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We investigate non-equilibrium phase transitions in classical Heisenberg spin chains associated
with spontaneous breaking of parity-time (PT ) symmetry of the system under the action of Slon-
czewski spin-transfer torque (STT) modeled by an applied imaginary magnetic field. We reveal
the STT-driven PT symmetry breaking phase transition between the regimes of precessional and
exponentially damped spin dynamics and show that its several properties can be derived from the
distribution of zeros of the system’s partition function, the approach first introduced by Yang and
Lee for studying equilibrium phase transitions in Ising spin chains. The physical interpretation of
imaginary magnetic field as describing the action of non-conservative forces opens the possibility of
direct observations of Lee-Yang zeros in non-equilibrium physical systems.

Phase transitions where physical systems experience
non-analytic changes of their properties are one of the
most remarkable phenomena occurring in many-particle
systems [1]. In 1952 Yang and Lee devised an approach
that reveals a deep structure of singularities associated
with phase transitions via investigation of points on the
complex plane of physical parameters where the parti-
tion function of a system vanishes (Lee-Yang zeros) [2
and 3]. Recently, the Lee-Yang description was gener-
alized to nonequilibrium systems [4–8], and is now be-
coming a powerful tool promising to bring unified under-
standing of both, equilibrium and nonequilibrium pro-
cesses. The latter can be efficiently described in a frame-
work of non-Hermitian Hamiltonian approach in which
non-Hermiticity is proportional to the external bias [9
and 10]. Since Lee-Yang approach rests on analytical
continuation of the partition function to the complex
plane of controlling parameter, it opens an appealing op-
portunity of incorporating the Lee-Yang approach into
a non-Hermitian scheme to enable a universal unified
description of phase transitions in open dissipative sys-
tems. Here we meet the challenge and investigate non-
equilibrium phase transitions in classical Heisenberg spin
chains that offer an exemplary laboratory for both Lee-
Yang model and non-Hermitian approach. We find the
non-equilibrium phase transition associated with sponta-
neous breaking of parity-time (PT ) symmetry of the sys-
tem under the action of Slonczewski spin-transfer torque
(STT) modeled by imaginary magnetic field. We relate
the singularities of this phase transition with the distri-
bution of the Lee-Yang zeros.

The pioneering Yang-Lee description of phase transi-
tions [2 and 3] via the distribution of zeros of the partition
function was achieved by going to the extended complex
plane of the applied magnetic field upon adding its imag-
inary component. The zeros were located on a unit circle
in the complex fugacity plane, ξ = exp(−H/kBT ), where
H is the applied transverse external magnetic field mea-
sured in energy units. Later, the Lee-Yang circle theo-
rem has been generalized to Heisenberg models [11–17],

ferromagnetic Ising models of arbitrary high spin [11, 18–
21], Heisenberg and general Ising models with multiple-
spin interactions [22], and isotropic classical spins of arbi-
trary dimensionality on a one-dimensional lattice [23 and
24]. Recently, the Lee-Yang zeros approach has emerged
in nonequilibrium physics, see e.g Ref. [25], where the
Lee-Yang zeros of a partition function of trajectories de-
scribing the evolution of a stochastic process were stud-
ied experimentally in the non-equilibrium settings, where
they characterize dynamic phase transitions occurring in
a quantum system after a quench. In parallel, it has
been discovered that the action of some non-conservative
forces, like Gilbert damping and Slonczewski STT, on
individual spins is equivalent to switching on an imagi-
nary magnetic field [9 and 26]. Indeed, when consider-
ing the dynamics of a single classical spin, an imaginary
magnetic field is necessary to account for the action of
non-conservative forces and dissipation. This brings the
possibility for a direct observation of Lee-Yang zeros in
non-equilibrium coupled spin systems. Altogether these
findings suggest that incorporating Lee-Yang zeros de-
scription into the machinery of non-Hermitian quantum
mechanics will create a powerful tool for quantitative de-
scription of out-of-equilibrium phase transitions. Here
we explore this route.

We build our approach on the non-Hermitian quantum
mechanics of systems endowed with PT symmetry, de-
vised by Bender and Boettcher [27 and 28]. They demon-
strated that there exists a class of non-Hermitian but
PT -symmetric Hamiltonians whose energy spectrum is
real as long as eigenstates of the Hamiltonian are also
eigenstates of the PT -operator, but acquires an imagi-
nary component as soon as the latter property is lost.
The notion that PT symmetry describes open dissipative
systems with “balanced loss and gain” [29] enables using
non-Hermitian Hamiltonians for description of dynamic
phase transitions between stationary and non-stationary
dynamics of dissipative systems as transitions between
the states with unbroken and broken PT symmetry of
their eigenstates, correspondingly.

Utilizing the theory of the STT-driven PT symmetry
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breaking phase transition in single-spin systems [9 and
26], we investigate nonequilibrium phase transitions in
the spin chain which is a generic model for a broad variety
of experimental systems.

We consider a PT -symmetric classical Heisenberg spin
chain:

H = −J
S

N∑
k=1

SkSk+1 + h

N∑
k=1

Sk , (1)

where J and h = h x̂ + iβ ŷ are dimensionless cou-
pling strength (ferromagnetic when J > 0) and mag-
netic field, correspondingly, and |Sk| = S → ∞. The
Hamiltonian (1) is invariant under simultaneous parity
(Sy → −Sy) and time-reversal (t → −t, i → −i) sym-
metries. There are nine and sixty ways of defining parity
lays (and every single one of them is right) symmetry on
a lattice. We choose to define the parity operator P as
acting as a mirror reflection of the entire spin chain with
respect to the xz-plane: (Sx, Sy, Sz)→ (Sx,−Sy, Sz).

DYNAMICS

Our first step is to establish that the spin chain expe-
riences nonequilibrium phase transition associated with
the PT -symmetric STT term. To that end, we em-
ploy the SU(2) spin-coherent states [30,31] in the classi-

cal limit: |ζ〉 = eζ Ŝ+ |S,−S〉, where Ŝ± ≡ Ŝx ± iŜy, and
ζ ∈ C is the standard stereographic projection of the spin
direction on a unit sphere, ζ = (sx + isy)/(1− sz), with
sk ≡ Sk/S, S → ∞. ζ and ζ̄ form a complex conjugate
pair of stereographic projection coordinates, and the ex-
pectation value of the Hamiltonian (1) in spin-coherent
states is given by [32]

H(ζ, ζ̄) =
〈ζ|Ĥ|ζ〉
〈ζ|ζ〉

. (2)

Accordingly, the equations of motion for individual spins
in stereographic coordinates are

ζ̇k = i

(
1 + |ζk|2

)2
2S

∂H
∂ζ̄k

, k = 1 . . . N , (3)

which for the Hamiltonian (1) yields a system of coupled
differential equations:

ζ̇k(t) = − i (h+ β)

2

(
ζ2k −

h− β
h+ β

)
+ i J

(ζk − ζk+1)(1 + ζk ζ̄k+1)

1 + |ζk+1|2

+ i J
(ζk − ζk−1)(1 + ζk ζ̄k−1)

1 + |ζk−1|2
. (4)

The first term on the RHS of Eq. (4) describes individual
spin dynamics, see Ref. [9], while the other two terms are
responsible for inter-spin coupling in the chain.

Numerical simulations of spin dynamics governed by
the Eq. (4) reveal two fundamentally different regimes.
When |h| > |β|, the spin chain exhibits seemingly chaotic
oscillating behavior, while for |h| 6 |β| all spins sat-
urate exponentially fast towards the stable fixed point

ζ = ζ1 =
√

h+iβ
h−iβ in stereographic projection coordinates.

To show that a phase transition occurs at |h| = |β|, it is
sufficient to consider the time evolution of the projection

of the total spin on the z axis, sz ≡
∑N
k=1 s

z
k, averaged

over all possible initial conditions of all N spins, sk(0).
As can be seen in Fig. 1, sz is an oscillatory function of
time when |h| > |β| (regime of unbroken PT symmetry),
and saturates exponentially quickly when the PT sym-
metry is broken, i.e. |h| 6 |β|. The z-projection of the
saturation direction is: sz1 = −h/β.

FIG. 1. (Color online) Divergence of the average period of
oscillations. The points (red) represent numerical simulations

of the period of oscillations of S(z) as a function of applied
imaginary magnetic field, β, averaged over 100 random initial
conditions for N = 4 spins, J = 1, and h = 1. The analytic

dependence τ = 2π
(
1− β2

)−1/2
is plotted as a straight line

(blue). In the inset the exponential saturation of S(z)(t) is
shown in the regime of broken PT symmetry, for h = 1 and

β = 1.1, S(z)(t)− S(z)
1 ∼ exp

(
−
√
β2 − h2 t

)
.

The dependence of the period of spin oscillations
on the magnitude of imaginary magnetic field, τ =

2π/
√
h2 − β2, is illustrated in Fig. 1, and is in agreement

with the theorem that for every system with the exact
(unbroken) PT symmetry there exists a unitary similar-
ity transformation mapping the system’s non-Hermitian
Hamiltonian to a Hermitian one [33]. While the exact
form of the equivalent Hermitian form of the spin chain
Hamiltonian (1) is unknown, for each individual spin the
PT -symmetric Hamiltonian H(0)PT = (h x̂ + iβ ŷ)S in
the regime of unbroken PT symmetry (|h| ≥ |β|) was

shown to be equivalent to H′(0) =
√
h2 − β2 x̂S′ [9], with

the similarity transformation given by the Möbius trans-

formation ζ ′ =
√

h+β
h−β ζ in stereographic projection co-

ordinates, which corresponds exactly to the oscillation
period τ = 2π(h2 − β2)−1/2 for individual spins.
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In the limit of weak inter-spin coupling, |J | � h, β, the
spin chain is effectively uncoupled, with individual spin
dynamics described by the single-spin solution with PT
symmetry breaking at |β| = |h| [9 and 26]. In the oppo-
site limit of very strong coupling, |J | � h, β, spins ex-
hibit correlated dynamics, yet they are not (anti-) ferro-
magnetically aligned, as could be naively expected. This
is because the Hamiltonian (1) does not contain any non-
conservative terms that can minimize the inter-spin en-
ergy term directly.
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FIG. 2. (Color online) Dependence of the critical imagi-
nary magnetic field, βc on the absolute magnitude of the
inter-spin coupling, |J |, for a classical isotropic (squares) and
anisotropic (circles) Heisenberg models with periodic (red)
and open (blue) boundary conditions for h = 1. The model
with anisotropic Sz−Sz interaction, see Eq. (5), exhibits a
non-trivial dependence of the critical imaginary magnetic field
on the interaction strength, βc(|J |).

Shown in Fig. 2 is the summary of our study of the de-
pendence of the critical imaginary magnetic field, βc, on
the spin-spin interaction type and strength, J . We dis-
play results of the numerical simulations of the spin chain
dynamics with N = 4 and random initial conditions. We
analyze two models, the isotropic Heisenberg model (1)
and the anisotropic Heisenberg model with S(z) − S(z)

interaction:

H(an) = −J
S

N∑
k=1

SzkS
z
k+1 + h

N∑
k=1

Sk , (5)

each with periodic and open boundary conditions. We
find that in the model with isotropic spin-spin interac-
tion, the critical amplitude of imaginary magnetic field
is independent on both amplitude of the interaction, J ,
and the choice of boundary conditions.

To conclude at this point, we find that the spin chain
experiences the PT symmetry breaking transition mani-
festing as a transition between the stationary oscillating
state (endowed with the unbroken PT symmetry) and
the PT symmetry broken non-stationary state with each
individual spin in the chain saturating in the direction

ζ1 = −
√

h−β
h+β exponentially quickly, exhibiting the be-

havior identical to that of a single spin [9].

THERMODYNAMICS

Now we turn to investigating the statistical physics of
the linear Heisenberg spin chain described by the Hamil-
tonian (1). The partition function is calculated as an
integral over all possible orientations of N spins on a 2-
sphere:

ZN =

ˆ
. . .

ˆ N∏
k=1

(
dΩk
4π

)
exp

(
−H
T

)
, (6)

where Ωk is the element of solid angle in the direction Sk
for each of N coupled spins. We first analyze the parti-
tion function numerically, plotting it in Fig. 3 for a chain
of N = 4 ferromagnetically coupled spins, as a function of
applied real and imaginary magnetic fields, h and β, cor-
respondingly. The partition function is real for all h and
β, but only strictly positive in the parametric range of
unbroken PT symmetry, |h| > |β|, where PT -symmetric
systems are equivalent to Hermitian ones [33]. In the
regime of broken PT symmetry, the partition function
can assume negative values, and, accordingly, Lee-Yang
zeros appear. Negative statistical weight becomes pos-
sible when energy eigenvalues appear in complex conju-
gate pairs. This is related to the sign problem, which
in turn is the manifestation of the general problem of
complex weights in a statistical sum, arising naturally in
Euclidean quantum field theories with non-zero chemical
potential [34–36].

At asymptotically low temperatures, T → 0, the par-
tition function (6) assumes the form

lim
T→0

ZN =

[
sinh

(
J
T

)(
J
T

) ]N−1
sinc

(
N
√
β2 − h2
T

)
, (7)

FIG. 3. (Color online) Numerical result for the partition
function of N = 4 ferromagnetically coupled spins (J = 1)
with open boundary condition placed in magnetic field h =
h x̂ + iβ ŷ. Zeros of the partition function (Lee-Yang zeros)
are only observed in the regime of broken PT symmetry, i.e.
when |h| < |β|. The partition function takes strictly positive
values in the regime of unbroken PT symmetry, |h| > |β|.
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FIG. 4. (Color online) Partition function for N = 4 spins with

J = 1 as a function of N
√
β2 − h2/T for different h and β

and a range of temperatures: T = 1 (blue), 0.5 (orange),
0.2 (green), and 0.1 (red). The point shape represents differ-
ent ‘slices’ of the partition function: at h = 0 (circles), 1.5T
(square), and 3T (triangles). The dashed curve corresponds

to the function sinc(N
√
β2 − h2/T ).

where sinc(x) ≡ sin(x)/x, which is confirmed by our nu-
merical calculations (see Fig. 4) and is in a full agree-
ment with the known results for classical Heisenberg spin
chains with h = 0 in the limit T → 0, where the Lee-Yang
zeros are uniformly distributed along the unit circle in the
complex fugacity plane, ξ = exp(−iβ) [13, 17, 22–24, and
40].

In order to study zeros of the partition function (6),
we calculate the latter numerically as a function of real
and imaginary applied magnetic fields, h and β, respec-
tively, see Fig. 3. The behaviors of the partition func-
tion in the regimes of unbroken (|h| > |β|) and broken
(|h| > |β|) PT symmetry of the Hamiltonian (1), dif-
fer fundamentally from each other. We find that in the
regime of the broken PT symmetry, the partition func-

tion depends only on the product
√
β2 − h2 rather than

on h and β separately and independently. More gener-
ally, our results indicate that the following relation holds
for all J and T :

ZN (h, β) = ZN

(
0,
√
β2 − h2

)
. (8)

To demonstrate this, for N = 4, J = 1, and
T = 0.1, 0.2, 0.5, 1, we calculate ZN (h, β) at several dif-
ferent values of h and plot them as a function of

N
√
β2 − h2/T in Fig. 4. As a result, we obtain a series

of smooth curves that approach the zero-temperature re-
sult, Eq. (7).

CONCLUSIONS

We showed that the PT symmetry breaking phase
transition in a system of coupled classical Heisenberg
spins leads to a sharp transition from precessional to ex-
ponentially saturating dynamics, regardless of the initial
conditions of each spin. We found that in a system with
the isotropic nearest-neighbor spin-spin interaction, the
condition of the PT symmetry breaking does not de-
pend on the coupling strength, for both open and pe-
riodic boundary conditions, which is not generally the
case for anisotropic interactions. Furthermore, the PT
symmetry breaking condition is found to be independent
of the length of the spin chain. The parametric region
of PT symmetry breaking (which is |β| > |h| for the
spin chain Hamiltonian considered in this work) plays
an important role for both dynamic and thermodynamic
properties of the system of coupled classical Heisenberg
spins. This proves that the notion of the imaginary fields
describing nonconservative forces, and, consequently, the
PT symmetry in general, can be generalized to a much
wider class of physical problems than considered before.
The direct correspondence between the actions of imag-
inary magnetic field on spin dynamics and Slonczewski
STT [9] allows for an experimental verification of the PT
symmetry-breaking phase transition in spin chains by
studying magnetization dynamics in a thin ferromagnetic
wire driven by spin Hall effect spin-torque (see, e.g., [41
and 42]) generated by placing it on top of a thin non-
magnetic film of a material with a sufficiently large spin
Hall angle (e.g., W or Ta).

We generalized the Lee-Yang theorem for classical spin
chains to PT -symmetric systems with real magnetic field
applied perpendicular to the transverse imaginary mag-
netic field. The location of Lee-Yang zeros is modified ac-
cording to Eq. (8) for non-zero applied real magnetic field
along the x-axis, while still remaining on the imaginary
axis for the transverse field applied in the y-direction.
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