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Abstract16

We propose an efficient computational method for evaluating the self-energy matrices of elec-17

trodes to study ballistic electron transport properties in nanoscale systems. To reduce the high18

computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-19

Sugiura method combined with the shifted biconjugate gradient method is developed to solve20

exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the pro-21

posed algorithm is that the numerical procedure is very similar to that of conventional band22

structure calculations. We implement the developed method in the framework of the real-space23

higher-order finite difference scheme with nonlocal pseudopotentials. Numerical tests for a wide24

variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an25

illustration of the method, we present the electron transport property of the free-standing silicene26

with the line defect originating from the reversed buckled phases.27
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I. INTRODUCTION28

First-principles simulations based on density functional theory1,2 (DFT) and the Landauer-29

Büttiker formalism3–5 are recognized as a powerful tool for understanding and predicting30

the electron transport properties of nanoscale systems. Examples of such computational31

methods include the Lippmann-Schwinger scattering approach,6–8 recursive transfer-matrix32

method,9,10 wave function matching (WFM) method,11,12 and nonequilibrium Green’s func-33

tion (NEGF) method.13,14 Among these, the NEGF method combined with the localized34

basis has been used extensively in the field of molecular electronics and spintronics, because35

Green’s function is compactly described by the localized basis and bound states can be36

easily included by the contour integral of the retarded Green’s function. However, the37

transport properties obtained using the localized basis sometimes significantly depend on38

the size of the basis set,15–17 and they need to be checked by comparing the results using a39

plane-wave basis or real-space grid whose convergence with respect to the basis set size is40

straightforward. Furthermore, it is well known that the electron transport in the tunneling41

region is difficult to address with the localized basis set approach due to the incomplete-42

ness of the basis sets. This tunneling problem is handled by putting the ghost orbital in43

the vacuum region or increasing the cutoff radius of the basis set. However, the problem44

with accuracy and efficiency persists.18,19 Electron transport calculations using a plane-wave45

basis exist.11,20,21 While the plane-wave basis method enables highly accurate simulations,46

it requires that left and right electrodes to be identical, because of the artificial periodic47

boundary condition associated with the plane-wave basis, which leads to a strong limitation48

on the computational model of transport calculations. In addition, the size of the Hamil-49

tonian matrix that is represented in the plane-wave basis is much larger than that in the50

localized basis, and it is difficult to parallelize; this hampers large-scale electron transport51

calculations. On the other hand, real-space grid approach is free from such drawbacks and52

its Hamiltonian matrix is highly sparse; this not only facilitates implementation on paral-53

lel computers but also enables fast computation using sophisticated numerical algorithms54

designed for sparse matrices.55

Several real-space grid methods have been developed over the last decade. In 2003,56

Fujimoto and Hirose developed the overbridging boundary matching (OBM) method12 for57

calculating the generalized Bloch states of electrodes and the scattering states, and they58
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applied it to a gold atomic wire. Subsequently, Khomyakov et al.22 proposed a real-space59

grid implementation of the WFM method formulated by Ando.23 However, the applications60

of these methods, including extensions of the OBM method,24–26 have remained limited to61

relatively small systems or very rough approximations (e.g., first-order finite-difference, local62

pseudopotential, and jellium electrode) owing to the large computational cost of inverting63

Hamiltonian matrices. As an extension of the OBM method, Kong et al.27,28 developed a64

method for computing the scattering states without explicitly inverting the Hamiltonian in65

the transition region, as shown in Fig. 1; hereafter, we refer to their method as the improved66

OBM (IOBM) method. Nevertheless, the IOBM method still requires the inversion of the67

Hamiltonian matrix in electrode regions and the computation for solving the generalized68

eigenvalue problem with very dense matrices. To avoid these inversion-related problems,69

Feldman et al.29,30 recently proposed a transport calculation method based on Green’s func-70

tion by using the adsorbing boundary condition instead of the self-energy matrices of elec-71

trodes. However, the use of an adsorbing boundary condition requires several parameters72

to be tuned manually to remove spurious reflections at the boundaries; this may restrict73

its applicability to complicated electrode materials. In addition, their approach can only74

be used for the linear response scheme, that is, for non-self-consistent calculations. Over-75

all, compared with mature conventional band structure calculations for a real-space grid76

approach,31–33 currently available methods for real-space transport calculations are com-77

putationally too expensive for investigating the transport properties of nanoscale systems78

within a realistic timeframe. In particular, a reliable and practical method is not available79

for evaluating the self-energy matrices of electrodes using higher-order finite-differences and80

nonlocal pseudopotentials.81

In this article, we present a method for handling the most computationally expensive82

part of real-space transport calculations, namely, the computation of self-energy matrices.83

Because the proposed method shows significantly improved execution time and excellent par-84

allel efficiency compared with methods involving an explicit matrix inversion and a large,85

dense eigenvalue problem, we can readily perform challenging real-space transport calcula-86

tions that were not feasible thus far. The proposed method involves the following procedures:87

express the Kohn-Sham (KS) equation as an exponential-type eigenvalue problem (EEP) for88

complex wave vectors k, compute only those solutions that dominantly contribute to electron89

transport, and construct self-energy matrices by using them. To solve EEP efficiently, we90
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developed a contour integral method based on the Sakurai-Sugiura (SS) method34,35 com-91

bined with the shifted biconjugate gradient (BiCG) method.36 A remarkable feature of the92

SS method is that it replaces the difficulty of solving the nonlinear eigenvalue problem with93

the difficulty of solving linear systems with multiple right-hand sides:94

[E −H(k)]Y = V, (1)95

where E, V , and H(k) are the input energy, random vectors, and Hamiltonian matrix with a96

complex wave vector k, respectively (see Sec. III B for details). Because H(k) has the same97

matrix structure as the Hamiltonian matrix used in the conventional band structure calcula-98

tion, we can use the advanced numerical techniques for the conventional band calculation to99

solve the above equation. Therefore, this method is fast, and it overcomes all limitations of100

previous real-space grid methods, such as large computational cost and memory consump-101

tion associated with the matrix inversion, and the treatment of higher-order finite differences102

and nonlocal pseudopotentials, while keeping the relatively high accuracy. In addition, as103

discussed in Sec. IIIA, this method provides some general advantages compared to previous104

similar approaches37–40 under harsh conditions that other approaches cannot handle easily;105

we believe that such advantages will be essential to the widespread use of the proposed106

method. Finally, it should be noted that the proposed method is highly versatile and that107

it can be implemented in various schemes such as localized basis sets, together with the use108

of the (sparse) LU decomposition for solving Eq. (1).109

The remainder of the paper is organized as follows. Sec. II briefly summarizes the basic110

formulation of the WFM method that is necessary to understand our implementation. In111

Sec. III, we present an efficient implementation for evaluating the self-energy matrices. In112

Sec. IV, we demonstrate the accuracy, robustness, and efficiency of the proposed method113

through a series of test calculations. Sec. V presents transport calculations using the self-114

energy matrices computed with the proposed method. In Sec. VI, a first-principles analysis115

of electron transport properties of the free-standing silicene with the line defect originating116

from the reverse buckled phases is presented to illustrate the proposed method. Finally,117

Sec. VII presents the conclusions of this study.118
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II. GENERAL FORMALISM119

The implementation of the WFM method with a real-space grid approach using higher-120

order finite differences has been reported in detail in Ref. 33. Herein, we briefly review details121

that are essential to understanding our method for evaluating the self-energy matrices of122

electrodes. We consider a quasi-one-dimensional conductor sandwiched by two semi-infinite123

electrodes, as shown in Fig. 1. Owing to the localized feature of the KS Hamiltonian in the124

real-space grid approach, semi-infinite crystalline electrodes can be divided into the principal125

layers (L0, L1, · · · , Lm;R0, R1, · · · , Rm); these are defined as the smallest layers such that126

only nearest-neighbor interactions exist between principal layers. Typically, the size of the127

principal layer is much smaller than that of the unit cell of the electrode. As in Ref. 24, the128

transition region includes at least two principal layers L0 and R0 as matching planes of the129

wave function. To avoid complex notations, we assume that the left and right electrodes are130

identical. The KS equation for the entire region is given as follows:131

H |ψ〉 = E |ψ〉 , (2)132

where H is the KS Hamiltonian of the entire system and |ψ〉 is the scattering state. For133

simplicity, we restrict our formulation to the real-space norm-conserving pseudopotential134

method. However, extensions to the ultrasoft pseudopotential41 and projector augmented135

wave method42 are possible.136

A. Generalized Bloch states137

Generalized Bloch states (i.e., Bloch states with a complex wave vector) play a significant138

role in the WFM method, in which the scattering state is expanded by them at the left and139

right matching planes. To find the generalized Bloch states, we seek the complex wave140

vectors that satisfy Eq. (2) under a periodic boundary condition. Because of the local141

structure of the KS Hamiltonian in a real-space grid approach, it suffices to consider the142

coupling between the nearest-neighbor unit cells of the electrode; then, Eq. (2) can be written143

as the following matrix equation:144

−Hl,l−1ψl−1 + (E −Hl,l)ψl −Hl,l+1ψl+1 = 0, (3)145
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FIG. 1. Schematic representation of quasi-one-dimensional conductor sandwiched between

two semi-infinite electrodes. Because of the localized feature of the real-space grid ap-

proach, semi-infinite crystalline electrodes can be divided into principal layers denoted by

L0, L1, · · · , Lm;R0, R1, · · · , Rm. L0 and R0 are incorporated into the transition region as WFM

planes.

where ψl is the N -dimensional vector in the l-th unit cell and Hi,j is the N×N KS Hamilto-146

nian matrix between the i-th and j-th unit cell, with N being the total number of real-space147

grids in the unit cell of the electrode. By introducing the Bloch ansatz, the above equation148

can be rewritten as149

[−e−iknaHl,l−1 + (E −Hl,l)− e
iknaHl,l+1]φn = 0, (4)150

with n-th complex wave vector kn and a is the distance between adjacent unit cells. {kn}151

and {φn} are to be determined by solving Eq. (4) for a given input energy E. It is worth152

noting that the coupling matrices Hl,l−1 and Hl,l+1 are extremely sparse, and many columns153

are all zero. Because of the singularity of the coupling matrices, solutions of Eq. (4) will have154

Im(kn)→ ±∞. However, the contribution of the waves that decay infinitely fast is negligibly155

small, and thus it is sufficient to compute 2r physically important solutions, with r being156

the rank number of the coupling matrix computed with the singular value decomposition157

technique.25,43,44 Furthermore, 2r solutions can be classified into r left-going waves {φ−
n }158

with either Im(kn) < 0 or Im(kn) = 0 and ∂E/∂kn < 0 and r right-going waves {φ+
n } with159

either Im(kn) > 0 or Im(kn) = 0 and ∂E/∂kn > 0. This is because if kn is an eigenvalue,160

then −kn, k
∗
n, and −k

∗
n are also eigenvalues.45161
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B. Construction of self-energy matrices from generalized Bloch states162

Next, we define the self-energy matrices of electrodes by using the generalized Bloch163

states. As in Ref. 46, we introduce M-dimensional dual vectors φ̃−
Lm,i of the left-going waves164

φ−
Lm,i in the m-th principal layers of the left electrode to satisfy (φ̃−

Lm,i)
†φ−

Lm,j = δi,j as well165

as φ̃+
Rm,i of the right-going waves φ+

Rm,i in the m-th principal layers of the right electrode to166

satisfy (φ̃+
Rm,i)

†φ+
Rm,j = δi,j, with M being the total number of real-space grid points in the167

principal layer. When we also define the M × r matrices Q−
Lm, Q

+
Rm, Q̃

−
Lm, and Q̃

+
Rm as168

Q−
Lm = (φ−

Lm,k1
, φ−

Lm,k2
, ..., φ−

Lm,kr
), (5)169

Q+
Rm = (φ+

Rm,k1
, φ+

Rm,k2
, ..., φ+

Rm,kr
), (6)170

Q̃−
Lm = (φ̃−

Lm,k1
, φ̃−

Lm,k2
, ..., φ̃−

Lm,kr
), (7)171

Q̃+
Rm = (φ̃+

Rm,k1
, φ̃+

Rm,k2
, ..., φ̃+

Rm,kr
), (8)172

M ×M self-energy matrices of the left and right electrodes, ΣL0 and ΣR0 can be defined via173

the WFM formulation24,33,46 as174

ΣL0=HL1TQ
−
L1(Q̃

−
L0)

†, ΣR0=HTR1Q
+
R1(Q̃

+
R0)

†, (9)175

where HL1T (HTR1) is the M ×M KS Hamiltonian matrix between the transition region176

and L1 (R1) region. In Eqs. (5)-(9), the labels L and - (R and +) always appear pairwise177

because generalized Bloch states with Im(kn) 6= 0 must vanish deep inside the left (right)178

electrode.179

It should be noted that the self-energy matrices defined by Eq. (9) are equivalent to those180

defined by the surface Green’s function.43,47 The iterative technique is used most commonly181

to evaluate the surface Green’s function with the localized basis.48,49 However, this technique182

is virtually impossible to apply to the real-space grid approach because it requires the matrix183

inversion of very dense matrices with the dimension of real-space grids in the unit cell, which184

is typically over 100000.185

C. Decaying behavior of generalized Bloch states186

The generalized Bloch states include both propagating and decaying waves. It is in-187

structive to note that a large majority of the generalized Bloch waves in a real-space grid188
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TABLE I. Number of right-going waves that satisfy 10−8 ≤ |eikna|l ≤ 1 for several electrode

materials as a function of the number of unit cells l. The Fermi energy is used as an input energy,

and all calculations are performed using the OBM method. Geometry descriptions are summarized

in Table II.

Material #solutions l = 1 l = 2 l = 3 l = 4 l→∞

Au chain 21632 102 17 6 4 1

Al(100) wire 51200 334 83 38 20 7

(6,6)CNT 41472 997 278 126 77 2

Graphene 7168 99 32 14 11 2

Silicene 24576 64 19 13 11 2

Au(111) bulk 7680 63 40 24 20 3

decay completely within one unit cell of the electrode, and therefore, they contribute lit-189

tle to the electron transport. Table I shows the number of right-going waves that satisfy190

10−8 ≤ |eikna|l ≤ 1 for several electrode materials as a function of the number of unit cells l.191

We use the Fermi energy as an input energy. In all systems, the number of right-going waves192

satisfying the above criterion is relatively small compared to the total number of nontrivial193

solutions even when l = 1. From the Bloch ansatz, it is clear that the majority of right-going194

waves decay so fast that they contribute negligibly to the electron transport if we add 1–2195

unit cells as a buffer layer. The left-going waves behave in exactly the same manner as the196

right-going waves because their eigenvalues are pairwise.197

Consequently, the self-energy matrices can be well approximated by a relatively small198

number of propagating and moderately decaying waves that correspond to the solutions of199

Eq. (4) with λn(= eikna) being close to the unit circle in the complex plane, that is,200

λmin ≤ |λn| ≤ λ−1
min, (10)201

where λmin is the radius of the inner circle in Fig. 2(a). If λmin is set to a reasonably202

small value, the transport calculations remain accurate.22,37 Actually, as shown in the test203
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FIG. 2. Two equivalent contours in the complex λ plane and k plane. (a) A multiply connected

domain between two concentric circles at the origin of radii λmin and λ−1
min in the λ plane. (b)

A simply connected domain obtained from (a) by variable conversion, k = lnλ/ia. The contour

integral proceeds in a counter-clockwise direction along a rectangular side path. For this type

of contour, quadrature points are specified by a pair of polynomial orders of the Gauss-Legendre

quadrature rule, that is, Nq = (Nq1, Nq2). In the figure, there are Nq1 = 6 Gauss-Legendre

quadrature points along the Re(k) axis and Nq2 = 6 points along the Im(k) axis. The total

number of quadrature points is Nint = 2Nq1+2Nq2. The quadrature points are indicated by ◦ and

•; however, the numerical integration can only be performed using the values indicated by • owing

to the symmetry of the Hamiltonian matrix H(k).

section, the results obtained using the approximated self-energy matrices that remove fast-204

decaying waves are visibly indistinguishable from those obtained using exact ones, and they205

reproduce the previous plane-wave transport calculations accurately. Therefore, we do not206

distinguish between approximated and exact self-energy matrices except when comparing207

both computational results.208

III. IMPLEMENTATION209

The computation of self-energy matrices is one of the bottlenecks in electron transport210

calculations, especially in the real-space grid approach. If we follow the WFM method, the211

most computationally demanding part is determining the generalized Bloch states, that is,212

solving Eq. (4) for a given energy point. In this section, we first discuss some advantages of213
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the proposed method compared to previous methods based on the same strategy, and then,214

we present the algorithmic details of this method.215

A. Variable conversion from λ space to k space216

Several efficient approaches have been proposed to solve Eq. (4) as a quadratic eigenvalue217

problem (QEP) for λ and to determine the eigenvalues inside the contour shown in Fig. 2(a).218

From the viewpoint of the eigensolver, these approaches are classified into two types: (i)219

shift-and-invert Krylov subspace approach37 and (ii) contour integral approach using contour220

integration based on the SS method,39 Polizzi’s FEAST method,38 and Beyn method.40221

All these approaches have been demonstrated to work successfully when 0.1 < λmin < 1;222

however, they are inefficient and unstable when λmin ≪ 0.1. For example, the shift-and-223

invert Krylov subspace approach is designed for determining eigenvalues close to a given224

shift, and thus, it is unsuitable for searching all target eigenvalues distributed in a wide225

range of the complex plane. On the other hand, in the contour integral approach, the226

number of projectors has to be increased when the contour is enlarged. For our target227

problem, the BiCG method is employed as a solver for linear systems to obtain the projectors,228

indicating that the computational cost linearly scales as the number of right-hand sides. The229

current authors’ group demonstrated that the moment-based contour integral approach is230

appropriate when the linear systems are solved by the CG method because the number of231

right-hand sides is successfully reduced by introducing the moment.50 In this subsection, we232

focus on some numerical difficulties faced in previous approaches based on the moment-based233

contour integral approach.39234

In general, the moment-based contour integral method generates a subspace spanned by235

eigencomponents inside a given region and extracts target eigenpairs from this subspace.236

However, if λmin ≪ 0.1, the subspace quality degrades owing to two reasons. First, the large237

difference in radius between the inner and the outer circles causes a significant round-off238

error because the contour integrations along the inner and outer circle give small and large239

values, respectively. Consequently, the information obtained from the contour integrations240

along the inner circle will not be properly contained, and significant accuracy degradation241

will occur from the outer circle toward the inner circle (see Sec. IVB). Although this round-242

off error can be suppressed by introducing a number of circles between the inner and outer243
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circles, the additional computational cost incurred owing to the added circles makes the244

algorithm inefficient. Second, unneeded eigencomponents contaminate the subspace. In the245

actual calculation, because the contour integration is performed numerically, the subspace246

involves eigencomponents both inside the ring-shaped region and in the vicinity of the circles.247

Because of the pairwise relationship between the inner and the outer eigenvalues (λn, λ
∗−1
n ),248

too many eigenvalues exist in the vicinity of the inner circle, and thus, the subspace size249

increases. This incurs a large computational cost and deteriorates the accuracy of the target250

eigenpairs. Moreover, the efficient implementation introduced in the later subsection cannot251

be used.252

To avoid the numerical difficulties arising from the explicit computation of eigenvalues253

in the λ plane, we convert the variable space from the λ plane to the k plane, as shown in254

Fig. 2. Through the variable conversion k = lnλ/ia, the ring-shaped region is replaced with255

the rectangular region, as shown in Fig. 2(b). The contour integration along the rectangular256

region can be performed without suffering from the round-off error because the integration257

points always take moderate values. In addition, because the unneeded eigenvalues λn258

(|λn| ≪ 0.1) that correspond to complex wave vectors kn with Im(kn) ≫ 0 are far away259

from the contour, the contamination of unneeded eigencomponents into the subspace will260

be prevented by the numerical integration.261

B. Sakurai-Sugiura method for nonlinear eigenvalue problem262

The original SS method34 is developed for finding the eigenvalues of the generalized263

eigenvalue problem that lies in the domain. With an extension for the nonlinear eigenvalue264

problem,35 the SS method can also be applied to the EEP without loss of the desirable265

features of the original algorithm. Herein, we focus on the SS method for finding the266

eigenpairs of the EEP for k inside the rectangular region, as shown in Fig. 2(b).267

The SS method consists of two steps. The first step is generating the subspace by contour268

integration. Let Γ be a counter-clockwise contour along each side of the rectangular region269

that encloses the target eigenvalues k1, k2, ..., km̂, where m̂ is the number of eigenvalues inside270

Γ. Then, the moment matrix Sp(p = 0, 1, ..., 2Nmm−1) associated with the target eigenpairs271

is defined as272

Sp =
1

2πi

∮

Γ

zp[E −H(z)]−1V dz, (11)273

11



where V is a N ×Nrh nonzero arbitrary matrix. Nrh and Nmm are the number of right274

hand sides and the order of moment matrices, respectively. They are input parameters that275

are set so as to satisfy NrhNmm > m̂. We refer the reader to Ref. 50 for details on how to276

determine these parameters efficiently. Here,277

H(k) = e−ikaHl,l−1 +Hl,l + eikaHl,l+1. (12)278

From a numerical viewpoint, Sp is approximated by numerical integration as279

Sp ≈ Ŝp =

Nint∑

j=1

wjz
p
j [E −H(zj)]

−1V, (13)280

where zj and wj are quadrature points and weights, respectively, which are determined by281

a quadrature rule such as the Gauss-Legendre quadrature rule. To retain the numerical282

accuracy, we replace the momental weight zpj with the shifted and scaled one ((zj − γ)/ρ)
p.283

With this modification, Ŝp is rewritten as284

Ŝp =

Nint∑

j=1

wj

ρ

(zj − γ
ρ

)p

[E −H(zj)]
−1V. (14)285

In this study, γ and ρ are set as γ = 0.1/a and ρ = π/a, respectively. Note that the286

eigenvalues are also shifted and scaled; then, the original eigenvalues of EEP should be287

recovered as kn ← γ + ρkn.288

The second step is extracting the eigenpairs from Ŝp. Following the procedure given289

in Ref. 35, we define the complex moment matrix µ̂p = V †Ŝp, and we extract the target290

eigenvalues by solving the NmmNrh ≪ N dimensional generalized eigenvalue problem291

T̂<x = τ T̂ x, (15)292

with NmmNrh ×NmmNrh Hankel matrices T̂ and T̂< defined as

T̂< =




µ̂1 µ̂2 · · · µ̂Nmm

µ̂2 µ̂3 · · · µ̂Nmm+1

...
...

. . .
...

µ̂Nmm
µ̂Nmm+1 · · · µ̂2Nmm−1




, (16)
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and

T̂ =




µ̂0 µ̂1 · · · µ̂Nmm−1

µ̂1 µ̂2 · · · µ̂Nmm

...
...

. . .
...

µ̂Nmm−1 µ̂Nmm
· · · µ̂2Nmm−2




. (17)

From the viewpoint of numerical stability and efficiency, we compute the rank m̂ of T̂ by a293

singular value decomposition294

T̂ = [U1, U2]



Σ1 O

O Σ2






W †

1

W †
2


 ≈ U1Σ1W

†
1 . (18)295

Here the term U2Σ2W2 is omitted because Σ2 ≈ 0. Upon substituting Eq. (18) into Eq. (15),296

the EEP is reduced to an m̂-dimensional standard eigenvalue problem, that is,297

U †
1 T̂

<W1Σ
−1
1 y = τy, (19)298

where y = Σ1W
†
1x. The (approximated) eigenpairs are obtained as (kn, φn) = (γ +299

ρτ, ŜW1Σ
−1
1 y), where Ŝ = [Ŝ0, Ŝ1, . . . , ŜNmm−1]. In our algorithm, we use Eq. (19) in-300

stead of Eq. (15). If there are too many eigenvalues inside the contour, the rectangular301

region should be divided into several subdomains to reduce the cost of solving Eq. (19).302

In this case, it might be better to set a subdomain to a quadrant in the complex k plane303

because the number of eigenvalues located in each quadrant should be the same, owing to304

the quadruple relationship (kn, k
∗
n,−kn,−k

∗
n).305

C. Reduction of computational cost of numerical integration306

In actual calculations, the numerical calculation of the contour integral in Eq. (11) is an307

important issue because this procedure is a major part of the entire computation in the SS308

method. Eq. (11) can be rewritten as the sum of four definite integrals:309

Sp = S(1)
p + S(2)

p + S(3)
p + S(4)

p , (20)310
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where311

S(1)
p =

1

2πi

∫ π/a

−π/a

(
x+ i

lnλmin

a

)p[
E −H

(
x+ i

lnλmin

a

)]−1

V dx, (21)312

S(2)
p =

1

2πi

∫ − lnλmin/a

lnλmin/a

(π
a
+ iy

)p[
E −H

(π
a
+ iy

)]−1

V idy, (22)313

S(3)
p =

1

2πi

∫ −π/a

π/a

(
x− i

lnλmin

a

)p[
E −H

(
x− i

lnλmin

a

)]−1

V dx, (23)314

S(4)
p =

1

2πi

∫ lnλmin/a

− lnλmin/a

(
−
π

a
+ iy

)p[
E −H

(
−
π

a
+ iy

)]−1

V idy. (24)315

We use the Nq-point Gauss-Legendre quadrature rule to evaluate the definite integrals.316

Here, Nq is a pair of polynomial orders, that is, Nq = (Nq1, Nq2). Fig. 2(b) shows Nq1 = 6317

quadrature points along the Re(k) axis and Nq2 = 6 quadrature points along the Im(k) axis.318

The total number of quadrature points is Nint = 2Nq1 + 2Nq2. At each quadrature point,319

we need to solve linear systems with multiple right-hand sides:320

[E −H(zj)]Yj = V, (j = 1, 2, ..., Nint), (25)321

where zj is the j-th quadrature point. By using the symmetry of the Hamiltonian matrix322

H(k), the number of linear systems to be solved can be reduced to Nq1 +
1
2
Nq2. If time-323

reversal symmetry holds, then Hl,l = H†
l,l and Hl,l−1 = H†

l,l+1, and we have324

[E −H(zj)]
† = E −H(z∗j ). (26)325

Eq. (26) suggests that linear systems with Im(zj) > 0 are adjoints of linear systems with326

Im(zj) < 0. As noted in Appendix A, the BiCG method can solve both systems simultane-327

ously with very little additional computational cost. Furthermore, owing to the translational328

symmetry, eika = ei(ka+2π) holds, and this leads to329

E −H
(
−
π

a
+ zj

)
= E −H

(π
a
+ zj

)
. (27)330

It is clear from Eq. (27) that the linear systems in S
(2)
p and S

(4)
p are the same; thus, we331

only need to solve either one of them. From the above, the numerical integration can be332

performed by solving the linear systems indicated by black dots in Fig. 2(b).333

Basically, first-principles electron transport calculations must be performed independently334

at each energy point. Therefore, the total computational cost for determining the generalized335

Bloch states is proportional to the number of energy points Nene if we solve the linear336
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systems of Eq. (25) independently. However, by using the shift-invariant property of the337

Krylov subspace, we can dramatically reduce the computational cost. The essence of this338

method is that we only solve the linear systems at the reference energy point and update the339

solutions at other energy points with moderate computational costs. This method is called340

the shifted BiCG method, and its details are presented in Appendix A. Hereafter, we write341

a set of Nene energy points as simply E = [E1, E2, ..., ENene
]. The algorithm for evaluating342

the self-energy matrices by using the SS method and shifted BiCG method is shown below.343

Algorithm: SS method to evaluate ΣL0 and ΣR0344

Input: N,M,Nrh, Nm, Nint, Nene, λmin, ρ, V ∈C
N×Nrh

345

Output: ΣL0, ΣR0 ∈ CM×M
346

1. Set a rectangular contour in the k plane for a given λmin.347

2. Set (wj, zj)1≤j≤Nint
by the Nq-point Gauss-Legendre quadrature rule.348

3. Set energy points E = [E1, E2, ..., ENene
].349

4. Compute [E −H(zj)]Yj = V by the shifted BiCG method for j = 1, 2, ..., Nint.350

Note. Later processes are performed independently at each energy point.351

5. Compute Ŝp by Eq. (14) and set µ̂p = V †Ŝp for p = 0, 1, ..., 2Nmm − 1.352

6. Set [T̂ ]ij= µ̂i+j−1 and [T̂<]ij= µ̂i+j−2, 1≤ i, j≤Nmm.353

7. Approximate T̂ ≈ U1Σ1W
†
1 by singular value decomposition.354

8. Solve U †
1 T̂

<W1Σ
−1
1 y = τy.355

9. Extract eigenpairs (kn, φn) = (γ + ρτ, ŜW1Σ
−1
1 y).356

10. Construct Q−
Ll, Q

+
Rl, Q̃

−
Ll, Q̃

+
Rl using Eqs. (5)-(8) for l = 0, 1.357

11. Construct ΣL0 and ΣR0 using Eq. (9).358

IV. NUMERICAL TESTS359

In this section, we demonstrate the numerical accuracy, robustness, and efficiency of360

our method through a series of test calculations. KS Hamiltonian matrices are obtained361

from the real-space pseudopotential DFT code RSPACE.33,51 All calculations in this and the362

later sections are performed by using the local density approximation52 and norm-conserving363

pseudopotentials proposed by Troullier and Martins.53 In all cases, Γ-point sampling in the364
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two-dimensional Brillouin zone is used. Unless noted otherwise, we used a fourth-order365

finite-difference approximation for the Laplacian operator and a grid spacing of 0.2 Å.366

A. Accuracy of eigenpairs inside Γ367

First, we confirm the accuracy of the Algorithm described in Sec. IIIC. In addition368

to the Hamiltonian matrix and inner radius λmin, the SS method requires several other369

parameters: order of Gauss-Legendre quadrature rule Nq = (Nq1, Nq2), number of right-370

hand sides Nrh, and order of moment matrices Nmm. It is essential to select these parameters371

appropriately to make the algorithm robust and efficient. Among these parameters, Nrh and372

Nmm are also used in the conventional SS method, and their effects on numerical errors have373

been studied elsewhere. Thus, we expect that general principles can be applied to Nrh and374

Nmm.
54 Care must be taken when selecting Nq because the SS method features an ellipsoid-375

type contour, with numerical integration performed using the trapezoidal rule. Because the376

numerical integration method for the SS method using a rectangular-type contour has not377

been proposed, the Gauss-Legendre quadrature rule is employed in this study. Thus, we378

demonstrate the selection of Nq by monitoring the residuals defined as ||[E − H(kn)]φn||2.379

The generalized Bloch states are normalized such that ||φn||2 = 1. Note that we remove380

eigenpairs whose residuals are greater than 10−1 or located outside Γ as spurious eigenpairs.381

Here, we consider the fcc Au bulk with 18 atoms whose transport direction is parallel to382

the 〈111〉 direction. We set Nmm = 8, Nrh = 16, and λmin = 0.001. The criterion of383

the singular value decomposition and the shifted BiCG method is set to 10−15. Fig. 3(a)384

shows the distribution of the eigenvalues when Nq = (24, 24). It should be noted that the385

obtained eigenvalues are pairwise, that is, (ki, kj) ≈ (ki, k
∗
i ), and the number of eigenvalues is386

unchanged irrespective of the selection of Nq. In Fig. 3(b), the residuals ||[E −H(kn)]φn||2387

are plotted as a function of Nq. The accuracy of the obtained eigenpairs is uniformly388

improved by increasing Nq, and convergence can be achieved with a relatively small number389

of quadrature points (convergence criterion is set to 10−8). It should be noted that better390

accuracy can also be obtained by increasing Nrh without using large values of Nq. Further391

details on how to improve the accuracy of the nonlinear SS method are presented in Ref. 55.392
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FIG. 3. Numerical results for fcc Au bulk at the Fermi energy of (a) distribution of eigenvalues

within the domain enclosed by Γ and (b) residuals ||[E − H(kn)]φn||2 when varying the order of

the Gauss-Legendre quadrature rule, Nq = (Nq1, Nq2). The number of target eigenvalues that do

not include spurious eigenpairs is 54. The plots clearly show that the positions of the eigenpairs

are almost unchanged and that the accuracy is straightforwardly improved by increasing Nq. Con-

vergence is achieved at Nq = (24, 24): all target eigenvalues are below the convergence criterion,

as indicated by the broken line.

B. Robustness of the algorithm393

In Sec. IIIA, we stated that our method is more robust than previous methods that394

solve Eq. (4) as a QEP for λ(= eikna) when λmin ≪ 0.1. To demonstrate the robustness395

of our method, we first compare the eigenvalues and residuals computed on the k plane in396

Fig. 2(b) with those computed on the λ plane in Fig. 2(a). For comparison, we also apply397

the algorithm proposed in Ref. 39 for solving the QEP for λ by using the contour along the398

ring-shaped region in Fig. 2(a). Here, we use the (6,6)CNT with 24 atoms whose transport399

direction is parallel to the channel direction. The input parameters of the SS method are400

set to Nmm = 4, Nrh = 128, and the criterion of the singular value decomposition and401

the shifted BiCG method is set to 10−15. The order of the Gauss-Legendre quadrature402

rule is Nq = (24, 24) in the k plane computation. Instead, we use the trapezoidal rule to403

approximate the contour integrals in Fig. 2(a), with the number of quadrature points being404
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256. Fig. 4 shows the eigenvalues and residuals calculated on the k plane and λ plane for405

(a) λmin = 0.1 and (b) λmin = 0.01. In both cases, all residuals computed on the k plane406

are far below the convergence criteria irrespective of the eigenvalues. It is important to note407

that a satisfactory result is also obtained when setting λmin = 0.001. On the contrary, when408

λmin = 0.01, the accuracy of the solutions computed on the λ plane is quite poor, and the409

accuracy is seen to degrade from the outer circle toward the inner circle.410

As mentioned in Sec. IIIA, this round-off error of the λ-plane computation can be reduced411

by adding some circles between the outer and the inner circles. However, an additional412

computational cost is incurred when we use the BiCG method for solving Eq. (25). If we413

use the BiCG method as the solver, it is difficult to set a reasonable number of right-hand414

side Nrh owing to a variation in the eigenvalue distribution inside the ring-shaped region.415

For example, when λmin = 0.001, roughly 10 circles should be added between the inner and416

the outer circles to make the round-off error sufficiently small. In the case of the fcc Au417

bulk shown in Fig. 3(a), a maximum of 33% of eigenvalues are in a sliced ring. Furthermore,418

the risk of the computation failing also increases because the distribution of the eigenvalues419

located inside the sliced rings is unknown in advance and is model-dependent.420

C. Serial performance421

In this subsection, we experimentally evaluate the serial performance of our method for422

the eigenvalue problem arising from the computation of self-energy matrices. To demon-423

strate speed-ups, we compare the computational time of our method with that of the OBM424

method, which is categorized as a WFM method. Although continuous improvements24–26,56425

have been made after the first study of the OBM method, the computation of the first and426

last r columns of (E − Hl,l)
−1 and the 2r-dimensional generalized eigenvalue problem is427

still required. In this study, the matrix inversion is calculated using the CG method,57 and428

the generalized eigenvalue problem is solved by the optimized LAPACK routine ZGGEV429

and SS method.25 It should be noted that another method based on a real-space grid ap-430

proach proposed by Khomyakov et al.22 is not considered here because its computational431

procedure and cost are almost the same as those of the OBM method. In addition, popular432

methods37,43,47–49 used in the NEGF method are also excluded from consideration because433

they involve the inversion of very dense matrices with the size of the real-space grids in the434
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FIG. 4. Residuals ||[E −H(kn)]φn||2 for (6,6)CNT at the Fermi energy calculated on the k plane

(EEP/SS) and λ plane (QEP/SS). (a) For λmin = 0.1, the number of eigenvalues that do not

include spurious eigenpairs is 52. (b) For λmin = 0.01, the number of eigenvalues that do not

include spurious eigenpairs is 154. In both cases, the EEP/SS method uses Nq = (24, 24) as the

order of the Gauss-Legendre quadrature rule; by contrast, the QEP/SS method uses the trapezoidal

rule with the number of quadrature points being 256 per circle in Fig. 2(a). The other parameters

are kept the same.

unit cell of the electrode.435

Table II shows the breakdown of the profiling results in various test systems. All calcu-436

lations are performed on a two-socket Intel Xeon E5-2667v2 with 16 cores (3.3 GHz) and437

256 GB of system memory. 4 MPI processes and 4 OpenMP threads are assigned to the438

CPU. The parameter λmin is set to 0.1, as in Ref. 37. The input parameters of the proposed439

method are set as Nmm = 8, Nq = (24, 24), and Nene = 100, and the criterion of the singular440

value decomposition and shifted BiCG method is set to 10−15. The number of right-hand441

sides Nrh is set such that all residuals are less than 10−8. Equidistant energy points are442

chosen in the interval E − EF ∈ [−1, 1] eV, where EF is the Fermi energy. The CPU times443

of the proposed method listed in the sixth column in Table II represent the average calcula-444

tion times for 100 energy points. For the SS method used in the OBM method, we employ445

the trapezoidal rule with the number of quadrature points being 32 per circle in Fig. 2,446
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which is the default value used in z-Pares,54 and other parameters are set as the same in447

the proposed method. The CPU times including both CG and ZGGEV (SS) contributions448

listed in the fourth (fifth) column are evaluated from the computation at the Fermi energy449

owing to the limitation of computational resources. The CPU times of these two reference450

methods can be reduced by employing the shifted CG method instead of the standard CG451

method and using smaller number of quadrature points. To use the computer resources452

efficiently, we need to optimize the parameters for the shifted CG and SS methods, which453

depend on the test systems. Since the usage of uneven parameters become an obstacle to454

demonstrate the characteristic advantage of the proposed method, the standard CG method455

is employed and the number of quadrature points is set to be the default value in z-Pares.456

It was verified that the proposed method is faster than the reference methods in order by457

one-, two-, and three-dimensional systems. The computational cost of the proposed method458

scales as O(NNitrNintNrh), while that of the CG/SS method does as O(r3Nint), where Nitr459

is the number of iterations for the shifted BiCG method and increases linearly or more with460

the common logarithm of 1/λmin. The number of target eigenvalues generally decreases461

against its matrix size as the dimension of the systems becomes smaller, indicating that the462

proposed method is much more efficient in the low dimensional systems because Nrh can be463

set to be small number.464

Another important way to reduce the computational cost is to use different numbers of465

processors, that is, to use parallel computing. The scalability of the SS method based on a466

real-space grid approach has already been investigated in our preliminary work.39 Here, we467

only mention that the parallel performance of the proposed method is superior to that of468

conventional eigenvalue solvers because of the hierarchical parallelism of the contour integral469

approach and the domain-decomposition technique for the sparse Hamiltonian matrix H(k).470

V. TRANSMISSION CALCULATION471

In this section, we present the transmission calculations for Au atomic chain with a472

CO molecule. We chose this system because transport properties have been investigated473

extensively using other methods.16,58 To validate the accuracy of our method for electron474

transport calculations, we study the effect of excluding rapidly decaying evanescent waves475

on the zero-bias transmission calculation, and we compare this result with those obtained476
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TABLE II. CPU times in hours for computing the eigenvalue problems arising from the self-energy

computations for various electrode materials. Here, N is the size of the Hamiltonian matrix, and 2r

is the number of nontrivial solutions of Eq. (4). Nrh is the number of right-hand sides used in the SS

method. The CPU times of the proposed method (this work) are averaged by the computation times

at 100 different energy points between EF − 1 eV and EF + 1 eV, where EF is the Fermi energy. On

the other hand, the CPU times of the OBM method (CG/ZGGEV,CG/SS) are measured only at the

Fermi energy owing to the limitation of computational resources.

Material N 2r Nrh CG/ZGGEV CG/SS This work

Au chain a 64896 21632 8 13.43 4.11 0.01

Al(100) wire

b

153600 51200 16 190.06 28.96 0.08

(6,6)CNT c 62208 41472 32 115.52 13.15 0.12

(10,10)CNT c 172800 115200 64 -d -d 1.20

Graphene e 14336 7168 8 0.60 0.13 0.00

Silicene f 110592 24576 16 26.63 5.66 0.09

Au(111) bulk

g

34560 7680 8 1.14 0.66 0.01

a Geometry description is found in the transmission calculation of the Au atomic chain with a CO

molecule. See Sec. V.

b Geometry description is found in Ref. 14.

c Ideal armchair (n,n) carbon nanotube with C-C bond length of 1.42 Å.

d Calculation fails owing to a memory exhaustion error.

e Graphene with four atoms whose transport direction is along the armchair direction and C-C bond

length is 1.42 Å.

f Geometry description is found in the transmission calculation of the free-standing silicene. See

Sec. VI.

g Geometry description is found in Ref. 16.
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using other methods. In all calculations, the KS Hamiltonian matrices in the transition477

region are obtained from the DFT calculation under periodic boundary conditions, and the478

scattering states in real-space grids are calculated using the IOBM method.27,28479

We present the transmission calculation of the Au atomic chain with a CO molecule. Prior480

to our work, transmission calculations for this system have been done by Calzolari et al.58 and481

Strange et al..16 Interestingly, both groups reported relatively different transmission curves,482

even though they employed the same methodology combined with the Green’s function483

method and maximally localized Wannier function. As stated in Ref. 16, the disagreement484

might be related to the manner of construction of the tight-binding Hamiltonian, but it is485

still unresolved as to which one is correct. Thus, we revalidate the transmission calculation486

of the Au atomic chain with a CO molecule using the real-space grid method. Fig. 5(a) shows487

the atomic structure of the Au atomic chain with a CO molecule. The transition region is488

a rectangular box of 12.00 × 12.00 × 26.10 Å3, and electron transport occurs along the z489

direction. As in Refs. 16 and 58, the bond lengths are set as dAu−Au = 2.90 Å, dAu−C = 1.96490

Å, and dC−O = 1.15 Å, and the Au atom attached to CO is shifted toward CO by 0.20 Å.491

The left and right electrodes are infinite Au chains with two atoms in the unit cell. A grid492

spacing of 0.23 Å is used in the real-space grid calculation. Fig. 5(b) shows the transmission493

spectra obtained using the self-energy matrices calculated by the proposed method with494

λmin = 0.999, 0.1, 0.01, 0.001. In all calculations, we reproduce the main features in Fig. 2 of495

Ref. 16: (i) the drop in the transmission at the Fermi energy that originates from resonant496

scattering by CO adsorption, (ii) the single broad peak at E − EF ∈ [0, 2] eV, and (iii)497

spiky peaks at E − EF ∈ [−4, 0] eV. As the λmin value decreases, the transmission spectra498

rapidly converge toward the correct values, and visible differences are not observed when499

λmin ≤ 0.01. In Fig. 5(c), the real-space grid calculation shows the qualitatively good500

agreement with the curve of Ref. 16; however, we found some discrepancies between the501

real-space grid calculation and the curve of Ref. 58.502

To investigate the accuracy of the approximated self-energy matrices calculated using the503

proposed method further, we measure the deviation from the exact transmission probability,504

∆ =
1

E1 + E2

∫ EF+E1

EF−E2

|T̃ (E)− T (E)|dE, (28)505

where T̃ (E) and T (E) are the transmission probabilities obtained using the approximated506

and exact self-energy matrix, respectively. The exact self-energy matrices are calculated507
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FIG. 5. (a) Transition region of Au atomic chain with CO adsorption. Au, C, and O atoms are

represented as gold, brown, and red balls, respectively. (b) Transmission spectra obtained using

self-energy matrices calculated by the proposed method with four different λmin values: 0.999 (red

line), 0.1 (blue line), 0.01 (green line), and 0.001 (black line). For clarity, transmission spectra

are shifted by the amount of 2.5 with respect to the original values in descending order of the

legend. (c) The transmission spectrum obtained with the proposed method (black line). The

results obtained with the maximally localized Wannier function (WF) of Ref. 16 (red dashed line)

and Ref. 58 (blue dashed line) are also shown in (c).23



using the continued-fraction method.56 Fig. 6 shows plots of the differences |T̃ (E)−T (E)| and508

deviations ∆. Here, the results at E = EF −4 eV are omitted because the propagating wave509

does not exist. We find that |T̃ (E) − T (E)| shows step-like reductions when using smaller510

values of λmin. This is because the number of generalized Bloch states changes discretely511

with decreasing λmin. The deviations ∆ are as follows: 1.16×10−2 (λmin = 0.999), 7.78×10−3
512

(λmin = 0.1), 5.16 × 10−4 (λmin = 0.01), and 1.16 × 10−4 (λmin = 0.001). Note that our513

results are an order of magnitude different from the values reported in Ref. 37 for the same514

value of λmin. This is because that the self-energy matrices used in our transport calculation515

are not same as used in Ref. 37. We define the self-energy matrices at L0 and R0 regions in516

Fig.1 using the generalized Bloch states and use them in the transport calculations, while517

the previous study first define the self-energy matrices using the generalized Bloch states518

at L1 and R1 regions, and calculate the self-energy matrices at L0 and R0 regions by the519

recursion method. Although both approaches are equivalent when the self-energy matrices520

are exact, the later is more accurate than the former when the cut off for evanescent waves521

is introduced because the later uses the self-energy matrices defined at one layer deep inside522

the electrodes.523

VI. APPLICATION524

Silicene, which is a two-dimensional honeycomb structure of Si atoms, is a promising525

candidate for future nanoelectronic devices due to its unique electronic structures, as rep-526

resented by a zero-gap semiconductor with Dirac cone.59,60 In fact, a silicene field effect527

transistor (FET) using the transfer-fabrication process was recently reported.61 However,528

the measured mobility values of silicene FET are considerably lower than the theoretical529

calculation62 by an order of magnitude, and grain boundary scattering has been proposed530

as a possible cause. Despite the demand for the detailed information on the electron scat-531

tering at the grain boundaries of silicene, the electron transport behavior across the grain532

boundary of silicene is not well understood. This is because the fabrication of silicene is still533

challenging, especially on a dielectric substrate.534

Unlike graphene, it is well known that silicene forms a low-buckled structure, which leads535

to two energetically equivalent geometrical phases, whose buckling directions are opposite536

to each other, as shown in Fig. 7. Following the notations in Ref. 63, we call these phases537
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FIG. 6. Differences between transmission spectra using approximated and exact self-energy matri-

ces. The overall deviation is indicated in the parentheses following the legends.

the α and β phases, respectively. In this study, we present the first-principles analysis of538

the transport properties of the free-standing silicene sheet across the interface between the539

α and β phases. To keep the focus on application of our methodology to the transport540

calculations rather than on comprehensive understanding of the scattering mechanism in541

silicene, attention is paid only to the grain boundary between the α and β phases along the542

armchair direction.543

Initially, we perform the relaxation of the interface structure using a grid spacing of 0.21544

Å and a 4× 1 × 1 k-point sampling on Brillouin zone. The interface model is constructed545

with a 256-atom supercell using a value of 2.27 Å for the Si-Si bonding length. To avoid546

the spurious interaction between silicene layers, a vacuum region of 10 Å is introduced in547

the simulation cell. The interface structure is relaxed until the residual forces become lower548

than 0.003 eV/Å. The relaxed geometrical structure is shown in Fig. 7. The reconstruction549

of chemical bonds at the interface does not occur, but instead the rearrangement of the out-550

of-plane dislocation is observed at the interface. This result is in agreement with previous551

theoretical work.63 We subsequently perform the transport calculations along the z direction552
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using the self-energy matrices evaluated with λmin = 0.01. The transition region contains553

128 atoms and the Γ point in the transverse direction is used in the transport calculation.554

The total transmission is shown in Fig. 8. A feature of immediate interest is that the555

transmission at the Fermi energy is unchanged for a pristine silicene; that is, this type of grain556

boundary does not scatter incoming electrons at this energy. On the other hand, we found557

three transmission dips below and above the Fermi energy in Fig. 8. Aiming to understand558

the origin of such dips, we also plot the group velocity of the incident electrons and the559

band structure of silicene in Fig. 9. The important bands near the Fermi energy are labeled560

by I, II and III, and they contribute to the transmission in [−1.0, 1.0] eV, [−1.0, 0.57] eV,561

and [0.57, 1.0] eV, respectively. Note that the III band is doubly degenerated. At E =562

EF − 1.0 and 0.57 eV where the transmission dips are observed, the group velocities go563

to zero with opening or closing the channel in bands. The scattering where the group564

velocity becomes zero is understood by the one-dimensional tight-binding model with a565

single impurity. According to Eq. (75) in Ref. 46, it is easy to show that the transmission566

probability becomes zero when the group velocity becomes zero, which indicates that the567

perturbation of the potential induced by the geometrical disorder at the silicene interface568

causes the scattering near the band edge. In addition, we numerically examine the scattering569

at the band edge using the one-dimensional Kronig-Penny model and observe the strong570

scatterings at the band edge (see, Appendix B.)571

We next consider the origin of the dip at E = EF + 0.91 eV, where two bulk modes in572

III band are completely reflected at the interface. To obtain the more detailed information573

about the scattering, we plot the charge densities of two bulk modes for left electrode at574

E = EF + 0.6 and 0.91 eV. As seen from Fig. 10, the charge densities of two channels at575

E = EF + 0.6 eV distribute on inner and outer sides of silicene atoms, while they turn to576

concentrate on the only outer side at E = EF + 0.91 eV. By expanding the result for left577

electrode to the interface, the new insight of the scattering is obtained. Fig. 11 illustrates578

the scattering of the incident electron coming from the left electrode at E = EF + 0.91 eV.579

The bulk modes distribute around the outer side of the silicene atoms in both right and580

left electrodes, however, the scattering states in the right electrodes will be inner side of581

the silicene atoms because the buckling of the silicene is reversed. Therefore, the scattering582

states which come from the left electrode hardly connect with the bulk modes in right583

electrodes, which leads the transmission reduction at E = EF + 0.91 eV.584

26



z

x

y

High

Low

　α phase 　 β phaseGrain boundary

z

y

x

FIG. 7. Optimized interface structure of silicene with α-β interface.

VII. CONCLUSION585

This study proposes a robust and efficient method for evaluating the self-energy matri-586

ces of electrodes and provides its implementation for a real-space grid approach using a587

higher-order finite-difference scheme with nonlocal pseudopotentials. Considering that most588

generalized Bloch states decay rapidly, the transmission probabilities of nanoscale systems589

can be determined by using a comparatively smaller number of propagating and moderately590

decaying waves with practically sufficient accuracy. To obtain such physically important591

waves efficiently, a contour integral eigensolver based on the SS method combined with the592

shifted BiCG method is developed. Because the developed method does not involve any593

explicit computations requiring the inversion of the Hamiltonian matrix, the computational594

time and memory requirement are reduced.595

Sec. IV demonstrates the convergence behaviors, accuracy, robustness, and efficiency596

of the proposed method and discusses its advantages compared with other similar meth-597

ods based on the same strategy. The convergence behaviors toward true solutions become598

straightforward upon increasing the order of the Gauss-Legendre quadrature rule Nq, and599

convergence is achieved with relatively small numbers of quadrature points. For various600

electrode materials, computational times are reduced compared with the method involving601

the inversion of the Hamiltonian matrix and a complex matrix generalized eigensolver such602

as ZGGEV. Sec. V demonstrates the validity of the proposed method through transmis-603
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FIG. 8. Effects of the α-β interface on the transmission spectra. The solid line is the result of

real-space grid calculation using the self-energy matrices obtained with λmin = 0.01. Empty dots

denote the transmission spectrum without the defect.

sion calculations for Au atomic chain with a CO molecule. In both cases, the transmission604

spectra show good agreement with previous plane-wave DFT calculations; slight differences605

that might arise from the inconsistency of the type of pseudopotentials and exchange corre-606

lation functionals are also observed. Overall, the numerical tests validate the applicability607

of the proposed method for first-principles electron transport calculations. In Sec. VI, we608

have studied the transport through silicene with the line defect as a function of the incident609

electron energy.610
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Appendix A: Shifted BiCG method and seed switching technique620

The BiCG method is one of the Krylov subspace methods for solving dual linear systems621

such as622

Ax = b, A†x̃ = b, (A1)623

where the matrix A need not to be a Hermitian matrix. The algorithm updates the solution624

vectors x and x̃ using the vectors p, r, p̃, and r̃ and the scalars α and β via the following625
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recurrences:626

αn =
(r̃n, rn)

(p̃n, Apn)
, (A2)627

xn+1 = xn + αnpn, (A3)628

x̃n+1 = x̃n + ᾱnp̃n, (A4)629

rn+1 = rn − αnApn, (A5)630

r̃n+1 = r̃n − ᾱnA
†p̃n, (A6)631

βn =
(r̃n+1, rn+1)

(r̃n, rn)
, (A7)632

pn+1 = rn+1 + βnpn, (A8)633

p̃n+1 = r̃n+1 + β̄np̃n, (A9)634

where the initial conditions are set as x0 = x̃0 = 0 and r0 = p0 = r̃0 = p̃0 = b.635

Now, we focus on solving the m sets of shifted dual linear systems:636

(A+ σiI)x
(i) = b, (A† + σiI)x̃

(i) = b, (A10)637

for i = 1, 2, . . . , m, using the reference system Ax = b and A†x̃ = b, where σi is a real-638

valued scalar shift and I is the identity matrix. When we choose the initial conditions as639

x
(i)
0 = x̃

(i)
0 = 0, the Krylov subspace of the reference system and shifted dual linear systems640

are identical. Consequently, the residual vectors r
(i)
n and r̃

(i)
n are collinear with rn and r̃n,641

respectively, that is,642

r(i)n =
1

π
(i)
n

rn, r̃(i)n =
1

π̄
(i)
n

r̃n, (A11)643

where π
(i)
n is a scalar that is updated by the following recurrence:644

π
(i)
n+1 = (1 +

βn−1αn

αn−1
+ αnσi)π

(i)
n −

βn−1αn

αn−1
π
(i)
n−1. (A12)645

Here, π
(i)
0 = π

(i)
−1 = 1. By using the collinear relation given in Eq. (A11), the shifted dual646
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linear systems are updated by the following recurrences:647

α(i)
n =

π
(i)
n−1

π
(i)
n

αn, (A13)648

β(i)
n =

(π(i)
n−1

π
(i)
n

)2

βn, (A14)649

x
(i)
n+1 = x(i)n + α(i)

n p
(i)
n , (A15)650

x̃
(i)
n+1 = x̃(i)n + ᾱ(i)

n p̃
(i)
n , (A16)651

p
(i)
n+1 = r

(i)
n+1 + β(i)

n p(i)n , (A17)652

p̃
(i)
n+1 = r̃

(i)
n+1 + β̄(i)

n p̃(i)n . (A18)653

Because the recurrences in Eqs. (A11)-(A18) consist of only scalar-scalar and scalar-vector654

products, the shifted dual linear systems can be solved very quickly, rather than applying655

the standard BiCG method to them.656

The iterations continue until the residual norms of the entire system become sufficiently657

small. However, when the residual norm of the reference system becomes too small, the658

numerical precision of the residual vectors of shifted dual linear systems decreases. To avoid659

this problem, we use the seed switching technique that replaces the reference system with a660

shifted dual linear system whose residual norm is the largest in the entire system. To switch661

the reference system to the new one s̃ = arg maxi∈I{||r
i
n||}, we need a scalar in Eq. (A12)662

for the new reference system:663

π(s̃,i)
n =

π
(i)
n

π
(s̃)
n

. (A19)664

The seed switching technique for an arbitrary shift σ(/∈ {σ1, σ2, . . . , σm}) is presented in665

Ref. 64.666

Appendix B: Kronig-Penny model667

We here discuss the effect of the small perturbation of the potential to the electron668

scattering in a one-dimensional system with square potentials. We divide the system into669

L, R, and C. We consider that L and R are semi-infinite electrodes with periodic square670

potentials and the barrier height of square potential in C is shifted. The parameters are671

given in Fig. 12. Figs. 13(a) and (b) show the energy dispersion for the periodic square672

potentials and transmission spectra, respectively. Naturally, we observe the scatterings at673
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FIG. 12. An illustration of a one-dimensional system with square potential barriers. The param-

eters a, b, V0, and V1 represent the width of depths, width of barriers, barrier height in L and R

regions, and barrier height in C region, respectively.
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FIG. 13. (a) Energy dispersion of the Kronig-Penny model with periodic square potentials and

(b) transmission spectra. The parameters in atomic units are set as a = 2.0, b = 0.2, V0 = 10, and

V1 = 11.

the band edges where the group velocity becomes zero. Note that the same tendency can674

be seen when varying parameters.675
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