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We show theoretically that two-dimensional direct-gap semiconductors with a valley degree of freedom, in-
cluding monolayer transition-metal dichalcogenides and gapped bilayer graphene, have a longitudinal magneto-
conductivity contribution that is odd in valley and odd in the magnetic field applied perpendicular to the system.
Using a quantum kinetic theory we show how this valley-dependent magnetoconductivity arises from the inter-
play between the momentum-space Berry curvature of Bloch electrons, the presence of a magnetic field, and
disorder scattering. We discuss how the effect can be measured experimentally and used as a detector of valley
polarization.

Introduction.— Studies of magnetotransport in metals
have a long standing in condensed matter physics. From
the viewpoint of technology the discoveries of giant
magnetoresistance1,2 and tunnel magnetoresistance3–5 have
led to drastic improvements in the performance of magnetic
information storage devices. More generally magnetoresis-
tance studies can play an important role in characterizing
the electronic structure of solids. For example, Shubnikov–
de Haas resistance oscillations are routinely used to mea-
sure Fermi surfaces. More recently the existence of three-
dimensional (3D) Dirac and Weyl semimetals, which have
topologically nontrivial band structures, has been confirmed
experimentally6–11 by measuring a remarkable and character-
istic negative longitudinal magnetoresistance property associ-
ated with the chiral anomaly12–15.

This Rapid Communication addresses magnetotransport in
2D semiconductors with more than one valley. Valley has
recently attracted greater attention as an observable degree
of freedom of electrons in solids16–18, in part because of
the emergence of monolayer transition-metal dichalcogenides
(TMDs) and gapped bilayer graphene, both 2D semiconduc-
tors in which valence and conduction band extrema occur
at the K and K′ time-reversal partner Brillouin-zone corner
points. When intervalley scattering by disorder or phonons is
weak, valley remains an approximate quantum number even
beyond the Bloch band approximation. Weak valley relax-
ation combined with valley-dependent contributions to the
conductivity tensor can lead to observable effects analogous
to those produced by spin accumulations in conductors with
weak spin-orbit scattering. To date, attention has focused
mainly on the valley-dependent anomalous Hall effect19,20,
which occurs in the absence of a magnetic field and is related
to the broken time-reversal symmetry of the Hamiltonian’s
projection to a single valley, and to momentum-space Berry
phase effects. Given the negative magnetoresistance in 3D
Dirac and Weyl semimetals, which also involves valleys re-
lated by time-reversal, longitudinal magnetotransport effects
should be expected in 2D multi-valley systems. We approach
this issue theoretically using a massive Dirac model for 2D
multi-valley semiconductors and a recently developed quan-
tum kinetic theory15,21. We find that the longitudinal magne-
toconductivity has a contribution that is odd in valley and odd
in perpendicular magnetic field. Our theoretical predictions
can be tested by observing a change from quadratic to linear
magnetoresistance in systems in which a finite valley polar-

ization is induced by optical pumping or valley injection, as
schematically illustrated in Fig. 1.

Magnetotransport theory.— The transport theory we em-
ploy is valid in the low magnetic field regime where Landau
quantization can be neglected and enables us to systematically
compute the conductivity tensor in the presence of disorder
in arbitrary spatial dimensions. It is based on a quantum ki-
netic equation that accounts for disorder, and for electric E

and magnetic B fields15,22:

∂〈ρ〉

∂t
+

i

~
[H0, 〈ρ〉] + K(〈ρ〉) = DE(〈ρ〉) + DB(〈ρ〉), (1)

where 〈ρ〉 is the impurity-averaged Bloch-electron density
matrix, H0 is the unperturbed Bloch Hamiltonian, K(〈ρ〉) is
a disorder contribution discussed further below, and DE(〈ρ〉)
and DB(〈ρ〉) are the electric and magnetic driving terms:

DE(〈ρ〉) =
eE

~
·

D〈ρ〉

Dk
,

DB(〈ρ〉) =
e

2~2

{(

DH0

Dk
×B

)

·
D〈ρ〉

Dk

}

. (2)

Here, e > 0, k is the crystal wave-vector, {a · b} = a · b+ b ·a

(with a and b being vectors) is a symmetrized operator prod-
uct, and we have introduced a covariant derivative notation
for the wave-vector dependence of the matrices X (= 〈ρ〉,H0)
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FIG. 1. (a) Schematic illustration of valley polarization due to a
chemical potential difference δµ between two valleys in systems with
weak intervalley scattering. (b) Schematic of the magnetic-field de-
pendence of the low-magnetic-field magnetoresistance. The mag-
netoresistance is predicted to have a linear dependence on Bz when
δµ , 0, and a quadratic dependence on Bz when δµ = 0.
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expressed in an eigenstate representation:

DX

Dk
=
∂X

∂k
− i[Rk, X], (3)

where Rk =
∑

α=x,y,z Rk,αeα, and [Rk,α]mn
= i〈um

k
|∂kαu

n
k
〉 is a

generalized Berry connection of Bloch electrons.
The steady-state linear response of the density matrix to

an electric field can be expressed as a formal expansion in
powers of the magnetic field strength B15,23: 〈ρ〉 = (1 −
L−1DB)−1L−1DE(〈ρ0〉 + 〈ΞB〉) ≡ 〈ρE〉 +

∑

N≥1〈ρB,N〉, where
〈ρE〉 = L

−1DE(〈ρ0〉), 〈ρB,N〉 = (L−1DB)NL−1DE(〈ρ0〉) +
(L−1DB)N−1L−1DE(〈ΞB〉), and we have defined the Liouvil-
lian operator L ≡ P + K with P〈ρ〉 ≡ (i/~) [H0, 〈ρ〉]. In this
expansion 〈ρ0〉 is the Fermi-Dirac equilibrium density matrix
in the absence of both fields, and 〈ΞB〉 is the equilibrium den-
sity matrix in the absence of an electric field. 〈ΞB〉 accounts
for the Berry phase correction to the density of states implied
by semiclassical wave-packet dynamics24.

Throughout this Rapid Communication, we work in the
eigenstate basis for the various contributions to the steady-
state density matrix, and decompose 〈ρB,N〉 into its band-
diagonal part 〈nB,N〉 + 〈ξB,N〉, and its band-off-diagonal part
〈S B,N〉. We adopt a relaxation time approximation for the dis-
order scattering that influences the diagonal part of 〈ρB,N〉:

〈nB,N〉
mm
k
= τm[DB(〈ρB,N−1〉)]mm

k
,

〈ξB,N〉
mm
k
=

e

~
B ·Ωm

k
〈nB,N−1〉

mm
k
, (4)

where N ≥ 1, 〈ρB,0〉 = 〈ρE〉, 〈nB,0〉 = 2〈nE〉, and τm and Ω
m
k

are respectively the scattering time and the Berry curvature
vector for band m. We also have 〈ΞB〉

mm
k
= (e/~)B ·Ωm

k
〈ρ0〉

mm
k

.
In Eq. (4), 〈nB,N〉 is the extrinsic (Lorentz force) contribution,
while 〈ξB,N〉 is the intrinsic (Berry phase) contribution. The
band off-diagonal part is given by15

〈S B,N〉
mm′

k
=
~

i

[DB(〈ρB,N−1〉)]mm′

k
− [J(〈nB,N〉)]mm′

k

εm
k
− εm′

k

, (5)

where m , m′ and εm
k

is the energy eigenvalue of band m. In
Eq. (5) the term proportional to DB(〈ρB,N−1〉) is purely a band-
structure property expressed in terms of the Berry connec-
tion, whereas the term proportional to J(〈nB,N〉) is a disorder-
dependent Fermi-surface response corresponding to a vertex
correction in the ladder-diagram approximation15,21. The ex-
plicit form of J(〈nB,N〉) will be given later.

Massive Dirac model.— We consider 2D semiconductors
with broken inversion symmetry, like monolayer TMDs, that
have two low-energy valleys related by time-reversal. The
low-energy effective Hamiltonians in these systems normally
have the massive Dirac form16,19,25

Hτz
(k) = vF (τzkxσx + kyσy) + mσz. (6)

(As we discuss briefly later, gated bilayer graphene is an ex-
ception.) In Eq. (6) τz = ±1 distinguishes the two valleys,
vF is the Fermi velocity, 2m is the band gap, and the Pauli
matrices σi act in the space of the retained conduction and
valence bands. The eigenvalues of the Hamiltonian (6) are

±εk = ±

√

v2
F

(k2
x + k2

y ) + m2 with the eigenfunctions |u±
k

(τz)〉.
From Eq. (3), we see that the wavevector dependence of the
eigenfunctions |u±

k
(τz)〉 plays an important role in our trans-

port theory. In the eigenstate basis the Berry connection vector
[Rτz

k,α
]mn
= i〈um

k
(τz)|∂kαu

n
k

(τz)〉 with m, n = ± has the explicit
form

R
τz

k,x
=

1
2k
τz sin θ − σ̃z

m

2kεk
τz sin θ − σ̃y

vFm

2ε2
k

cos θ

− σ̃x

vF

2εk
τz sin θ,

R
τz

k,y
= −

1
2k
τz cos θ + σ̃z

m

2kεk
τz cos θ − σ̃y

vFm

2ε2
k

sin θ

+ σ̃x

vF

2εk
τz cos θ, (7)

where e±iθ
= (kx ± iky)/k, k =

√

k2
x + k2

y , and σ̃α is a Pauli

matrix that acts in the eigenstate basis. Also, the Berry
curvature takes the form [Ωτz

k,z
]± = i〈∂kx

u±
k

(τz)|∂ky
u±
k

(τz)〉 −
i〈∂ky

u±
k

(τz)|∂kx
u±
k

(τz)〉 = ∓τzv
2
F

m/(2ε3
k

).
Valley-dependent longitudinal magnetoconductivity.— We

apply our magnetotransport theory to the 2D systems de-
scribed by Eq. (6) with a static magnetic field B = (0, 0, Bz)
applied perpendicular to the system. For the moment we ne-
glect the vertex correction, i.e., the contribution proportional
to J in Eq. (5). Without loss of generality we may consider an
electron-doped case with positive chemical potential µ. Our
goal is to compute the xx-component of the magnetoconduc-
tivity tensor using

σ(N)
µν (Bz) = Tr

[

(−e)vµ〈ρB,N〉
]

/Eν. (8)

In the eigenstate basis the velocity operator reads vx =

vF(σ̃z
vF k

εk
cos θ + σ̃yτz sin θ − σ̃x

m
εk

cos θ).
We first evaluate the magnetoconductivity contributions

proportional to odd powers of Bz for µ > m in the conduction
band. The linear magnetoconductivity σ(1)

xx (Bz) is determined
by the density matrix 〈ρB,1〉 = L

−1DB(〈ρE〉) + L−1DE(〈ΞB〉).
We find that26

σ(1)
xx (Bz) = τz

e2Bz

Ex

∫

[dk]













v2
F

m

2ε2
k

∂

∂kx

+
v4

F
mkx

ε4
k













〈nE〉
++

k

≡ τz

e3

~
Bzv

2
FC1(µ,m)τtr, (9)

where [dk] ≡ d2k
(2π)2 , 〈nE〉

++

k
= τtr(eEx/~)∂ f0(εk)/∂kx, f0(εk)

is the Fermi-Dirac distribution function, τtr is the intravalley
scattering time, and C1(µ,m) < 0 is evaluated by performing
a numerical integration. The two terms in square brackets of
Eq. (9) acting on the extrinsic response 〈nE〉 arise respectively
from the off-diagonal intrinsic contribution 〈S B,1〉 and the di-
agonal intrinsic contribution 〈ξB,1〉. In Fig. 2 we show the µ
and m dependences of σ(1)

xx (Bz). It should be noted here that,
as seen from Fig. 2(b), σ(1)

xx (Bz) is significantly enhanced in a
smaller gap system. Similarly, we find the cubic magnetocon-
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(a) (b)

FIG. 2. (a) Chemical potential µ dependence of σ(1)
xx (Bz) [Eq. (9)]

andσ(1)ver
xx (Bz) [Eq. (14)] for m = 0.8 eV. Bothσ(1)

xx (Bz) and σ(1)ver
xx (Bz)

are proportional to m/µ2 in the case of µ ≫ m and thus approach
zero in the limit µ ≫ m. (b) Band gap m dependence of σ(1)

xx (Bz) for
µ/m = 1.1. In both (a) and (b), we set Bz = 0.1 T, vF = 3 eV · Å,
τtr = 0.1 ps, and T = 5 meV.

ductivity obtained from 〈ρB,3〉
26

σ(3)
xx (Bz) =

8
3
τz

e2Bz

Ex

∫

[dk]













v2
F

m

2ε2
k

∂

∂kx

+
v4

F
mkx

2ε4
k













〈nB,2〉
++

k

≡ τz

e5

~
B3

z v6
FC3(µ,m)τ3

tr, (10)

where 〈nB,2〉
++

k
= (eBzτtr)2( ∂εk

∂ky

∂
∂kx
−
∂εk
∂kx

∂
∂ky

)2〈nE〉
++

k
, and

C3(µ,m) > 0. In the case of µ ≫ m, we find that
C3(µ,m) ∝ m/µ4. For the material parameters used in
Fig. 2(a), |σ(3)

xx (Bz)/σ
(1)
xx (Bz)| ∼ 10−3(Bz [T])2. The two terms

in square brackets of Eq. (10) acting on the extrinsic response
〈nB,2〉 arise respectively from the off-diagonal intrinsic con-
tribution 〈S B,3〉 and the diagonal intrinsic contribution 〈ξB,3〉.
There are no valley-independent contributions to the linear
and cubic magnetoconductivities, as required by time-reversal
symmetry. Higher-order odd-power terms have the general
form

σ(N)
xx (Bz) = τz

eN+2

~
BN

z v2N
F CN(µ,m)τN

tr , (11)

where N = 5, 7, 9 · · · is an odd integer and CN(µ,m) has the
dimension of [Energy]−N.

Next, we consider the magnetoconductivity contributions
proportional to even powers of Bz, which cannot be valley de-
pendent due to time-reversal symmetry27. We find that the
quadratic magnetoconductivity obtained from 〈ρB,2〉 is domi-
nated by the Lorentz-force contribution

σ(2)
xx (Bz)

≈ −
e3B2

zτ
2
tr

Ex

∫

[dk]
v2

F
kx

εk

(

∂εk

∂ky

∂

∂kx

−
∂εk

∂kx

∂

∂ky

)2

〈nE〉
++

k

= −σ(0)
xx (ωcτtr)2, (12)

where σ(0)
xx = (−e/Ex)

∫

[dk](v2
F

kx/εk)〈nE〉
++

k
is the Drude

conductivity and ωc = eBzv
2
F
/µ is the cyclotron frequency.

Intrinsic contributions to the quadratic magnetoconductivity
are not zero, but they are suppressed by ∼ 1/(µτtr)2 ≪ 1 com-
pared to the conventional contribution in Eq. (12)26.

Vertex corrections.— From Eq. (5) the vertex correction
contribution to the density matrix linear in Bz is given by
〈S ′

B,1〉
mm′′

k
≡ i~[J(〈nB,1〉)]mm′′

k
/(εm

k
− εm′′

k
), where21

[J(〈n〉)]mm′′

k
=
π

~

∑

m′k′

〈Umm′

kk′
Um′m′′

k′k
〉
[

(nm
k
− nm′

k′
)δ(εm

k
− εm′

k′
)

+ (nm′′

k
− nm′

k′
)δ(εm′′

k
− εm′

k′
)
]

. (13)

Here, m , m′′ and 〈n〉 = diag[nm
k

] is an arbitrary band-
diagonal density matrix. We assume short-range disorder
of the form U(r) = U0

∑

i δ(r − ri) with 〈U(r)U(r′)〉 =
nimpU2

0 δ(r − r
′), where nimp is the impurity density. After

a lengthy calculation26, we find the vertex correction to the
linear magnetoconductivity

σ(1)ver
xx (Bz) = Tr

[

(−e)vx〈S
′
B,1〉

]

/Ex

= τz

e3

~
Bzv

2
FC

ver
1 (µ,m)τtr, (14)

where Cver
1 (µ,m) < 0. This means that the vertex correc-

tion enhances the valley-dependent linear magnetoconductiv-
ity [see Fig. 2(a)]. This contrasts with its well-known influ-
ence on the the spin Hall28 and anomalous Hall29 conductiv-
ities in certain Rashba models, i.e., the suppression of these
conductivities by the vertex correction. Here, we note that
usual golden-rule intraband scattering rates proportional to
〈U++

kk′
U++

k′k
〉 are not valley dependent. Nonzero contributions

to Eq. (14) require interband scattering matrix elements like
〈U++

kk′
U+−

k′k
〉, which are valley dependent. The vertex correc-

tion is valley dependent because it is due to interband coher-
ence induced by the magnetic field.

Discussion.— A longitudinal total magnetoconductivity
proportional to odd powers of magnetic field can occur only
in systems with broken time-reversal symmetry30,31. In
monolayer TMDs and gated bilayer graphene, spatial in-
version symmetry is broken but time-reversal symmetry is
retained. The valley-dependent magnetoconductivity con-
tributes to transport only in the presence of a finite valley po-
larization, for example one due to a chemical potential dif-
ference between the two valleys, that explicitly breaks time-
reversal symmetry. Valley polarization in TMDs can be re-
alized by applying circularly polarized light16,32–34 to gener-
ate an excess population of carriers in one valley. When in-
travalley scattering is much stronger than intervalley scatter-
ing, equilibration will occur within valleys to establish valley-
dependent chemical potentials. This approach has been used
previously to measure the valley Hall effect20, and is the most
direct way to measure the valley-dependent magnetoconduc-
tivity derived in this Rapid Communication. In discussing the
results of such a measurement below, we assume that the con-
tribution to transport from photo-generated holes is negligible.

Including terms up to order of B2
z and allowing for a chem-

ical potential difference between valleys, the total magneto-
conductivity of a two-valley system reads

σB
xx(µ1, µ2) =

e3

~
Bzv

2
F[Ctot

1 (µ1,m) − Ctot
1 (µ2,m)]τtr

− σ(0)
xx (µ1)(ωc1τtr)2 − σ(0)

xx (µ2)(ωc2τtr)2, (15)
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(a) (b)

FIG. 3. (a) Valley polarization δµ dependence of the magnetore-
sistance ∆ρxx(Bz, δµ) [Eq. (16)] in the case of |σ(0)

xx /σ
(0)
xy | ≫ 1 for

m = 0.8 eV, corresponding to the typical gap of monolayer TMDs.
We used µ1 = µ2 = 0.82 eV for the δµ = 0 case, and µ1 = 0.83 eV
and µ2 = 0.82 eV for the δµ , 0 case. (b) ∆ρxx(Bz, δµ) in the case
of |σ(0)

xx /σ
(0)
xy | ≪ 1 for m = 30 meV, corresponding to low-carrier-

density gated bilayer graphene. We used µ1 = µ2 = 33 meV for the
δµ = 0 case, and µ1 = 36 meV and µ2 = 33 meV for the δµ , 0 case.
Note that the magnetoresistance effect is much stronger in a smaller
gap system. In both (a) and (b), we set vF = 3 eV · Å, τtr = 0.1 ps,
and T = 5 meV.

where µi (i = 1, 2) is the chemical potential of valley i,
Ctot

1 (µi,m) = C1(µi,m) + Cver
1 (µi,m), and ωci = eBzv

2
F
/µi.

In the low-field limit σB
xx ∝ Bz when δµ = µ1 − µ2 , 0,

while σB
xx ∝ B2

z when δµ = 0. The resistivity is defined by
ρxx(Bz) = σxx/(σ2

xx + σ
2
xy) with σµν ≡ σ

(0)
µν + σ

B
µν. It follows

that the low-field magnetoresistance

∆ρxx ≡
ρxx(Bz) − ρxx(0)
ρxx(0)

≈ ∓
σB

xx(µ1, µ2)

σ
(0)
xx (µ1) + σ(0)

xx (µ2)
. (16)

Here, the − (+) sign applies in the |σ(0)
xx /σ

(0)
xy | ≫ 1 case

(|σ(0)
xx /σ

(0)
xy | ≪ 1 case)35. Obviously the Drude conductivity

σ
(0)
xx is not valley dependent. Thus the change in magnetic-

field dependence from B2
z to Bz when illuminated by circularly

polarized light, illustrated schematically in Fig. 1, should be
readily observable36. Interestingly, we can always make the
δµ , 0 magnetoresistance in the low-field limit opposite in
sign to the δµ = 0 magnetoresistance by changing the sense
of circular light polarization, as illustrated in Fig. 3.

The magnetoresistance effects discussed in this Rapid Com-
munication are much stronger, for a given Fermi velocity,
in Dirac models with a smaller gap, and we expect them
to be much more easily observed experimentally in bilayer
graphene systems than in monolayer TMDs. Bilayer graphene
is described by a generalized Dirac model with chirality J = 2
rather than J = 1, and has quadratic dispersion in the absence
of a gap37. For a given gap the size of the magnetoresistance
effect in bilayer graphene will exceed the J = 1 model values
plotted in Fig. 3(b).

A valley-dependent conductivity can lead to valley accu-
mulation in the absence of optical valley pumping when an
inhomogeneity is present along the current path, for example
a variation in carrier density induced by external gates. Be-
cause valley dependence is largest in a relative sense when
the carrier density is small (i.e., when the Fermi energy µ is
only slightly larger than the gap m), the current partitioning
between valleys corresponding to equal electro-chemical po-
tential gradients changes across interfaces at which the car-
rier density changes. If intervalley scattering is weak, val-
ley accumulation will persist within a valley relaxation length
of any such interface, and should be detectable via Kerr
microscopy38.

Summary.— To summarize, we have theoretically demon-
strated the existence of a valley-dependent longitudinal mag-
netoconductivity in 2D semiconductors with a valley de-
gree of freedom. The effect arises from the interplay be-
tween the momentum-space Berry curvature of Bloch elec-
trons, the presence of a magnetic field, and disorder scatter-
ing. Our prediction can be verified by measuring the influ-
ence of circularly-polarized light illumination on magnetore-
sistance in the low-field limit. Because the magnetoresistance
is proportional to valley polarization it can be used as a valley
detector. We predict that these magnetoresistance effects will
be significantly enhanced in bilayer graphene samples with
small gaps and small carrier densities.
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