and sur-
face science probing techniques. Moreover, these ma-
terials exhibit a set of attractive electronic properties,
which in the case of monolayer MoS2 include a direct
band gap in the visible spectrum [Fig. 1(B)]. Areas of
interest include flexible optoelectronic [1, 2], thermo-
electric [3], valleytronic [4, 5], and exciton-based appli-
cations [6, 7], as well as solar cells [8], photodetectors
and light emitters [9], energy-efficient field-effect tran-
sistors (FETs) [10], and next-generation nanoelectron-
ics [9, 11, 12]. The presence of defects can have a large
impact on device performance, both positive and nega-
tive. Furthermore, their impact is often more pronounced
in low-dimensional materials and in nanoscale devices,
which offer far fewer electronic paths around these de-
fects. While defects can take many forms [13–16], sulfur
vacancies in particular have been observed in large quan-
tities in monolayer MoS2, both in samples produced by
micromechanical exfoliation and chemical vapor deposi-
tion [17–19]. These sulfur vacancies are believed to be
the main reason measured carrier mobilities in monolayer
MoS2 have not been as high as expected [2, 11, 20, 21].

Despite the importance of defects, almost all theoreti-
cal studies of monolayer MoS2 and other transition-metal
dichalcogenides have so far focused on pristine crystals.
Because of these studies, we understand the main fea-
tures of the electronic band structures [22] and the optical
absorption spectra [6, 7, 15, 23–25]. The effect of many-
body interactions on line shifts, excited bound states,
carrier dynamics, and optical gain [26] is also under ac-

FIG. 1. (A) Top view of monolayer MoS2 with the primitive
cell defined by the two lattice vectors ~a1 and ~a2 containing 1
Mo and 2 (vertically stacked) S atoms. (B) DFT+sqGW+SO
band structure (dashed black), which exhibits the character-
istic direct band gap Eg = 2.6 eV and valance-band split
∆SO = 0.22 eV at the first Brillouin zone corners (K), is re-

produced by the (solid red) bands from the Hamiltonian Ĥ0

in Eq. (1). (C) Diagrammatic representation of the Bethe-
Salpeter equation for the TMDCA method, which allows the
full, dynamical charge susceptibility χ to be solved from the
screened charge susceptibility χ̃0 and the lattice full vertex
function F.

tive investigation. To support the development of any
practical applications, however, we also need to develop
a better understanding of the properties in disordered
MoS2 containing randomly distributed defects.

In this letter, we show that randomly distributed sulfur
vacancies could impact the optical properties in several
ways. The presence of vacancies reduces the band-to-
band absorption. It also suppresses the principal exci-
ton peaks, which are delocalized across the monolayers.
More importantly perhaps, we also observe an increased
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absorption below the band gap, which could be advanta-
geous for solar cell applications that benefit from a large
adsorption in the 1.0–2.5 eV range in the visible and near
infrared that dominates the solar irradiance spectrum.
A significant challenge in our investigation is that

electron-electron interactions are central to the under-
standing of many optical features, including the char-
acteristic A and B absorption peaks associated with
the generation of excitons. To properly describe these
exciton structures, we have extended our recently de-
veloped first-principles-based typical medium dynami-
cal cluster approximation (TMDCA) method [27] by ex-
plicitly incorporating into the Hamiltonian an energy-
dependent and material-specific screened Coulomb inter-
action W (E) obtained from a separate self-consistent,
quasiparticle GW calculations. Furthermore, we have
solved the Bethe-Salpeter equation (BSE) [Fig. 1(C)] in
the particle-hole channel to obtain the charge suscepti-
bility χ from our self-consistent TMDCA calculations,
which account for both the sulfur vacancies and the
electron-electron interactions. This charge susceptibility
is a central component in a range of experimental quanti-
ties, including optical conductivity, reflectivity measure-
ments, photoluminescence, inelastic neutron (or X-ray)
scattering, and electron energy loss spectroscopy. The
imaginary part of the susceptibility is directly related to
the absorbance.
To capture the physics of defects and electron-

electron interactions, we introduce the following energy-
dependent Hamiltonian

Ĥ(E) = Ĥ0 +
∑
iασ

V α
iσ n̂

α
iσ +W (E)

∑
iα

n̂α
i↑n̂

α
i↓, (1)

where Ĥ0 is a Hamiltonian of the pristine crystal, V α
iσ is a

disorder potential with i, α, and σ being site, orbital, and
spin indices, respectively, n̂α

iσ is the number operator, and
W (E) is an energy-dependent, crystal-specific screened
Coulomb interaction. This energy-dependent Hamilto-
nian can be viewed as a generalization of the Anderson-
Hubbard Hamiltonian, in which we have substituted
W (E) for the energy-independent Hubbard-interaction
parameter.
The Hamiltonian for the pristine crystal Ĥ0 and the

screened Coulomb interaction W (E) can be obtained
from calculations based on density functional theory
(DFT) [28] and the GW method [29]. To simulate the
monolayer MoS2 considered herein, we carried out struc-
tural relaxation and electronic structure calculations us-
ing the Vienna Ab Initio Simulation Package (VASP) [30]
of periodically repeated monolayers of MoS2 separated
by 20 Å. These calculations included spin-orbit (SO) in-
teractions and were performed using the Perdew-Burke-
Ernzerhof [31] exchange-correlation functional as imple-
mented in VASP. The energy cutoff was 450 eV and a
15 × 15 × 1 uniform Γ-centered grid was used to repre-
sent the reciprocal space. Subsequently, we performed

self-consistent quasiparticle Green function and screened
Coulomb interaction (sqGW) calculations, which also in-
corporated local field effects beyond the random-phase-
approximation using an energy cutoff of 160 eV. From
these calculations, we extracted the screened Coulomb
potential W (E) in Eq. (1). Also, the obtained quasipar-
ticle wavefunctions were applied in WANNIER90 [32] to
obtain Ĥ0 via a downfolding method that transforms the
basis to a set of maximally localized Wannier functions.
For monolayer MoS2, we focus on Mo d-orbitals and S
p-orbitals.

There is an excellent agreement between our Hamil-
tonian Ĥ0 and our first-principles calculations, from
which it was generated. The 22 bands produced by
the 10 d-orbitals on the Mo atom and the 6 p-orbitals
on each of the two S atoms accurately reproduce the
DFT+sqGW+SO band structure around the Fermi level,
as shown in Fig. 1(B). This reproduction includes the di-
rect band gap Eg = 2.6 eV at the first Brillouin zone
corners (K) and the valence band split ∆SO = 0.22 eV.

The randomly distributed sulfur vacancies in the sys-
tem are modeled through the disorder potential V α

iσ in
Eq. (1). Assuming no explicit orbital and spin depen-
dence, the disorder potential V α

iσ reduces to a site poten-
tial Vi. We generated this site potential from a two-point
distribution with Vi ∈ {0, Vvac}, where the two elements
are the potentials on non-vacant and vacant sites, re-
spectively. To prevent any electron occupation on vacant
sites, we set the potential Vvac to be far greater than the
material bandwidth. We further, let the distribution to
be unbalanced with the probability that an arbitrary site
is vacant being equal to the sulfur vacancy concentration
parameter δ.

To determine the single-particle properties of the
many-body Hamiltonian above, we adopt an approach
based on the dynamical mean-field theory. This theory
maps the disordered lattice onto an effective medium
characterized by a hybridization function obtained
through a set of self-consistency equations. Herein, we
solve the self-consistency equations within the typical
medium dynamical cluster approximation (see Refs. [33,
39] for additional information) to obtain the electron-
interaction and sulfur-vacancy-dressed retarded single-
particle Green function, following the approach described
in Ref. 27. The advantage of using the TMDCA method
in obtaining the single-particle Green function is that it
is based on geometric averages, which unlike the more
common arithmetic averages, allows for the discrimina-
tion of local and extended states [27, 33–35]. This dis-
crimination is critical for phenomena involving electron
localization.

Obtaining full convergence of exciton features [36, 37]
in monolayer MoS2 is challenging. It is well-known that
an unusually fine reciprocal space grid is required [7].
Owing to the resulting computational demand, we have
not been able to increase the cluster size within the
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TMDCA method sufficiently to reach simultaneous con-
vergence of the reciprocal grid and cluster size. There-
fore, to avoid the risk of potentially spurious spatial cor-
relation effects interfering with the exciton features, we
present herein results obtained using single-site clusters
and a hexagonal grid consisting of 50× 50× 1 ~k points.
The TMDCA self-consistency equations produce the

single-particle retarded Green functions in the pres-
ence of both electronic interactions and sulfur vacan-
cies, which we used as input in our two-particle calcu-

lations. The procedures to obtaining the full lattice-
dynamical susceptibility goes as follows: (i) Using the

single-particle retarded Green function G(~k,E) calcu-
lated self-consistently from the TMDCA equations, we
obtain the spectral function A(~k,E) = − 1

π
ImG(~k,E),

which we subsequently use to calculate the imaginary
part of the bare dynamic charge susceptibility χ0(~q, ω).
For electron-hole excitations, we have

Reχ0(~q, ω) =
1

π
P

∫ +∞

−∞

Imχ0(~q, ω)dω
′

ω′ − ω
,

Imχ0(~q, ω) = −2π
∑
~k

∫ +∞

−∞

[f(E)− f(E + ~ω)]A(~k + ~q, E + ~ω)A(~k,E) dE, (2)

where P denotes Cauchy principal value and f(E) is the
Fermi function. Since our lattice problem is solved in
real space and for the fact that it is numerically more ad-
vantageous to work in real frequency, we have obtained
Eq. 2 using the spectral representation [34]. We note
that Eq. 2 is the real space equivalence of the usual
Matsubara frequency form that could be depicted as
χ0(~q, iω) = T

N

∑
~k,iE

G(~k + ~q, iE + i~ω)G(~k, iE) [38].

(ii) To account for the screening caused by the elec-
tric polarization that results from the excitations inside
the material, the bare susceptibility has been renormal-
ized as χ̃0(~q, ω) = χ0(~q, ω) [1−W (ω)χ0(~q, ω)]

−1
, where

1 is the identity matrix. (iii) To obtain the full lattice-
dynamical susceptibility, we further need the full lattice
vertex function F(~q, ω) = Γ(~q, ω)[1− χ̃0(~q, ω)Γ(~q, ω)]

−1,
where Γ(~q, ω) is the irreducible lattice vertex function,
which we approximate using the one obtained within
the TMDCA method [39, 40]. (iv) The vertex function
F(~q, ω) is used along with the renormalized χ̃0(~q, ω) in
the BSE depicted in Fig. 1(C):

〈~k|χ|~k′〉 = 〈~k|χ̃0|~k〉+
∑
~k′′

〈~k|χ̃0|~k〉〈~k|F|~k
′′〉〈~k′′|χ|~k′〉. (3)

(v) Solving Eq. 3 yields the full lattice-dynamical charge
susceptibility χ(~q, ω). Below, we focus on the momentum
integrated full charge susceptibility χ(ω).

We show in Fig. 2 the imaginary part of the charge sus-
ceptibility Imχ(ω) for the pristine monolayer MoS2. In
addition to the large contribution for excitation energies
above the band gap associated with the generation of
free electron/hole pairs, this susceptibility exhibits the
two dominant exciton peaks observed in MoS2, A and
B (our resolution is not sufficient for the observation
of trion and excited exciton features). The separation

between A and B peaks is ∆ = 0.24 eV, which is only
slightly larger than the calculated valence-band split of
∆SO = 0.22 eV, mentioned above. While the position of
the A exciton peak EA = 1.84 eV is in excellent agree-
ment with experiment, we caution readers not to over-
interpret its significance as the agreement is likely some-
what coincidental. Assuming the band gap Eg = 2.6 eV
from our DFT+sQGW+SO calculations, the position of
the A peak EA = 1.84 eV corresponds to the A exciton
binding energy Eb = 0.66 eV. This value is the upper
limit of experimental values, which are in the range of
0.2–0.7 eV [17, 41], presumably because our calculations
do not consider screening from the substrate.
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FIG. 2. Imaginary part of the charge susceptibility for pristine
monolayer MoS2 as a function of the excitation energy ~ω. A
and B denote the main two exciton peaks, separated by ∆ =
0.24 eV and found below the band gap energy Eg = 2.6 eV.
Eb = 0.8 eV is the binding energy of A exciton.
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FIG. 3. The absorbance A(ω) obtained using Eq. 4 for pris-
tine MoS2 monolayer as compared with experimental data.
Observe that the relative trend and position of the principal
exciton peaks are nicely reproduced in our computed data.

We can directly relate our calculations to experiment
by calculating the thickness-independent absorbance
A(ω), using

A(ω) =
ωℓ

c
Imχ(ω), (4)

where ω is the angular frequency of the excitation, c
is the speed of light, and ℓ is an arbitrary vertical
length unit that factor out, as the susceptibility χ ∝
ℓ−1 [42]. Figure 3 shows good qualitative agreement be-
tween our calculated spectrum and typical experimental
spectra [13, 24, 43]. Small differences in peak positions
and heights are common and to be expected. These could
originate from different conditions on the experimental
side and different assumptions on the theoretical side.
To explore the role of randomly distributed sulfur va-

cancies on the optical absorption spectrum, we show in
Fig. 4 the same imaginary part of the charge suscepti-
bility as in Fig. 2 but for various sulfur vacancy concen-
trations δ. Again, we see the peak structure from the
A and B excitons. The peaks, however, gradually lose
intensity as δ increases and eventually vanish at approxi-
mately δ = 4.0%. The disappearance of the principal ex-
citon peaks at high disorder has recently been observed in
experiment; e.g., Kang et al [44] reported the disappear-
ance of the principal exciton peaks at high plasma expo-
sure times in their oxygen plasma treatment of monolayer
MoS2. Some experiments have reported that extrinsic
defects induced by e.g., electron-irradiation or ion bom-
bardment could diminish the exciton peaks [45]. Several
other experiments, e.g., Refs. [13, 43, 46, 47] reported
significant decrease in the intensity of the exciton peaks
due to unintentional defect states in their samples.
There also appears to be a slight blue shift of the ex-

citon peaks in Fig. 4. This is also consistent with some

experimental studies that have reported blue shift of the
A-peak in monolayer MoS2 that is mainly due to de-
fects [48].
The impact of the sulfur vacancies on the overall mag-

nitude of Imχ(ω) varies in different parts of the spec-
trum. Above the band gap transition energy threshold,
Fig. 4 shows a general decrease in Imχ(ω) as the va-
cancy concentration increases. This is expected as the
disorder introduced by the vacancies breaks up the ex-
tended states within the conduction and valence bands,
leading to less generation of free electron-hole pairs.
We find that the susceptibility below the band gap

threshold, in contrast to that above, generally increases
with an increased vacancy concentration. This is a man-
ifestation of an increased number of electronic states
within the band gap, especially near the band edges.
This effect is well-known in disordered systems, where
the characteristic exponential dependence on energy is
known as Lifshitz tails [49]. In our system, such states
are caused by local perturbations of the electron-electron
interactions around the vacancies. For a sufficiently large
vacancy concentration, we expect the susceptibility in
this sub-threshold regime to be dominated by excitations
between such states. To lowest order, we would then have

Imχ(ω) ≈ Imχ(Eg) e
γ(δ)[~ω−Eg], (5)

for a two-dimensional system such as monolayer MoS2.
We used Imχ(Eg) ≈ 0.55 and γ(δ) ≈ −(1/8)(3 +
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FIG. 4. Imaginary part of the charge susceptibility for mono-
layer MoS2 at various sulfur vacancy concentrations δ from
(A) our calculations and (B) Eq. 5. Increasing the concentra-
tion leads to a deterioration of the A and B exciton peaks
(see inset) and suppresses the generation of free electron-hole
pairs (see arrow). On the other hand, increasing the amount
of sulfur vacancies generally increases Imχ(ω), and hence the
optical absorption below the band gap Eg = 2.6 eV.
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2 log2 δ) eV
−1 in Fig. 4 and obtained an excellent quali-

tative agreement with our first-principles-based calcula-
tions.
In summary, we have studied the role of randomly dis-

tributed sulfur vacancy and material-specific Coulomb
interactions on the optical properties of monolayer MoS2
using a first-principles-based many-body typical medium
approach. Our results show that both electronic interac-
tions and sulfur vacancies affect the dynamic charge sus-
ceptibility, and concomitantly the optical absorption. In
particular, we observe an increased susceptibility below
the band gap threshold with an increased vacancy con-
centration. This finding suggests that defect engineering
could be useful for optoelectronic applications, including
solar cell applications.
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den. Matt. 26(27), 274209 (2014); Y. Zhang, H. Ter-
letska, C. Moore, C. Ekuma, K.-M. Tam, T. Berlijn,
W. Ku, J. Moreno, and M. Jarrell, Phys. Rev. B 92,
205111 (2015); Y. Zhang, R. Nelson, E. Siddiqui, K.-M.
Tam, U. Yu, T. Berlijn, W. Ku, N. S. Vidhyadhiraja,
J. Moreno, and M. Jarrell, Phys. Rev. B 94, 224208
(2016).

[34] C. E. Ekuma, S.-X. Yang, H. Terletska, K.-M. Tam, N. S.
Vidhyadhiraja, J. Moreno, and M. Jarrell, Phys. Rev. B
92, 201114 (2015).
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