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Abstract

We present a method for reconstructing the phonon relaxation time function
τω = τ(ω) (including polarization) and associated phonon free path distribution
from thermal spectroscopy data for systems featuring interfaces with unknown
properties. Our method does not rely on the effective thermal conductivity ap-
proximation or a particular physical model of the interface behavior. The recon-
struction is formulated as an optimization problem in which the relaxation times
are determined as functions of frequency by minimizing the discrepancy between
the experimentally measured temperature profiles and solutions of the Boltzmann
transport equation for the same system. Interface properties such as transmissivi-
ties are included as unknowns in the optimization; however, because for the thermal
spectroscopy problems considered here the reconstruction is not very sensitive to
the interface properties, the transmissivities are only approximately reconstructed
and can be considered as byproducts of the calculation whose primary objective is
the accurate determination of the relaxation times. The proposed method is val-
idated using synthetic experimental data obtained from Monte Carlo solutions of
the Boltzmann transport equation. The method is shown to remain robust in the
presence of uncertainty (noise) in the measurement.

1 Introduction

The study of phonon relaxation-time and free-path distributions has received consider-
able attention [1–7] in the context of nanoscale solid-state heat transport. This informa-
tion is required for modeling heat transport at the kinetic level, which becomes necessary
due to the failure of Fourier-based analyses at such small scales. Example applications
include improved heat management in nanoelectronic circuits and devices [8–12] and
nano-structured materials for improved thermoelectric conversion efficiency [13–18].

Thermal spectroscopy [5, 7] has emerged as a promising method for experimentally
“extracting” the phonon free path distribution in a crystalline material. However, the
analysis of thermal spectroscopy data remains a challenging task. To extract the free
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path distribution from the experimentally measured temperature relaxation profiles,
researchers typically invoke the concept of “effective thermal conductivity” and proceed
to match the experimentally measured response to solutions of the heat conduction
equation with the thermal conductivity (or thermal diffusivity) treated as an adjustable,
“effective” property [5, 7]. Unfortunately, as we have shown in [19], this procedure
implicitly assumes that heat transport is Fourier-like, which is only justified under fairly
restrictive conditions (late times and large scales) that are not always satisfied under
experimental conditions.

In order to address this limitation, in a previous paper [19] we proposed a technique
for reconstructing phonon relaxation times which does not assume validity of Fourier’s
law and does not make use of the effective thermal conductivity concept. In the proposed
technique, reconstruction was posed as an optimization problem in which the relaxation
time distribution is obtained as the distribution of relaxation times that minimizes the
error between experimentally measured material response and the one obtained from
the Boltzmann transport equation (BTE) solutions (numerical or analytical). This
method has been validated using synthetically generated temperature profiles in the
transient thermal grating (TTG) geometry [4, 20, 21], using both deviational Monte
Carlo (MC) simulations [22–25] and inverse fast Fourier transform (IFFT) algorithms,
in the presence and absence of noise in the measurement, on two different sets of silicon
material properties [19].

Due to the ubiquity of solid-solid interfaces in nano-structures [26–28] and thermal
spectroscopy experiments [7, 29] in particular, in the present paper we extend our ap-
proach to thermal spectroscopy problems in which a material interface is present. More
specifically, we use an extended version of the optimization algorithm proposed previ-
ously [19], where frequency-dependent interface transmissivities are treated as unknowns
of the optimization problem along with the frequency-dependent relaxation times. In
other words, no assumption of underlying Fourier-like transport is made, in contrast to
previous approaches which typically treat problems with interfaces by introducing an
assumed known thermal boundary resistance [30] to the Fourier-based, effective thermal
conductivity formulation [7].

We validate the proposed methodology using deviational MC-generated synthetic
relaxation profiles of time domain thermoreflectance (TDTR) experiments in the 2D-
dots geometry for an Al-Si system, similar to the experimental setup used in [7]. We
find that the relaxation time/free path distribution can be obtained with good accuracy
despite the additional unknowns introduced by the interface description. This is partly
due to the fact that accurate relaxation-time reconstruction does not require determi-
nation of the interface properties to the same accuracy level and thus the number of
unknowns introduced by the interface model can be kept small. The latter finding,
namely that the reconstruction of the relaxation time/free path distribution can be
achieved without reconstructing the interface properties at the same level of accuracy,
is of great consequence for thermal spectroscopy applications where reconstruction of
the relaxation times is the primary interest, as is the case here, because it implies that
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a number of reconstructions previously thought intractable are, in fact, feasible. Our
results also indicate that the accuracy of the reconstructed relaxation times is fairly
insensitive to the transport regime and properties of the metal dot used in the thermal
spectroscopy experiment (Al in the present case)

The remainder of the paper is organized as follows. In section 2, we formulate
the reconstruction as an optimization problem requiring only solutions of the BTE
and present the optimization framework used for the reconstruction. In section 3, we
discuss the implementation of the algorithm. In section 4, we validate the proposed
methodology using synthetic experimental data for the 2D-dots geometry [7], discuss our
results and compare our method to previously used effective thermal conductivity-based
approaches. Finally, in section 5 we provide a summary of our work and suggestions for
future improvements.

2 Formulation

2.1 Governing equations

Phonon-mediated heat transport in thermal spectroscopy experiments can be described
by the linearized Boltzmann transport equation (BTE)

∂ed

∂t
+ vω · ∇xe

d = −
ed − (deeq/dT )Teq∆T̃

τω
, (1)

where ed = ed(t,x, ω,Ω) = e − eeq
Teq

= ~ω(f − f eq
Teq

) is the deviational energy distri-

bution, ω is the phonon frequency (including polarization), Ω is the phonon traveling
direction, f = f(t,x, ω,Ω) is the occupation number of phonon modes, vω = v(ω) is
the phonon group velocity, τω = τ(ω) is the frequency-dependent relaxation time, and
~ is the reduced Planck constant. In general, τω = τ(ω, T ); however, as a result of the
linearization due to small temperature differences associated with thermal spectroscopy
setups, τω = τ(ω, Teq) ≡ τ(ω); in other words, the BTE is written here for the exper-
iment baseline temperature Teq. Also, (deeq/dT )Teq = ~ω(df eq

T /dT )|Teq and f eq
T is the

Bose-Einstein distribution with temperature parameter T , given by

f eq
T (ω) =

1

exp(~ω/kBT )− 1
, (2)

where kB is Boltzmann’s constant. In the above, T̃ (t,x) is the pseudo-temperature
and ∆T̃ = ∆T̃ (t,x) = T̃ − Teq is referred to as the deviational pseudo-temperature
(different from the deviational temperature ∆T ) which can be obtained using the energy
conservation statement [24]

ˆ
Ω

ˆ
ω

[
Cω
τω

∆T̃ − ed

τω
Dω

]
dωdΩ = 0, (3)
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in which Dω = D(ω) is the density of states, Cω = C(ω;Teq) = Dω(deeq/dT )Teq is the
frequency-dependent volumetric heat capacity, and dΩ = sin(θ)dθdφ is the differential
solid angle element where θ and φ are the polar and azimuthal angles in the spherical
coordinate system, respectively. The temperature T (t,x) (∆T (t,x) = T − Teq is the
deviational temperature) is related to the deviational energy via

ˆ
Ω

ˆ
ω

[
Cω∆T − edDω

]
dωdΩ = 0. (4)

The frequency-dependent free path is given by

Λω = vωτω, (5)

where vω = ||vω|| is the frequency-dependent group velocity magnitude.
In the presence of a material interface, equation (1) requires matching conditions

across the interface, usually supplied in the form of phonon transmissivities. More
specifically, the frequency-dependent transmissivity from material 1 to material 2 in the
presence of interface in a given geometry, denoted by T12,ω, is defined as the probability
that a phonon with frequency ω can transmit through the interface. Similarly, the
reflectivity, R12,ω = 1 − T12,ω, is the probability that the phonon is reflected back into
material 1 after impinging on the interface. In this work, we have assumed elastic and
diffuse scattering (at the interface), that is, phonons preserve their mode as they travel
across the interface while losing the memory of their initial direction (emerging direction
is random). Under these assumptions, the transmissivities of two sides of the interface
are related to each other through the principle of detailed balance [31],

T12,ωvω,1Cω,1 = T21,ωvω,2Cω,2 (6)

where Cω,1 and vω,1 are the frequency-dependent volumetric heat capacity and group
velocity of material 1 and similarly Cω,2 and vω,2 are the frequency-dependent volumetric
heat capacity and group velocity of material 2. The transmissivities are usually related
to the interface heat conductance G and properties of materials 1 and 2 via the model
[22,31,32]

G =
1

2
[
2
(´
ω T12,ωCω,1vω,1dω

)−1 −
(´
ω Cω,1vω,1dω

)−1 −
(´
ω Cω,2vω,2dω

)−1
] . (7)

2.2 Inverse problem formulation

Our goal is to obtain an accurate and reliable approximation to the function τω from
the experimental measurements of the temperature profiles. The free path distribu-
tion can be subsequently obtained via equation (5), assuming that the group velocities
vω are known [19]. We formulate the reconstruction as an extended form of the opti-
mization problem first proposed in [19], in which τω and T12,ω are determined as the
functions that minimize the discrepancy between the experimental measurements and
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the BTE solutions. Relaxation times in the optimization formulation are represented by
τSω , where ω is the frequency and S is the branch which can be longitudinal/transverse
acoustic/optical. Here, S ∈ {LA, TA1, TA2}, where LA denotes the longitudinal acous-
tic branch, while TA1 and TA2 represent the two transverse acoustic branches. Optical
phonons are not considered here, due to their small contribution to transient heat trans-
port [33]; if desired, they can be added as an additional unknown branch (see discussion
in [19]).

Following the previously proposed functional form for the relaxation times [19], we
represent τSω as a piecewise linear relation between log(τSω ) and log(ω), smoothed via
third order polynomial functions (of log(ω))

log
(
τSω
)

=

M−1∑
j=0

 log
(
τSωj+1

)
− log

(
τSωj

)
log
(
ωSj+1

)
− log

(
ωSj

) (log(ω)− log
(
ωSj
))

+ log
(
τSωj

)1ω∈[XS
2j ,X

S
2j+1]+

M−1∑
j=1

[
aSj [log(ω)]3 + bSj [log(ω)]2 + cSj log(ω) + dSj

]
1ω∈(XS

2j−1,X
S
2j)
, (8)

where M determines the number of segments. There are 2M unknowns in the relax-
ation time model for each branch S ∈ {LA, TA1, TA2}, consisting of ωS1 ,..., ωSM−1, and
log
(
τSω0

)
,..., log

(
τSωM

)
, since the minimum and maximum frequencies for each branch

(ωS0 and ωSM ) are known (input). Also, 1ω∈S denotes the indicator function whose value
is 1 if ω ∈ S, and 0 if ω 6∈ S. The parameters XS

j , aSj , bSj , cSj , and dSj have the same
meaning as in [19]; their definition can also be found in Appendix A.

The interface transmissivity as a function of frequency TS12,ω(ω) is also expressed us-
ing piecewise linear relations. This function is additionally constrained to vary between
0 and min{1, vω,2Cω,2

vω,1Cω,1
} since transmissivity represents a probability. Note that the upper

bound is set by both the maximum permissible probability of T12,ω and T21,ω; the latter
is determined via (6). The specific functional form is given by

TS12,ω = max

min


M̄−1∑
j=0

[
TS12,ω̄j+1

− TS12,ω̄j

ω̄Sj+1 − ω̄Sj

(
ω − ω̄Sj

)
+ TS12,ω̄j

]
1ω∈[X̄S

2j ,X̄
S
2j+1]+

M̄−1∑
j=1

[
āSj ω

3 + b̄Sj ω
2 + c̄Sj ω + d̄Sj

]
1ω∈(X̄S

2j−1,X̄
S
2j ,)

,
vω,2Cω,2
vω,1Cω,1

, 1

 , 0

 . (9)

The role of the parameters M̄ , ω̄Sj , X̄S
j , āSj , b̄Sj , c̄Sj , and d̄Sj is similar to M , ωSj ,

XS
j , aSj , bSj , cSj , and dSj in equation (8), respectively; definitions can be found in

Appendix B. In the remainder of the paper, we will use the compact vectorial no-

tations τττS =
(
τSω0

, ..., τSωM

)
, ωωωS =

(
ωS1 , ..., ω

S
M−1

)
, TTTS12 =

(
TS12,ω̄0

, ..., TS12,ω̄M̄

)
, and
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ω̄ωωS =
(
ω̄S1 , ..., ω̄

S
M̄−1

)
to represent the unknown parameters. Similarly, the vector of

all unknowns is

U = (τττLA, τττTA1 , τττTA2 ,ωωωLA,ωωωTA1 ,ωωωTA2 ,TTTLA12 ,TTT
TA1
12 ,TTT TA2

12 , ω̄ωωLA, ω̄ωωTA1 , ω̄ωωTA2). (10)

Here we note that this formulation does not use any of the previously proposed interface
transmissivity models, such as the diffuse mismatch model (DMM) and the acoustic
mismatch model (AMM) [26, 34], which are known to be inaccurate, in particular at
higher temperatures [35]. Note that we have used the DMM model in section 4 for
generation of synthetic experimental data (for validation purposes), but that in no way
implies an assumption of such behavior during the reconstruction process.

Assuming, without loss of generality, that we are interested in reconstructing the
relaxation times of material 1, the objective function that needs to be minimized is

L = min
U

[∑
t,x,L |Tm(t,x;L)− TBTE(t,x;L,U)|

N
+ α

∣∣∣∣∣1− 1

3κ1

ˆ
ω
Cω,1τω,1(U)v2

ω,1dω

∣∣∣∣∣+
β

∣∣∣∣∣1− 1

2G
[
2
(´
ω T12,ω(U)Cω,1vω,1dω

)−1 −
(´
ω Cω,1vω,1dω

)−1 −
(´
ω Cω,2vω,2dω

)−1
]∣∣∣∣∣
 ,
(11)

where Tm(t,x;L) is the experimentally measured temperature, TBTE is the temperature
obtained from solution of the BTE (the same temperature in equation (4)), N is the
total number of (independent) measurements available with

∑
t,x,L 1 = N , and L is the

different length scales at which the data for relaxation profiles are available.
The second and third terms in the definition of L are regularizers whose purpose is

to improve the quality of the optimization process. The second term uses the (presumed
known) value of the heat conductivity of material 1, κ1, to improve the quality of the
reconstructed relaxation times, while the third term uses the (presumed known) value of
the interface thermal conductance, G, to enhance the accuracy of the reconstruction. We
have empirically determined that setting 0.01 < α, β < 1 improves the reconstruction
considerably. If the value of κ1 and/or G is unknown, the respective terms can be
removed (by setting the corresponding coefficient to zero). As stated previously, in the
present work we have assumed that G is unknown, therefore, the objective function
used for reconstruction/validation purposes in the remainder of the paper only features
the first and the second terms (β = 0).

3 Reconstruction

As in our previous work, the reconstruction is based on an optimization process utilizing
the Nelder-Mead (NM) algorithm [36]. A detailed description of the algorithm and
typical parameter values can be found in [19].
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Reconstruction proceeds by comparing solutions of equation (1), obtained via adjoint
MC simulations [25] using NBTE particles, with the counterpart N measurements of
Tm. As discussed before, phonon group velocities were assumed known, while τω was
described by the model given in equation (8) with M = 3 (a piecewise linear function
with three segments) and T12,ω by the model described by equation (9) with M̄ = 1.
We have considered three branches for relaxation times (representing three acoustic
branches), leading to 3×6 = 18 unknowns and only one branch for the transmissivities,
adding two unknowns, leading to a total of 20 unknowns. We have observed that
increasing the number of branches and/or the value of M̄ does not affect the quality of
the reconstructed relaxation times significantly, implying that the reconstruction is less
sensitive to the values of T12,ω (see the discussion in section 4.3).

In order to increase the probability of finding the global minimum of the objective
function (11), we have used a process referred to as “graduated optimization”. In this
process, the optimization of a non-convex function is performed in multiple stages by
breaking down the problem into a series of consecutive (simpler) sub-problems, whose
initial condition is the optimized value of the previous stage [37].

Previously, we have proposed a reconstruction algorithm [19] which featured four
stages of optimization. Here, in the presence of an interface, we have found that an
additional stage is helpful. This additional stage, that we refer to as stage zero, provides
an initial estimate for the parameters of the interface transmissivity function, T12,ω, that
is needed in stage one. If the value of G is known, this stage is not required.

3.1 Problems with known interface conductance

Since the role of stage zero is better understood in the context of the first stage of the
optimization process, we first discuss stages one through four, suitable for problems
with known G; stage zero is discussed in the following subsection.

In the first stage, we assume that all relaxation times (three branches) are described
by one line (one branch with M = 1), leading to two unknowns, namely τω0 and τω1 . We
also use one line to describe the unknown transmissivities, contributing two additional
unknowns, namely T12,ω̄0 and T12,ω̄1 . For M = 1 and M̄ = 1, equations (8) and (9)
reduce to

log (τω) = p log (ω) + k, (12)

and
T12,ω = p̂ω + k̂, (13)

respectively, where the superscript S is omitted since in this stage all branches obey the
same model. We also note that the parameters in (8) are related to p and k via

τω0 = ω0
p10k, τω1 = ω1

p10k, (14)

while the parameters in (9) are related to p̂ and k̂ via

T12,ω̄0 = p̂ω̄0 + k̂, T12,ω̄1 = p̂ω̄1 + k̂. (15)
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In order for the values of p and k to satisfy the given value of κ (heat conductivity of
the material under study; κ1 in equation (11)), we must have

k = log

(
3κ´

ω Cωω
pv2
ωdω

)
, (16)

where Cω = Cω,1 and vω = vω,1. Similarly, with the value of G known, the following

relation should hold between p̂ and k̂

k̂ =
2

1 +
´
ω Cω,1vω,1dω

2G +
´
ω Cω,1vω,1dω´
ω Cω,2vω,2dω

− p̂
´
ω Cω,1vω,1ωdω´
ω Cω,1vω,1dω

. (17)

Equations (16)-(17) provide relationships between two first-stage unknown variables and
known material properties. While the first stage features four unknowns (k, k̂, p, p̂),
due to these relations, only two parameters (p and p̂) need to be guessed as part of the
initialization. Once the parameters p and p̂ are specified, k and k̂ can be determined
via equations (16) and (17), from which the initial condition for τω and T12,ω can be
calculated using equations (14) and (15). Note that this treatment does not change the
number of unknown parameters in stage one; instead, it increases the efficiency of the
optimization algorithm by dismissing initial conditions that are inconsistent with the
material/interface properties.

In the second stage, the LA and TA modes of the relaxation time function are still
assumed to be the same but the intended number of segments is used, increasing the
number of unknowns for the relaxation times to 2M (six in the present case). The
number of unknowns for the transmissivity function stays at two, leading to a total of 8
unknowns. The initial condition for this stage is taken to be the same as the optimized
value of the previous stage (or a slightly perturbed version).

In the third stage, we repeat the optimization process, now for 4M unknowns (the
two TA branches are assumed to be the same, τTA1

ω = τTA2
ω ), starting from the optimized

parameters of the second stage. The number of unknowns for the transmissivity function
does not change at this stage. Therefore, the total number of unknowns is 12 + 2 = 14.

Finally, we perform the optimization for all 6M unknowns of the relaxation times
and the two unknowns of the transmissivity function (total of 6M + 2 = 20 unknowns),
starting from the optimized parameters of the previous stage. The optimized values
at this stage are the final values parameterizing the relaxation time and transmissivity
functions.

3.2 Problems with unknown interface conductance

As explained in the previous section, if G is known, given a guess for p̂, k̂ can be calcu-
lated using equation (17). If, however, G is unknown, (17) cannot be used. Therefore,
an additional stage–stage zero–is added to the optimization process to provide an initial
value for k̂ that is consistent with the initial guess for p̂ to be used in stage one.
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To obtain a value for k̂ consistent with the value of p̂ to be used in stage one we
perform an optimization assuming constant relaxation times (τ(ω) = τ) and a fixed
value of p̂. Since the single constant (gray) relaxation time is related to the (assumed
known) thermal conductivity via

τ =
3κ´

ω Cωv
2
ωdω

, (18)

k̂ is the only unknown function at this stage and can be solved for by optimization.
Using this optimized value and the guess for p̂, initial conditions for stage one for T12,ω̄0

and T12,ω̄1 can be obtained from (15).
The initial guesses for stage one for τω0 and τω1 remain the same as in the case of

known G, namely,

τω0 =
3κωp0´

ω Cωω
pv2
ωdω

, τω1 =
3κωp1´

ω Cωω
pv2
ωdω

(19)

(see equations (14) and (16)).

3.3 Initialization protocol

To reduce the probability of the reconstruction being trapped in a local minimum, in
our approach, we repeated the first stage of the optimization for four different values of
p and four different values of p̂, leading to a total of 4×4 = 16 distinct initial conditions.
Consequently, since k̂ for a given p̂ is determined via the zeroth stage, the zeroth stage
was also repeated four times. The second stage was also repeated for five different
initial conditions which were the five lowest values of L obtained from optimizations in
stage one1. Finally, third and fourth stages were performed for only one initial condition
corresponding to the lowest value of L in the second and third stages of the optimization,
respectively.

To reduce cost, MC simulations during the zeroth, first and second stages of the
optimization process used NBTE = 104 particles for calculation of TBTE. During the
third and fourth stages of the process, since we were looking for more accurate solutions,
the number of particles was increased to NBTE = 106. Since the computational time for
each adjoint MC simulation is proportional to NBTE [25], given our choices for NBTE,
the cost of the first three stages of the optimization is negligible compared to the cost of
the last two stages, therefore, repeating them a number of times starting from different
initial conditions does not increase the cost of the reconstruction process significantly.

1In some cases where multiple simulations of stage one had similar values for L, we repeated simu-
lations of stage two for all such initial conditions, leading to more than five simulations in the second
stage.
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4 Validation

We demonstrate the use and validate the effectiveness and accuracy of the proposed
methodology using synthetic data obtained from MC simulations of equation (1) for
the 2D-dots problem [7], using the adjoint deviational formulation described in [25]. In
other words, we generate “synthetic” experimental data Tm(t,x;L) by solving equation
(1) for a particular material model and then use the proposed formulation to reconstruct
the material properties (relaxation times and free path distribution) and compare with
the input data. Synthetic data are preferable (to experimental data) because they allow
us to validate the accuracy of the algorithm directly with no need to account for possible
experimental error, as well as modeling error resulting from neglecting various effects
(e.g. electronic transport) present in experiments. A sketch of the 2D-dots geometry
can be found in figure 1.

Figure 1: 2D-dots geometry, comprising a periodic array of Al “dots” on a Si substrate.
The structure is assumed to be sufficiently large that it can be approximated as infinite
in the x and y directions; moreover, the Si substrate thickness is sufficiently large to be
approximated as semi-infinite. The dot height is constant at LAl = 100 nm, while the
dot base is square with edge length L. The ratio between L and the periodicity of the
structure is constant at 0.5. The experimental measurement, Tm(t,x;L), corresponds
to the surface temperature of Al after the initial heating event at t = 0.

4.1 Generation of synthetic experimental data

The material under study is taken to be silicon. We have considered two different sets
of silicon material properties similar to the data we have used previously [19]. The first
model considered (thermal conductivity κ = 139.7 Wm−1K−1) is described in [21, 38]
and will be referred to as the ab initio model throughout this paper. The second model
considered here is described in [22, 32] (thermal conductivity κ = 143.8 Wm−1K−1)
and will be referred to as the Holland model. Also for Al, we used the material model
adapted from the dispersion relation in [39] with constant relaxation time of τAl = 10
ps as in [22,32].

Synthetic data was generated using two different interface models. The first model
is the DMM which is widely used in transport theory [26]. According to this model, the
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transmissivity from material 1 to 2 is given by

T12,ω =
Cω,2vω,2

Cω,1vω,1 + Cω,2vω,2
. (20)

The second model is based on experimental measurements shown in figure 12 of [35];
it will be referred to as the “experimental” model in the present work.

The generated synthetic temperature relaxation profiles are in the form of Tm(0 ≤
t ≤ 5 ns,xs;L), implying measurement at the surface of Al, xs = (x, y, 100 nm) (based
on the coordinates in figure 1) for 5 ns, which is a typical measurement time in pump-
probe experiment of the 2D-dots geometry [7]. Ten different side lengths were simulated;
namely, L = 10 nm, 20 nm, 40 nm, 100 nm, 500 nm, 750 nm, 1 µm, 2.5 µm, 5 µm,
and 50 µm. Each simulation is sampled at 100 discrete time instances (during the
relaxation). As a result, 1000 total Tm measurements were available for reconstruction
(N = 1000). The data were generated using both essentially noise-free MC simulations
via Nm = 108 particles (Nm is the number of particles used in the MC simulations for
generating synthetic “experimental” data), and noisy MC simulations with Nm = 103

particles. The latter were used to assess the method performance in the presence of
noisy experimental measurements (see figure 5 of [19] for a comparison of the noisy and
noise-free temperature profiles). The noisy synthetic data have been observed to have
a standard deviation of 0.02 K. This standard deviation makes the uncertainty in Tm

significantly larger than the noise in common experimental data (e.g. compare the noisy
temperature profile of figure 5 of [19] with figure 2c of [7]).

4.2 Results

In this section, we present comparisons between the reconstructed relaxation times
τω = τ(ω) (and associated cumulative distribution function (CDF) of free paths) and
the corresponding properties used as input for generating the synthetic experimental
data. The CDF is defined as F (Λ) = 1

3κ

´
ω∗(Λ)Cωv

2
ωτωdω, where ω∗(Λ) is the set of

modes such that Λω ≤ Λ, that is ω∗(Λ) = {ω|Λω ≤ Λ}; the corresponding probability
density function (of free paths) is given by f = dF

dΛ .
Our comparison figures also display the reconstructed interface transmissivities, al-

though, as stated previously, the goal of the algorithm and the present paper is not to
specifically determine the mode dependent transmissivities; the latter are a by-product
of the relaxation-time reconstruction. In these figures, the input material properties
(which synthetic relaxation profiles are generated from) are labeled as “true”, while
the reconstructed properties (obtained through the optimization process) are labeled as
“reconstructed”. The reconstructed results are provided in sections 4.2.1 and 4.2.2.

4.2.1 Ab initio model

In this section, we present the reconstructed silicon material properties for the ab initio
material model. This model has two TA branches, therefore, there is a total of 6M +
2M̄ = 20 unknowns.
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Figures 2 and 3 show a comparison between the true material parameters and the
reconstructed ones for the ab initio silicon material properties using the experimental
interface transmissivities, in the absence and presence of noise, respectively. We observe
that the reconstructed relaxation times are close to the true data. We also note that
the discrepancy is more noticeable for low frequencies, primarily due to the low density
of states of these frequency ranges; in particular, the density of states of the LA modes
for ω ≤ 8 × 1012 rad/s is zero (i.e. none of the terms in (11) influences τLAω for ω ≤
8×1012 rad/s). These figures show that the error in the reconstructed transmissivities is
more significant. However, the final value of the objective function is small, indicating
that accurate reconstruction of relaxation times distribution that can reproduce the
input temperature profiles (comparisons between input temperature profiles and their
counterparts predicted by the reconstructed properties can be found in figure 8) are
possible even if the transmissivities are not accurately reconstructed.
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Figure 2: Reconstructed material properties with ab initio relaxation times, experimen-
tal transmissivities, and noise-free synthetic relaxation profiles.
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Figure 3: Reconstructed material properties with ab initio relaxation times, experimen-
tal transmissivities, and noisy synthetic relaxation profiles.
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4.2.2 Holland model

In this section, we present results for the Holland material model. This model assumes
that the two TA branches are the same and as a result, the optimization process consists
of three stages (plus the stage zero) with a total of 4M + 2M̄ = 14 unknowns.

Figures 4 and 5 show a comparison between the true material parameters and the
reconstructed ones for the Holland set of data using the experimental and DMM interface
transmissivities, respectively, in the absence of noise. We observe that the algorithm
is able to capture true relaxation times with reasonable accuracy. Our conclusions
are similar to the case of ab-initio data, namely, even though the transmissivities are
not reproduced accurately, the relaxation times, which are the quantities of interest,
are accurately reconstructed. We have also observed (not shown here) that the same
conclusion can be made in the case of noisy data.

0 2 4 6 8
angular frequency (rad/s)#1013

10-12

10-10

10-8

10-6

re
la

xa
tio

n 
tim

e 
(s

ec
)

true LA modes
reconstructed LA modes
true TA modes
reconstructed TA modes

(a)

10-10 10-5 100

free path (m)

0

0.2

0.4

0.6

0.8

1

F
($

)

true CDF
reconstructed CDF

(b)

0 2 4 6 8
angular frequency (rad/s) #1013

0

0.2

0.4

0.6

0.8

1

T
S

i!
A

l

true LA modes
true TA modes
reconstructed T

Si!Al

(c)

Figure 4: Reconstructed material properties with Holland relaxation times, experimen-
tal transmissivities, and noise-free synthetic relaxation profiles.
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Figure 5: Reconstructed material properties with Holland relaxation times, DMM trans-
missivities, and noise-free synthetic relaxation profiles.
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4.3 Effect of interface treatment

In the previous sections we have observed that one line (M̄ = 1) results in a sufficiently
adequate representation of the transmissivity (for all branches) for the relaxation times
to be reconstructed accurately. Given the accurate reconstruction of the relaxation times
and temperature fields (see figures 8a and 8b below), we would expect the interface prop-
erties to be captured correctly at least in an “average” sense. Indeed, in the above com-
parison figures (2-5) we observe that although the reconstructed transmissivity profiles
are not very accurate in a spectral sense, they do capture the interface transmissivity
in an average sense. To make this observation more quantitative, we have calculated
the interface thermal conductance G associated with each of the reconstructed trans-
missivities in sections 4.2.1 and 4.2.2. The resulting values, calculated using equation
(7), are provided in table 1, which shows that the interface thermal conductances are,
generally speaking, close to the thermal conductance associated with the true data from
which the synthetic temperature relaxation profiles are generated. In other words, these
results suggest that reconstruction of the relaxation times is only sensitive to the aggre-
gate effect of the interface, as captured, for example, by a simple linear (as function of
frequency) model.

Silicon model/
interface model/
data type

Holland
exp.
noise-free

Holland
DMM
noise-free

Holland
exp.
noisy

Holland
DMM
noisy

Ab initio
exp.
noise-free

Ab initio
exp.
noisy

G (MW/m2K) 260 367 260 367 567 567

Reconstructed
G (MW/m2K)

265 353 273 364 630 658

Table 1: Calculated interface heat conductance based on the true (first row) and re-
constructed (second row) interface transmissivities; “exp.” denotes the experimental
interface model adapted from [35].

To verify this assertion, we have performed the optimization using a more complex
parameterization in equation (9) where different branches are represented by differ-
ent distinct linear functions, for all different cases of section 4.2. An example of such
reconstruction is provided in figure 6 for the Holland material model, experimental
transmissivity, and noise-free synthetic data. We observe that the quality of the recon-
struction has not improved compared to figure 4. Accordingly, we have not noticed any
significant improvement in the final value of the objective function.
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Figure 6: Reconstructed material properties with Holland relaxation times, experi-
mental transmissivities, and noise-free synthetic relaxation profiles with separate linear
models for frequency-dependent transmissivities of LA and TA branches.

As a further consistency check, we have repeated one of the reconstruction tests
of section 4.2.2 assuming T21,ω (the transmissivity from Al to Si) to be the unknown
(and hence constrained to be linear in angular frequency) function. The result for the
experimental transmissivity and noise-free synthetic data is provided in figure 7. As
expected, the reconstructed T12,ω transmissivities (obtained by applying principle of
detailed balance to reconstructed T21,ω) for the different branches are not the same as
before and they are now distinct for different branches. However, comparison with fig-
ure 4 suggests that this result serves as the best, perhaps, illustration of our previous
conclusion, namely that the reconstruction is fairly insensitive to the complexity of the
parameterization used for the interface (provided it is reasonable); despite the clearly
different results for T12,ω, the maximum discrepancy between the two reconstruction
results (for the relaxation times) is only 0.7%, implying that they are essentially identi-
cal. The value of interface conductance associated with this reconstruction is G = 273
MW/m2K, which is very close to the heat conductance of the reconstruction of figure 4
(G = 265 MW/m2K from table 1).
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Figure 7: Reconstructed material properties with Holland relaxation times, experimen-
tal transmissivities, and noise-free synthetic relaxation profiles with T21,ω (the trans-
missivity from Al to Si) being unknown.
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Figure 8 compares the synthetic input temperature profiles with relaxation profiles
generated from reconstructed properties for some of the cases considered in this section.
All plots show negligible differences between the input and reconstructed temperature
profiles; the same conclusion is reached by observing the very small final value of L.
The trend for other reconstruction results (not shown here) is the same. This figure
also confirms our earlier claim that the free time reconstruction can proceed without
precise knowledge of the transmissivity profiles, making the present reconstructions
(using simple models for the transmissivity) feasible.
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Figure 8: Comparison between the synthetic temperature profiles and the ones generated
from the reconstructed properties of (a)- figure 4, (b)- figure 2, and (c)- figure 7.

4.4 Why is interface transmissivity reconstruction not as accurate as
relaxation time reconstruction?

So far, we have empirically shown that accurate reconstruction of the relaxation times
does not require reconstruction of interface transmissivities to the same accuracy level;
specifically, our results suggest that treating the transmissivities using a simple linear
model (as a function of frequency) for all branches is sufficient. At the same time,
increasing the model complexity does not improve the quality of the interface property
reconstruction, suggesting that it is, perhaps, not possible to obtain accurate transmis-
sivity reconstructions from the TDTR setup we have considered here.

In order to gain some further insight we have performed reconstructions for different
dot properties and heights. Figure 9 shows the reconstruction result which uses the Hol-
land model for Si, experimental transmissivities, noise-free data, and τ ′Al = 100τAl = 1
ns. This leads to an average Kn number inside the Al of 17 (based on the dot height),
with a range of 17-170 (the characteristic length scale is taken to be the smallest of
the dot height, LAl, and L). We observe that, similar to all reconstructions of sections
4.2-4.3, even though the transmissivities are only approximately reconstructed, the re-
laxation times are reconstructed accurately. We have also performed reconstructions for
other Al relaxation times (τAl= 100 ps), other Si properties (ab initio data), and other
interface properties (DMM) as well as different dot heights (LAl= 10 nm, 25 nm, and
50 nm); the conclusion is essentially the same in all cases.

16



0 2 4 6 8
angular frequency (rad/s) 1013

10-12

10-10

10-8

10-6
re

la
xa

tio
n 

tim
e 

(s
ec

)
true LA modes
reconstructed LA modes
true TA modes
reconstructed TA modes

(a)

10-10 10-5 100

free path (m)

0

0.2

0.4

0.6

0.8

1

F
(

)

true CDF
reconstructed CDF

(b)

0 2 4 6 8
angular frequency (rad/s) 1013

0

0.2

0.4

0.6

0.8

1

T
S

i
A

l

true LA modes
true TA modes
reconstructed T

Si Al

(c)

Figure 9: Reconstructed material properties with Holland relaxation times, experimen-
tal transmissivities, and noise-free temperature profiles with τ ′Al = 100τAl = 1 ns.

An important observation stemming from these numerical experiments is that the
reconstructed transmissivity profile in figure 9 is different from the one shown in figure
4. At the same time, as observed before in table 1 for other reconstructions, G is
approximately correctly reconstructed (G = 249 MW/m2K). Although not surprising
given our previous findings and discussion, the different transmissivity profile observed
here is attributed to the fact that the transport regime (aluminum Knudsen number
based on dot height) in the aluminum is different, altering the relative importance of
different parts of the frequency spectrum (see [40] for a discussion). The correctly
reconstructed value of G, on the other hand, suggests that temperature relaxation data
at a fixed aluminum dot height, provides only sufficient information for a reconstruction
of some “aggregate” effect of the interface. This may be attributed to the fact that the
dot height has a more direct effect on the phonon population crossing the interface than
length scale L.

In summary, what separates relaxation times from interface transmissivities in the
present context is that TDTR experiments sample a variety of transport regimes in
the substrate material (by varying the characteristic values of length scale L), while
only sampling one regime as far as the interface is concerned. As a result, relaxation
times are accurately reconstructed, while interface properties are only approximately
reconstructed (only reconstructed in an aggregate sense). The decoupling of these two
unknowns, possibly due to the fact that they correspond to two distinct parts of the
system (bulk vs boundary), has a profound effect on the feasibility of the reconstruc-
tion of the relaxation times, which is the objective of this work. Implications of this
observation for the reconstruction of interface properties are discussed in section 5.

4.5 Comparison to the effective thermal conductivity approach

In this section, we compare our approach with the prevalent reconstruction approach,
namely the method based on the effective thermal conductivity.

The effective heat conductivity approach aims at reconstructing the phonon free
path distribution directly from the measured temperature relaxation profiles, assuming
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that in the non-diffusive regime, heat transport can still be represented using the Fourier
heat conduction equation with a suppressed heat conductivity, κeff ≤ κ [6]. The effective
heat conductivity approach is based on the approximation

κi
κ

=

ˆ ∞
0

S(χi)f(Λω)dΛω =

ˆ ∞
0
−dS(χi)

dχi

dχi
dΛω

F (Λω)dΛω, (21)

where κi is the effective heat conductivity associated with Li, obtained by fitting the
response Tm(t,x;Li) to the solution of Fourier heat conduction equation with κi treated
as the unknown in the fitting process. In the above equation, χi is a dimensionless
quantity relating length scale to free paths, here taken to be χi = Λω/Li, S(χi) is the
suppression function, and f(Λω) and F (Λω) are defined at the beginning of section 4.2.

While the approximate suppression function S(χi) can be obtained analytically un-
der a set of rather restrictive assumptions [19] for a few simple geometries such as 1D
TTG [6], for most geometries, including 2D-dots, no analytical expression is available.
Putting aside the fact that such a function may not exist, in such cases, it has been
proposed [21] that it can be approximated by the suppressed effective thermal conduc-
tivity of the gray model in the same geometry, namely S(χi) = κg(χi)/κ, where the
subscript g denotes gray model and κg(χi) denotes the effective thermal conductivity
measured by fitting the relaxation profile to the heat conduction equation solution in
the said geometry. Provided with measurements of length scale dependent effective heat
conductivities, κi, F (Λω) can be obtained by solving the inverse problem in equation
(21) using a convex optimization framework [6].

In order to compare with our results, we performed the above procedure for the
Holland model of silicon with both the experimental and DMM transmissivity functions
and noise-free synthetic temperature profiles. The suppression function used for the
reconstruction along with its derivative based on the experimental transmissivity are
plotted in figure 10a. The suppression function was calculated by fitting a polynomial
to ten different values of κg(χi)/κ, obtained from gray simulations with L = 100 nm by
varying the gray mean free path. The suppression function with DMM transmissivities
is essentially the same. Figure 10b shows κeff(L) (κi in equation (21)) normalized by κ,
as obtained by MC simulations of ten different domain length scales (L) based on both
experimental and DMM transmissivities. Finally, figure 10c plots the reconstructed free
path distribution, obtained using the convex optimization problem formulated in [6]
with the same values for the number of integration points and parameter η (see [6] for
more details), for both interface models. Our results do not change significantly if we
use more than ten data points.
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Figure 10: Reconstructed free path distribution based on effective thermal conductiv-
ity approach (c); “exp.” denotes the experimental interface model adapted from [35].
Length dependent cumulative effective heat conductivity (b). The suppression function
based on experimental transmissivity interface model (a).

Three different types of discrepancies can be detected in figure 10c. The first dis-
crepancy is the mismatch with the true CDF in the Λ . 5 µm region for both models
which can be attributed to the gray approximation used for the calculation of the sup-
pression function; a similar trend has been observed previously in [21]. The second type
of discrepancy is the mismatch with the true CDF, and in particular the plateau in F , in
the range 5 µm . Λ . 1 mm in both models. Although constraining the CDF to reach
1 at large free paths (a property of the cumulative distribution function) has forced
the CDF to eventually do so around Λ = 5 cm, saturation of κeff(L)/κ for L & 5 µm
(see figure 10b) has caused significant discrepancy between the reconstructed and true
free path distribution in the region 5 µm . Λ . 1 mm. The third discrepancy is the
significantly different plateau value for F for the two different interface models, which
can be directly traced to the significantly different values at which κeff/κ saturates for
L & 5 µm for the two models.

It is very important to note that the saturation of κeff(L)/κ for L & 5 µm is a result of
the transport regime in silicon never becoming fully diffusive, even at L = 1 mm. Since
the reconstruction critically depends on the value of the ratio κeff(L)/κ, the fact that this
ratio fails to reach a well-established physical limit casts severe doubt on the reliability
of the whole reconstruction process based on the effective thermal conductivity. The fact
that the effective thermal conductivity approach relies on the assumption of diffusive
transport, which, in term, implies late times, was discussed in detail in our previous
work [19] in the context of the transient thermal grating experiment. Failure to allow
for sufficient time for transport to transition to diffusive, will result in an unreliable
measurement and a poor reconstruction.

To illustrate the above point further, we consider the special case of one-dimensional
transport (L→∞) and define a time- and mode-dependent Knudsen number Knω(t) =
Λω/D(t) that characterizes the transport regime inside the silicon. Here, D(t) is the
characteristic heat penetration depth. It is defined as the length inside silicon, measured
from the Al-Si interface, where the deviational temperature reaches 1% of the initial
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deviational temperature, i.e. ∆T (D(t)) = 0.01 K. Figure 11a shows the mode dependent
Knudsen number defined in this way inside silicon. The simulation is based on MC
simulations of BTE using Holland silicon properties, experimental transmissivities, and
noise-free relaxation profiles for 5 ns (similar to pump-probe experiment) plotted for
the duration 35 ps ≤ t ≤ 5 ns (the 35 ps is chosen since this is the time that the
surface temperature of Al starts to decrease from the initial value of ∆T (t = 0) = 1 K,
implying that this is the time that the transport regimes begin to be observed in our
measurement). The 21 lines in the figure correspond to 20 selected modes of data (there
is a total of 1399 modes in the Holland data) and their average, the latter defined as the
sum of the weighted Knudsen numbers of different frequencies (weighted by the density
of states). We can see in the figure that for a significant number of modes, even at
the end of the observation window (∼ 5 ns), the Knudsen number is significantly larger
than one, implying that diffusive behavior has yet to set in.

In order to further verify that the saturation in κeff observed in figure 10b is caused
by non-diffusive effects, we performed long-time simulations of the 1D problem described
above. In these simulations κeff was extracted at progressively later times, but always
within a sampling window of 5 ns duration (tfinal − tinitial = 5 ns). Figure 11b shows
κeff(L = ∞)/κ versus the end of measurement period, tfinal, for different measurement
times for Holland silicon properties, both experimental and DMM transmissivities, and
noise-free relaxation profiles. The leftmost points in the figure correspond to a time
window of tfinal = 5 ns, which is the time window used for the reconstruction data of
figure 10b; the consistency between these values and the saturated values in figure 10b
suggests that our 1D problem is a good representation of the physics of the 2D problem
for the larger values of L.

Figure 11b clearly shows that κeff(L = ∞)/κ → 1 as tfinal increases, as expected,
since transport inside the silicon becomes more diffusive. The figure also shows that
the value of κeff(L = ∞)/κ = 0.92 observed for the experimental transmissivities is
fortuitously high for that particular observation window and returns to values that are
consistent with the DMM model for other observation windows. Although this large dis-
crepancy between the values of κeff(L→∞)/κ for the tfinal = 5 ns window is somewhat
fortuitous, it still serves to highlight the sensitivity of the effective thermal conductivity
approach on the observation window, which casts serious doubt on its reliability (mea-
surement of a material property should be independent of the measurement window to
be considered reliable).

In summary, lack of diffusive behavior in the 2D-dots setup, as seen in figure 11,
causes failure of the effective thermal conductivity approach. In contrast, as shown in
sections 4.2 - 4.4, the approach proposed here does not suffer from such limitations.
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Figure 11: Non-diffusive behavior inside silicon. (a) Mode and time dependent Knudsen
number inside silicon for pump-probe measurement time, 0 < t < 5 ns, based on
BTE solution using Holland properties, experimental transmissivities, and noise-free
relaxation profiles. (b) Effect of measurement time on transport regime inside silicon
for both experimental and DMM transmissivities. The plot shows κeff(L = ∞)/κ for
different measurement times. This quantity approaches 1 as the measurement window
moves to later times.

5 Summary and outlook

We have proposed and validated an optimization method for reconstructing the relax-
ation times and free paths from thermal spectroscopy data in the presence of an interface.
The reconstruction is achieved by comparing the experimental output with simulations
of the BTE, thus avoiding the use of a Fourier assumption or related approximations.
The use of MC simulation methods [22–25] to obtain the BTE solutions expands the
domain of applicability of the approach, since it does not require the experimental setup
to be simple. Our results show that, perhaps surprisingly, the relaxation times can be
fully resolved, even if the interface transmissivities are not. This observation is particu-
larly significant for applications where reconstruction of relaxation times is the primary
objective, as is the case here, because it implies that various reconstructions previously
thought intractable are, in fact, feasible. Although our work has focused on a particular
experimental setup, we believe that our conclusions are valid for other experiments in
similar transport regimes.

We also note that although for all successful reconstructions shown in this paper
the interface conductance (G) was reproduced to a good approximation level, this does
not imply that an approximately correct value of G is a sufficient condition for cor-
rect reconstruction of relaxation times. In fact, numerical experiments show that sim-
ple frequency-independent parametrizations of transmissivities that capture the correct
value of G (approximately) but do not reconstruct the relaxation times or predict the
thermal behavior correctly are possible. In other words, the “aggregate effect” of the
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interface that needs to be captured, extends beyond its (continuum) conductance value.
As always, the ultimate gauge of the success (reliability) of the reconstruction is its
ability to reproduce the experimental (input) temperature relaxation profiles, measured
either via a comparison such as that of figure 8, or via the final value of the objective
function.

Complete reconstructions such as the one shown in figure 2 take O(50) hours on
a very modest quad core workstation (8 threads on an Intel i7-2600 @ 3.4GHz). In
other words, although not cheap, they are certainly feasible, even without powerful
computational resources. Owing to the perfect parallel scaling of the kinetic-type MC
method [23] used here, wall time can be reduced significantly if multi-CPU parallel com-
puting is utilized. Moreover, the above cost can be significantly reduced by exploiting
the robustness of the NM method to noisy inputs, for example, by reducing the number
of particles used for the Boltzmann solutions. Although normally the convergence rate
of MC simulations is viewed as a poor feature of the method, in this case it can be
turned into an advantage by noticing that a reduction of NBTE by an order of magni-
tude, resulting in proportionally the same reduction in cost, will only lead to an increase
in stochastic error of only O(3) and thus will have only a small effect on the final result
accuracy (see figure 2 of [19]). Such, as well as other approaches for reducing the cost
of reconstruction will be fully explored in the near future.

The approach proposed here has a number of advantages compared to the effective
thermal conductivity (or effective thermal diffusivity) approach. While effective thermal
conductivity techniques require the value of the interface thermal conductance as an
input to the Fourier heat equation, our algorithm does not make any assumption on
that. This not only requires less knowledge of the problem under consideration, it also
makes the reconstruction process less susceptible to error. We also recall that, as shown
in [19], for an accurate reconstruction of the full spectrum of free paths (and relaxation
times) the method proposed here does not require the availability of measurements in all
transport regimes, while this is a requirement in the effective-heat-conductivity-based
approaches. This requirement is particularly problematic in the 2D-dots experiment
where regardless of the value of the chosen length scale L, the regime is never diffusive,
as discussed in section 4.5.

Our method was validated using numerical experiments based on the 2D-dots ge-
ometry [7] due to its relevance to the current state of the art. In concert with the
experimental process, the metal dot height has been assumed constant (100 nm) [29].
However, as discussed in section 4.4, our results suggest that the fixed dot height limits
the amount of information that can be extracted for the purpose of reconstructing the
interface properties. Preliminary results indicate that more accurate characterization of
interface transmissivities is possible if information from (numerical) experiments with
variable dot heights is used. In the future, we plan to study the role that different
metal film heights play in the reconstruction of interface properties, as well as more
generally search for approaches which amplify the sensitivity of reconstruction process
to transmissivities, leading to more accurate prediction of the latter.
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Appendix A: Parameters of piece-wise linear model for re-
laxation times

Relationship (8) is constructed such that the intersections of the piecewise linear seg-
ments at ωSj , j = 1, ...,M − 1, are smoothed by third-order polynomial functions. Each
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smoothing polynomial extends over a frequency range of 2∆, centered on ωSj and de-

noted by (XS
2j−1, X

S
2j), where

XS
0 = ωS0 ,

XS
2j = ωSj + ∆, XS

2j−1 = ωSj −∆, j ∈ {1, ...,M − 1},
XS

2M−1 = ωSM . (22)

In this work, we have used ∆ = 5× 1012 rad/s. The coefficients aSj , bSj , cSj , and dSj are
calculated from the following equations

aSj = −
log

(
1−

(
∆
ωS
j

)2
)

[
log

(
ωS
j +∆

ωS
j −∆

)]3

 log

(
τSωj+1

τSωj

)
log

(
ωS
j+1

ωS
j

) − log

(
τSωj

τSωj−1

)
log

(
ωS
j

ωS
j−1

)
 ,

bSj = 0.5


1

log

(
ωS
j +∆

ωS
j −∆

)
 log

(
τSωj+1

τSωj

)
log

(
ωS
j+1

ωS
j

) − log

(
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)
log

(
ωS
j

ωS
j−1

)
− 3aSj log

((
ωSj
)2 −∆2

) ,

cSj =

log

(
τSωj

τSωj−1

)
log

(
ωS
j

ωS
j−1

) − 3aSj
[
log
(
ωSj −∆

)]2 − 2bSj log
(
ωSj −∆

)
,

dSj = log(τSωj−1
)− log(ωSj−1)

log

(
τSωj
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)
log
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3 log(ωSj + ∆)− log(ωSj −∆)

]
, (23)

where j ∈ {1, ...,M − 1} and S ∈ {LA, TA1, TA2}.
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Appendix B: Parameters of piece-wise linear model for trans-
missivities

The role of X̄S
j is similar to XS

j in equation (22), therefore,

X̄S
0 = ω̄S0 ,

X̄S
2j = ω̄Sj + ∆, X̄S

2j−1 = ω̄Sj −∆, j ∈ {1, ..., M̄ − 1},
X̄S

2M̄−1 = ω̄SM̄ . (24)

The coefficients āSj , b̄Sj , c̄Sj , and d̄Sj are calculated from the following equations

āSj = 0,

b̄Sj =

TS
12,ω̄j+1

−TS
12,ω̄j

ω̄S
j+1−ω̄S

j
−

TS
12,ω̄j

−TS
12,ω̄j−1

ω̄S
j −ω̄S

j−1

4∆
− 3āSj ω̄

S
j ,

c̄Sj =
TS12,ω̄j

− TS12,ω̄j−1

ω̄Sj − ω̄Sj−1

− 3āSj (ω̄Sj −∆)2 − 2b̄Sj (ω̄Sj −∆),

d̄Sj =
TS12,ω̄j+1

− TS12,ω̄j

ω̄Sj+1 − ω̄Sj
∆ + TS12,ω̄j

− āSj (ω̄Sj + ∆)3 − b̄Sj (ω̄Sj + ∆)2 − c̄Sj (ω̄Sj + ∆), (25)

where j ∈ {1, ..., M̄ − 1} and S ∈ {LA, TA1, TA2}. Note that although the matching
conditions between the line segments require a third order polynomial, here, due to the
symmetrical choice of ∆, the order of polynomial has reduced to two, āSj = 0.
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